
Performance analysis of a scalable algorithm for
3D linear transforms

Ivan Lirkov
Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A

1113 Sofia, Bulgaria

ivan@parallel.bas.bg

http://parallel.bas.bg/∼ivan/

Marcin Paprzycki
Maria Ganzha

Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

paprzyck@ibspan.waw.pl, maria.ganzha@ibspan.waw.pl

http://www.ibspan.waw.pl/∼paprzyck/

http://inf.ug.edu.pl/∼mganzha/

Stanislav Sedukhin
Graduate School of Computer Science and Engineering

The University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu City

Fukushima, 965-8580 Japan

sedukhin@u-aizu.ac.jp

Paweł Gepner
Intel Corporation

Pipers Way

Swindon Wiltshire SN3 1RJ

United Kingdom

pawel.gepner@intel.com

Abstract—Practical realizations of 3D forward/inverse separa-
ble discrete transforms, such as Fourier transform, cosine/sine
transform, etc. are frequently the principal limiters that prevent
many practical applications from scaling to a large number of
processors. Specifically, existing approaches, which are based
primarily on 1D or 2D data decompositions, prevent the 3D
transforms from effectively scaling to the maximum (possible
/ available) number of computer nodes. Recently, a novel, highly
scalable, approach to realize forward/inverse 3D transforms has
been proposed. It is based on a 3D decomposition of data and
geared towards a torus network of computer nodes. The proposed
algorithms requires compute-and-roll time-steps, where each step
consists of an execution of multiple GEMM operations and
concurrent movement of cubical data blocks between nearest-
neighbor nodes (directly using the logical arrangements of the
nodes within the torus). The proposed 3D orbital algorithms
gracefully avoids the, required, 3D data transposition. The aim of
this paper is to present a preliminary experimental performance
study of the proposed implementation on two different high-
performance computer architectures.

I. INTRODUCTION

THREE-DIMENSIONAL (3D) discrete transforms (DT)

such as Fourier transform, cosine/sine transform, Hartley

transform, Walsh-Hadamard transform, etc., are known to play

a fundamental role in many application areas, such as spectral

analysis, digital filtering, signal and image processing, data

compression, medical diagnostics, etc. Continuously increas-

ing demands for high speed computing, in a constantly increas-

ing number of many real-world applications, have stimulated

the development of a number of “fast algorithms,” such as

the Fast Fourier Transform (FFT), characterized by dramatic

reduction of arithmetic complexity. However, further reduction

of execution (wall-clock) time is possible only by overlapping

these arithmetic operations, i.e. using parallel implementation.

There exists three different approaches to parallel imple-

mentation of the 3D forward/inverse discrete transforms. Two

of them are particularly well suited for the Fourier trans-

form.

The first one is the 1D or “slab” decomposition of the initial

3D data. In this approach, N × N × N data is divided into

2D slabs of size N × N × b, where b = N/P and P is the

number of computer nodes. The scalability of the slab-based

approach, or the maximum number of nodes that can be used

concurrently, is limited by the number of data elements along

a single dimension of the 3D transform.

The second approach is the 2D or “pencil” decomposition,

of a 3D N ×N ×N initial data, among a 2D array of P ×P
computer nodes. Here, the initial cube is divided into a 1D

“pencil” of size N × b × b, and is assigned to each node

(as above, b = N/P). This approach increases the maximum

number of nodes than can be effectively used in computations,

from N to N2. Parallel 3D FFT implementation with a 2D

data decomposition has been discussed, among others, in [1],

[3], [4].

In both of these, so-called, “transposed” approaches, the

computational part and the inter-node communication part are

separated. Moreover, a computational part inside each node

is implemented by using either 2D or 1D fast (recursive)

algorithm for a “slab”-based or a “pencil”-based decompo-

sition, respectively, without any inter-node communication.

However, upon completion of each computational part, in

order to support contiguity of memory accesses, a transposition

of the 3D data array is required, to put data of appropriate

dimension(s) into each node. Here, at least one or two transpo-

sitions would be needed for the 1D or 2D data decomposition-

based approaches, respectively. Each of such transpositions of

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 613–622

DOI: 10.15439/2014F374

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 613

3D data is typically implemented by a global “all-to-all” inter-

node, message-passing communication.

The last approach is the 3D or “cube” decomposition,

which was recently proposed in [5]. The 3D or “cubic”

decomposition of an N×N×N initial data among P×P×P
computer nodes, allows a 3D data “cube” of size b×b×b to be

assigned to each computer node. It is easy to realize that, here,

the theoretical scalability is further improved from N2 to N3.

In this approach, blocked GEMM-based algorithms are used

to compute the basic one-dimensional N -size transform, not

on a single but on the P = N/b cyclically interconnected (for

data reuse) nodes of a 3D torus network. In this way, the pro-

posed algorithm integrates local intra-node computation with

a nearest-neighbour inter-node communication, at each step

of the three-dimensional processing. It is important to observe

that the proposed algorithm, with its 3D data decomposition,

and the torus-oriented communication scheme, completely

eliminates global communication. In addition, computation

and local communication can be overlapped. Finally, note that

in the considered approach, the 3D transform is represented

as three chained sets of cubical tensor-by-matrix or matrix-

by-tensor multiplications, which are executed in a 3D torus

network of computer nodes by the fastest and extremely

scalable orbital algorithms.

Te main contribution of this paper is to experimentally

evaluate the performance of the latter algorithm. To do this,

we have implemented overlapping of computation and com-

munication for the 3D data decomposition and used GEMM

kernels available on selected computers. The experimental

performance of the 3D Discrete Cosine Transform (DCT)

and Discrete Fourier Transform (DFT), with the 3D data

decomposition, has been evaluated on a Linux cluster and on

the Blue Gene/P supercomputer.

II. 3D SEPARABLE TRANSFORM

Let us start by introducing basic definitions concerning

3D separable transforms. Let X = [x(n1, n2, n3)], 0 ≤
n1, n2, n3 < N , be an N×N×N cubical grid of input data, or

a three-way data tensor. A separable forward 3D transform of

X is another cubical grid of an N×N×N data or a three-way

tensor
...
X = [

...
x(k1, k2, k3)], where for all 0 ≤ k1, k2, k3 < N :

...
x(k1, k2, k3) =

N−1∑

n3=0

N−1∑

n2=0

N−1∑

n1=0

x(n1, n2, n3) · c(n1, k1) (1)

·c(n2, k2) · c(n3, k3)

A separable inverse, or backward, 3D transform of a three-

way tensor
...
X = [

...
x(k1, k2, k3)] is expressed as:

x(n1, n2, n3) =
N−1∑

k3=0

N−1∑

k2=0

N−1∑

k1=0

...
x(k1, k2, k3) · c(n1, k1) (2)

·c(n2, k2) · c(n3, k3)

where 0 ≤ n1, n2, n3 < N and X = [x(n1, n2, n3)] is an

output N ×N ×N cubical tensor.

We will use the notations from [5] to describe the proposed

parallel algorithm. First, we divide the input data X =
[x(n1, n2, n3)] into P1 × P2 × P3 data rectangular cuboid,

where each cuboid X(N1, N2, N3), 0 ≤ Ni < Pi, has the size

of b1×b2×b3, i.e. bi = N/Pi. Then, the forward 3D transform

can be expressed as a block version of the multi-linear matrix

multiplication:

...
X(K1,K2,K3) =

P3−1∑

N3=0

P2−1∑

N2=0

P1−1∑

N1=0

X(N1, N2, N3)

×C(N1,K1)× C(N2,K2)× C(N3,K3), (3)

where 0 ≤ Ki < Pi and C(Ns,Ks), s = 1, 2, 3, is the

(Ns,Ks)-th block of the transform matrix C.

Due to the separability of the linear transforms, the 3D

transform can be split into three data dependent sets of 1D

transforms. At the first stage, the 1D transform of X(N1, N2, :
) is performed for all (N1, N2) pairs, as a block tensor-by-

matrix multiplication:

Ẋ(N1, N2,K3) =

P3−1∑

N3=0

X(N1, N2, N3)× C(N3,K3).

At the second stage, the 1D transform of Ẋ(:, N2,K3)
is implemented for all (N2,K3) pairs, as the second block

tensor-by-matrix multiplication:

Ẍ(K1, N2,K3) =

P1−1∑

N1=0

Ẋ(N1, N2,K3)× C(N1,K1).

At the third stage, the 1D transform of Ẍ(K1, :,K3) is

implemented for all (K1,K3) pairs, as the third block tensor-

by-matrix multiplication:

...
X(K1,K2,K3) =

P2−1∑

N2=0

Ẍ(K1, N2,K3)× C(N2,K2).

By slicing the cubical data, i.e. representing the three-way

tensors as the set of matrices, it is possible to formulate

the 3D transform as a conventional block matrix-by-matrix

multiplication with its transpose/nontranspose versions. In this

case, the initial data grid X(N1, N2, N3), is divided into 1D

“slices” along one axis. Then, the 3D transform can also be

computed in three data-dependent stages as chaining sets of

block matrix-by-matrix products.

III. ALGORITHM DESCRIPTION

A. Multi-node Implementation

In the proposed approach it is assumed that each computer

node CN(Q,R,S) has six bi-directional links labeled as ±Q,

±R and ±S. These nodes are toroidally interconnected. Dur-

ing processing, some blocks of tensor data are rolled, i.e.

cyclically shifted, along (+) or opposite (-) axis (orbit). The

first two stages implement the set of space-independent 2D

forward transforms, in parallel, along the R-axis (orbit) slabs.

614 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Note that, each stage of both forward and inverse trans-

forms, with 3D data decomposition, has a common structure,

i.e. steps of “compute-and-roll”.

A three-stage orbital implementation of the 3D forward

transform in a 3-dimensional network of toroidally intercon-

nected nodes CN(Q,R,S) proceeds as follows.

Stage I.

Ẋ(N1, N2,K3) =
∑

0≤N3<P3
X(N1, N2, N3)×C(N3,K3) :

• for all CN(Q, R, S) do P3 times:

1) compute: Ẋ ← X × C + Ẋ

2) data roll:
+S
⇐== X

−S
⇐==

Stage II. Ẍ(K1, N2,K3) =∑
0≤N1<P1

C(N1,K1)
T × Ẋ(N1, N2,K3):

• for all CN(Q, R, S) do P1 times:

1) compute: Ẍ ← CT × Ẋ + Ẍ

2) data roll:
+Q
⇐== Ẋ

−Q
⇐==

Stage III....
X(K1,K2,K3) =

∑
0≤N2<P2

Ẍ(K1, N2,K3)× C(N2,K2):

• for all CN(Q, R, S) do P2 times:

1) compute:
...
X ← Ẍ × C +

...
X

2) data roll:
+R
⇐== Ẍ

−R
⇐==

For more details, see [5].

It should be noted that the implementation described here is

a modification of the parallel algorithms proposed in [5]. The

main differences between our implementation and the original

algorithm are:

1) The implemented parallel algorithm works only for the

3D DCT and the 3D DFT;

2) The proposed implementation uses additional arrays to

store elements of the coefficient matrix C. In the case of

the DCT, we use one array with 4N elements; while for

the DFT two arrays with N elements each. In this way,

we avoid rolling the coefficient matrix. In other words,

we simplify the communication, while paying the price

of somewhat increasing (by O(N) elements) the total

memory utilization.

Since the tensor-by-matrix, or the matrix-by-tensor, mul-

tiplications can be expressed as the set of matrix-by-matrix

multiplications, we can use an existing GEMM subroutines,

from the BLAS library [2], to compute the 3D transform.

B. Multi-thread Implementation

There exists two possible ways to compute the tensor-by-

matrix multiplication on computers with multi-core processors.

The first one is to use the multi-threaded library, such as

the Engineering and Scientific Subroutine Library (ESSL,

see http://www-03.ibm.com/systems/software/essl/index.html)

or the Intel Math Kernel Library (MKL, see http://software.

intel.com/en-us/articles/intel-mkl/). Here, each slice of the

tensor is computed by multiple threads. The other possible

approach is to use OpenMP. In the current implementation,

we have linked our code to the multi-threaded library for the

parallelization on a single (multi-core) node of the computer

system.

IV. EXPERIMENTAL RESULTS

A portable parallel code was designed and implemented in

C. The parallelization was based on the MPI standard [6],

[7]. In the code, we used the BLAS subroutines SGEMM,

DGEMM, CGEMM, and ZGEMM to perform matrix-by-

matrix multiplication. In order to obtain a better map-

ping of the processors to the physical interconnect topol-

ogy of computers actually used in experiments, functions

MPI Dims create and MPI Cart create were used to create

a logical 3D Cartesian grid of processors. Let us also note

that we used one MPI process per computer node.

The parallel code has been tested on the following systems:

(1) a cluster computer Galera, located in the Polish Informatics

Center TASK, and (2) two IBM Blue Gene/P machines, one

at the Bulgarian Supercomputing Center, and one at the HPC

Center of the West University of Timisoara (UVT).

In our experiments, times have been collected using the MPI

provided timer, and we report the best results from multiple

runs. In the following tables, we report the elapsed (wall-clock)

time Tp, in seconds, using p MPI processes, and the parallel

speed-up Sp = T1/Tp.

Tables I and II show the results collected on the Galera. It

is a Linux cluster with 336 nodes, and two Intel Xeon quad

core processors per node. Each processor runs at 2.33 GHz.

Processors within each node share 8, 16, or 32 GB of mem-

ory. Nodes are interconnected with a high-speed InfiniBand

network (see also http://www.task.gda.pl/kdm/sprzet/Galera).

When running our code on Galera, we used the Intel C

compiler, and compiled the code with the options “-O3 -

openmp”. To use the BLAS subroutines, we linked our code

to the optimized multi-threaded Intel MKL library.

The symbol * in the tables denotes that, in the given case,

the memory of p nodes was not large enough to compute the

3D transform for data of size N ×N ×N .

The reported execution time for N = 100 shows that

the problem is “small” and can be executed on one node

of the cluster (no need for parallelization). Here, there is

no significant improvement from using two or more nodes.

However, already for the problems of size N = 600 a sig-

nificant performance gain can be observed (see, also, below).

Considering the fact that some of the applications that need

3D transforms involve “real-time processing of data,” it is

worthy noting that, using the proposed method, similar time is

required to find the solution on a single node for the problem

of size N = 600 as finding solution using 256 nodes for the

problem of size 2000 < N < 2400.

Table III contains the speed-up obtained on the Galera. For

the largest problem, which can be executed on a single node,

the parallel efficiency is above 50% for the number of nodes

up to 16 for the DCT and up to 32 for the DFT. We note that

the main advantage of the parallel algorithm is that the code

allows performing the 3D transform for very large data. Taking

into account the largest cases reported in Tables I and II, we

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF SCALABLE ALGORITHMS FOR 3D LINEAR TRANSFORMS 615

TABLE I
EXECUTION TIME FOR THE 3D DISCRETE COSINE TRANSFORM ON GALERA.

N nodes
1 2 4 8 16 32 64 128 256

single precision
forward transform

100 0.08 0.06 0.06 0.18 0.07 0.14 0.20 0.19 0.20
200 0.23 0.18 0.15 0.10 0.09 0.10 0.11 0.14 0.18
300 0.86 0.54 0.31 0.21 0.14 0.15 0.17 0.12 0.21
400 2.18 1.26 0.71 0.41 0.32 0.25 0.23 0.16 0.22
600 9.59 5.58 3.06 1.80 0.98 0.68 0.45 0.36 0.35
800 * 14.51 7.70 4.29 2.51 1.43 0.85 0.72 0.52

1000 * * 17.91 10.12 5.47 3.07 1.77 1.28 0.99
1200 * * * 18.88 10.71 5.80 3.31 2.48 1.56
1400 * * * 34.11 19.02 10.23 5.67 3.97 2.76
1600 * * * * 27.45 14.83 8.11 5.11 3.74
2000 * * * * * 35.00 18.50 11.16 7.48
2400 * * * * * 75.50 35.10 22.12 13.56
2800 * * * * * * 63.67 36.11 23.61
3200 * * * * * * * 53.51 34.92

backward transform
100 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
200 0.20 0.13 0.08 0.05 0.03 0.02 0.01 0.01 0.03
300 0.83 0.49 0.29 0.17 0.11 0.08 0.05 0.06 0.04
400 2.08 1.16 0.65 0.38 0.25 0.18 0.09 0.09 0.07
600 9.38 5.44 2.96 1.61 0.98 0.56 0.35 0.29 0.20
800 * 14.00 7.36 4.13 2.36 1.24 0.72 0.58 0.43

1000 * * 17.65 9.56 5.14 3.00 1.75 1.33 0.88
1200 * * * 18.04 10.73 5.82 3.19 2.10 1.58
1400 * * * 33.53 18.49 9.85 5.48 3.45 2.46
1600 * * * * 26.68 14.36 7.68 5.57 3.56
2000 * * * * * 34.52 18.50 12.05 7.77
2400 * * * * * 70.40 37.74 21.43 13.99
2800 * * * * * * 65.15 38.27 23.74
3200 * * * * * * * 58.55 33.11

double precision
forward transform

100 0.07 0.05 0.07 0.14 0.08 0.15 0.19 0.20 0.48
200 0.39 0.27 0.20 0.16 0.15 0.12 0.16 0.16 0.20
300 1.51 0.89 0.51 0.37 0.31 0.21 0.19 0.22 0.20
400 4.09 2.26 1.27 0.78 0.49 0.34 0.25 0.27 0.24
600 18.49 9.63 5.29 2.90 1.77 1.04 0.62 0.60 0.44
800 * * 14.72 8.00 4.36 2.56 1.41 1.15 0.92

1000 * * * 18.11 9.69 5.40 3.12 2.36 1.72
1200 * * * 36.27 18.10 10.00 5.68 4.11 2.95
1400 * * * * 32.85 18.05 9.78 6.59 4.55
1600 * * * * * 30.76 15.28 9.17 6.89
2000 * * * * * * * 20.80 14.69
2400 * * * * * * * 39.98 26.38
2800 * * * * * * * 68.79 47.75

backward transform
100 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02
200 0.36 0.21 0.13 0.07 0.05 0.04 0.04 0.02 0.03
300 1.43 0.82 0.48 0.32 0.17 0.13 0.08 0.06 0.07
400 3.94 2.09 1.24 0.75 0.41 0.28 0.17 0.14 0.13
600 18.10 9.06 4.88 2.74 1.60 1.02 0.57 0.45 0.28
800 * * 13.87 7.39 4.13 2.30 1.37 1.14 0.71

1000 * * * 16.92 9.17 5.02 2.90 2.54 1.68
1200 * * * 34.43 17.00 9.43 4.78 3.88 2.76
1400 * * * * 31.85 16.97 8.90 7.09 4.76
1600 * * * * * 27.07 14.07 10.75 7.14
2000 * * * * * * * 22.22 15.28
2400 * * * * * * * 42.08 25.26
2800 * * * * * * * 71.30 44.40

616 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

TABLE II
EXECUTION TIME FOR THE 3D DISCRETE FOURIER TRANSFORM ON GALERA.

N nodes
1 2 4 8 16 32 64 128 256

single precision
forward transform

100 0.13 0.07 0.15 0.14 0.12 0.14 0.21 0.19 0.23
200 0.61 0.39 0.26 0.24 0.12 0.19 0.20 0.21 0.22
300 2.52 1.56 0.93 0.55 0.42 0.37 0.32 0.27 0.27
400 7.08 3.93 2.16 1.24 0.75 0.54 0.36 0.36 0.36
600 32.02 17.42 9.34 5.15 3.20 1.72 1.01 0.77 0.57
800 * * 26.21 14.13 7.99 4.40 2.46 1.49 1.13

1000 * * * 31.98 17.89 9.75 5.33 3.12 2.05
1200 * * * 63.48 34.49 18.41 9.79 6.19 3.78
1400 * * * * 61.93 32.31 17.73 10.15 6.09
1600 * * * * * 51.22 27.99 15.03 8.85
2000 * * * * * * 61.28 34.67 18.51
2400 * * * * * * 153.02 66.21 37.28
2800 * * * * * * * 124.36 67.65

backward transform
100 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01
200 0.58 0.33 0.20 0.11 0.08 0.09 0.06 0.04 0.03
300 2.44 1.43 0.83 0.47 0.31 0.20 0.11 0.08 0.06
400 6.93 3.80 2.04 1.13 0.64 0.44 0.26 0.22 0.17
600 31.49 16.84 8.99 4.92 2.90 1.77 0.94 0.68 0.43
800 * * 25.66 13.67 7.44 4.39 2.32 1.67 1.00

1000 * * * 31.46 17.56 9.25 5.03 3.20 2.31
1200 * * * 64.16 33.55 17.38 10.00 5.88 3.92
1400 * * * * 60.57 32.48 17.19 10.54 6.77
1600 * * * * * 51.21 26.56 15.28 9.66
2000 * * * * * * 62.10 36.40 22.04
2400 * * * * * * 173.82 66.95 37.35
2800 * * * * * * * 136.07 66.60

double precision
forward transform

100 0.17 0.14 0.09 0.17 0.06 0.20 0.19 0.20 0.29
200 1.23 0.73 0.42 0.37 0.19 0.17 0.22 0.24 0.22
300 5.24 2.96 1.57 1.02 0.66 0.47 0.34 0.32 0.33
400 14.63 8.21 4.30 2.43 1.36 0.88 0.60 0.47 0.43
600 74.84 36.03 18.82 10.47 5.95 3.24 1.88 1.30 0.98
800 * * * 28.70 15.78 8.34 5.05 2.96 1.92

1000 * * * * 36.49 18.98 10.29 6.13 3.89
1200 * * * * 71.56 36.18 19.53 11.37 6.88
1400 * * * * * 64.20 34.80 19.71 11.65
1600 * * * * * * 58.76 29.84 18.58
2000 * * * * * * * 70.18 37.90
2400 * * * * * * * 204.81 69.83

backward transform
100 0.11 0.07 0.04 0.03 0.02 0.04 0.01 0.01 0.01
200 1.20 0.67 0.39 0.22 0.16 0.10 0.07 0.06 0.11
300 5.09 2.81 1.51 0.86 0.57 0.31 0.21 0.12 0.11
400 14.32 7.81 4.16 2.37 1.30 0.78 0.45 0.35 0.33
600 85.48 35.01 18.05 9.79 5.25 2.99 1.81 1.07 0.78
800 * * * 28.14 14.88 8.13 4.33 3.01 2.18

1000 * * * * 35.58 17.76 9.97 6.14 4.40
1200 * * * * 72.70 36.49 18.90 11.06 7.65
1400 * * * * * 64.13 33.69 19.83 11.94
1600 * * * * * * 54.91 30.35 18.84
2000 * * * * * * * 71.07 39.38
2400 * * * * * * * 136.01 74.78

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF SCALABLE ALGORITHMS FOR 3D LINEAR TRANSFORMS 617

TABLE III
SPEED-UP ON GALERA.

N nodes
2 4 8 16 32 64 128 256

single precision DCT
forward transform

100 1.26 1.28 0.46 1.20 0.58 0.40 0.43 0.41
200 1.32 1.57 2.31 2.52 2.38 2.17 1.65 1.29
300 1.61 2.74 4.16 6.03 5.75 5.17 7.13 4.08
400 1.73 3.06 5.25 6.74 8.55 9.46 14.01 9.77
600 1.72 3.14 5.34 9.82 14.10 21.26 26.72 27.47

backward transform
100 1.75 2.31 2.83 5.07 3.37 3.56 9.85 1.21
200 1.54 2.59 4.29 6.83 9.73 15.57 15.37 7.95
300 1.70 2.91 4.91 7.62 10.44 17.70 13.50 20.04
400 1.79 3.19 5.43 8.19 11.66 22.21 22.79 31.49
600 1.72 3.17 5.83 9.58 16.85 26.89 32.52 47.97

double precision DCT
forward transform

100 1.36 1.02 0.50 0.86 0.45 0.36 0.34 0.15
200 1.45 1.92 2.38 2.63 3.36 2.49 2.46 1.94
300 1.69 2.93 4.08 4.93 7.21 7.77 6.95 7.60
400 1.81 3.23 5.24 8.41 11.98 16.25 15.15 17.22
600 1.92 3.50 6.38 10.48 17.83 29.61 32.63 41.63

backward transform
100 1.60 2.30 3.76 5.36 6.55 4.05 4.37 1.66
200 1.73 2.79 4.79 7.18 9.10 8.76 19.52 13.77
300 1.74 3.00 4.46 8.24 10.64 18.67 23.22 20.88
400 1.89 3.18 5.24 9.60 14.23 22.51 27.85 30.30
600 2.00 3.71 6.60 11.31 17.73 31.83 39.98 64.69

single precision DFT
forward transform

100 1.85 0.85 0.94 1.09 0.94 0.61 0.66 0.55
200 1.56 2.34 2.57 4.91 3.20 3.08 2.89 2.73
300 1.62 2.72 4.42 5.98 6.90 7.88 9.21 9.25
400 1.80 3.28 5.72 9.41 13.06 19.86 19.51 19.50
600 1.84 3.43 6.21 10.02 18.65 31.72 41.76 56.01

backward transform
100 1.66 2.31 3.62 5.10 5.26 10.08 9.24 6.03
200 1.76 2.95 5.08 7.56 6.79 10.56 15.38 22.71
300 1.71 2.94 5.22 7.95 12.19 22.02 30.82 38.79
400 1.82 3.39 6.13 10.88 15.83 26.44 31.29 41.30
600 1.87 3.50 6.41 10.85 17.79 33.33 46.24 73.48

double precision DFT
forward transform

100 1.16 1.94 0.98 2.79 0.84 0.87 0.84 0.57
200 1.68 2.95 3.36 6.56 7.36 5.68 5.17 5.50
300 1.77 3.34 5.12 7.93 11.23 15.32 16.52 15.72
400 1.78 3.40 6.01 10.77 16.60 24.59 31.07 33.90
600 2.08 3.98 7.15 12.57 23.09 39.85 57.58 76.71

backward transform
100 1.63 2.64 3.50 5.65 2.82 9.63 9.58 13.64
200 1.79 3.06 5.32 7.59 12.19 17.53 20.07 10.50
300 1.81 3.36 5.95 8.99 16.44 24.28 42.88 44.84
400 1.83 3.44 6.03 11.02 18.38 31.52 40.92 43.24
600 2.44 4.74 8.73 16.29 28.59 47.11 79.60 110.08

can see that increasing the number of nodes from 128 to 256

results in efficiency of 60-69% for the DCT, and 40-60% for

the DFT (depending if the transform forward or backward and

if it runs in single or double precision).

Tables IV and V present times collected on the IBM Blue

Gene/P supercomputers. For our experiments we used the

BG/P machine located at the Bulgarian Supercomputing Cen-

ter and a slightly different one located at the HPC Center of

the West University of Timisoara (UVT). The supercomputer

in Bulgaria has two BG/P racks, while the supercomputer

in Romania has one BG/P rack. One BG/P rack consists of

1024 compute nodes with quad core PowerPC 450 processors

(running at 850 MHz). Each node of the Bulgarian rack has

2 GB of RAM, while each node of the Romanian rack has 4

GB of RAM. For the point-to-point communications a 3.4 Gb

3D mesh network is used (for more details, see http://www.

scc.acad.bg/ and http://hpc.uvt.ro/infrastructure/bluegenep/). In

our experiments, to compile the code we have used the IBM

XL C compiler and compiled the code with the following

options: “-O5 -qstrict -qarch=450d -qtune=450 -qsmp=omp”.

To use the BLAS subroutines, we linked our code to the multi-

threaded ESSL library.

618 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

TABLE IV
EXECUTION TIME FOR 3D DISCRETE COSINE TRANSFORM ON IBM BLUE GENE/P.

N nodes
1 2 4 8 16 32 64 128 256 512 1024

single precision
forward transform

100 0.09 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01
200 1.01 0.62 0.38 0.24 0.17 0.10 0.06 0.05 0.04 0.03 0.03
300 4.45 2.43 1.73 1.05 0.59 0.32 0.18 0.12 0.08 0.06 0.05
400 14.40 7.69 4.77 2.64 1.47 0.77 0.42 0.27 0.17 0.10 0.08
600 70.59 36.30 19.09 10.87 6.29 3.33 1.79 1.13 0.54 0.31 0.19
800 * 117.36 57.54 33.19 18.21 9.39 4.91 2.83 1.35 0.75 0.43

1000 * * 140.94 75.20 44.04 22.93 11.94 7.15 3.46 1.88 1.09
1200 * * * 139.73 76.14 40.04 20.30 11.95 5.93 3.20 1.95
1400 * * * * 135.50 70.74 38.77 22.47 11.29 6.03 3.23
1600 * * * * 229.10 120.66 63.27 35.68 17.12 9.10 5.04

backward transform
100 0.09 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01
200 1.01 0.63 0.38 0.24 0.17 0.09 0.05 0.04 0.03 0.02 0.02
300 4.48 2.48 1.83 1.06 0.60 0.32 0.17 0.11 0.07 0.05 0.03
400 14.49 7.92 4.87 2.72 1.51 0.78 0.41 0.26 0.16 0.09 0.07
600 70.91 36.59 20.04 11.26 6.44 3.34 1.77 1.14 0.55 0.31 0.18
800 * 118.42 59.93 34.29 18.77 9.44 5.00 2.89 1.35 0.76 0.44

1000 * * 146.71 77.66 44.82 22.49 11.88 7.27 3.48 1.93 1.11
1200 * * * 143.08 78.76 40.51 20.29 12.18 5.94 3.22 1.98
1400 * * * * 140.26 72.08 38.59 22.61 11.37 6.04 3.28
1600 * * * * 236.68 120.59 63.96 36.31 17.45 9.18 5.20

double precision
forward transform

100 0.10 0.07 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01
200 1.15 0.72 0.42 0.26 0.18 0.10 0.07 0.06 0.05 0.03 0.03
300 4.97 2.80 1.84 1.07 0.60 0.35 0.21 0.13 0.11 0.08 0.06
400 16.27 8.89 5.02 2.77 1.50 0.84 0.47 0.28 0.20 0.13 0.11
600 * 39.37 20.28 11.34 6.53 3.48 1.91 1.17 0.66 0.39 0.25
800 * * 66.34 35.33 18.89 10.00 5.34 2.94 1.60 0.91 0.56

1000 * * * 85.23 47.80 25.34 13.45 7.65 4.05 2.28 1.30
1200 * * * * 78.03 41.22 22.15 12.31 6.94 3.80 2.32
1400 * * * * * 85.32 44.44 25.87 13.90 7.54 3.82
1600 * * * * * 147.61 70.00 36.61 19.86 10.74 5.88

backward transform
100 0.10 0.06 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01
200 1.16 0.73 0.43 0.26 0.16 0.09 0.05 0.05 0.03 0.02 0.02
300 5.01 2.83 1.87 1.09 0.61 0.33 0.19 0.12 0.10 0.06 0.04
400 16.33 9.01 5.12 2.87 1.52 0.84 0.46 0.28 0.17 0.10 0.09
600 * 39.78 20.65 11.70 6.65 3.53 1.93 1.18 0.66 0.39 0.25
800 * * 68.21 36.05 19.00 10.20 5.50 3.05 1.60 0.93 0.57

1000 * * * 87.68 48.31 24.94 13.41 7.71 4.11 2.27 1.30
1200 * * * * 80.46 42.39 22.17 12.32 7.12 3.86 2.35
1400 * * * * * 86.05 45.25 25.79 14.12 7.74 3.84
1600 * * * * * 135.85 70.88 37.47 20.28 10.86 6.04

Here, again the execution time for N = 100 shows that the

code can be executed on one node and it is not necessary to

use the parallel algorithm. Note that the memory of a single

node of the IBM supercomputer is substantially smaller than

that on the Galera cluster and is not sufficient for solving

large problems. While both BG/P machines have the same

processors, the one located in Romania has larger memory

(with 4 GB memory per node). This is thus the machine

used to run experiments with larger data sets. Due to the lack

of space, and relative similarity of results, we do not report

results obtained on both machines separately (when running

problems of the same size). Note that individual processors

on supercomputer are slower than these on the Galera cluster.

For the double precision DFT the Blue Gene is approximately

three times slower than the Galera.

Let us also observe that almost the same time was spent

solving the problem of size N = 600 on a single node as

it was spent when solving problem of size N = 1600 on

64 nodes. This indicates that the BG/P is more efficient in

supporting parallel computing than the Galera cluster.

Table VI shows the speed-up obtained on the Blue Gene.

Because of smaller memory per node we calculated the actual

speed-up only for N = 100, 200, 300, 400. Furthermore, only

for the single precision DCT the speed-up for N = 600 is

reported. For N = 400 the parallel efficiency is more than

50% on up to 64 nodes for the DCT and on up to 512 nodes

for the DFT.

An interesting observation comes from comparing results re-

ported in Tables VI and VI, as well as those found in Tables II

and V. For instance, in the most complex problem (where such

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF SCALABLE ALGORITHMS FOR 3D LINEAR TRANSFORMS 619

TABLE V
EXECUTION TIME FOR 3D DISCRETE FOURIER TRANSFORM ON IBM BLUE GENE/P.

N nodes
1 2 4 8 16 32 64 128 256 512

single precision
forward transform

100 0.25 0.15 0.09 0.06 0.05 0.03 0.02 0.02 0.02 0.01 0.01
200 3.65 1.94 1.05 0.58 0.33 0.18 0.11 0.07 0.06 0.04 0.03
300 17.95 9.47 5.28 2.83 1.52 0.80 0.45 0.25 0.17 0.10 0.08
400 55.63 28.70 14.60 7.69 4.06 2.13 1.13 0.62 0.34 0.20 0.14
600 * 140.97 72.54 37.82 19.51 10.20 5.27 2.97 1.58 0.89 0.49
800 * * 223.40 113.48 57.70 29.60 15.04 7.99 4.18 2.22 1.22

1000 * * * 276.03 268.76 72.45 36.94 20.16 11.15 6.01 3.26
1200 * * * * 287.60 146.05 74.36 38.99 20.12 10.52 5.90
1400 * * * * * 270.33 137.73 74.55 39.40 21.26 10.33
1600 * * * * * 446.59 226.00 115.32 58.73 30.08 15.87

backward transform
100 0.25 0.15 0.08 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.01
200 3.66 1.95 1.09 0.60 0.32 0.17 0.10 0.06 0.05 0.03 0.03
300 18.03 9.54 5.33 2.88 1.54 0.81 0.44 0.25 0.16 0.09 0.07
400 55.79 28.83 14.76 7.79 4.14 2.13 1.13 0.63 0.34 0.19 0.13
600 * 141.86 73.07 38.26 19.81 10.23 5.32 2.96 1.60 0.88 0.49
800 * * 224.63 114.12 58.22 29.86 15.28 8.10 4.28 2.25 1.25

1000 * * * 279.21 234.82 72.90 37.02 20.33 11.23 6.02 3.32
1200 * * * * 289.29 146.65 75.11 39.30 20.49 10.59 5.98
1400 * * * * * 271.09 139.31 74.81 39.44 21.30 10.61
1600 * * * * * 446.08 228.34 116.13 58.99 30.17 16.20

double precision
forward transform

100 0.29 0.18 0.11 0.07 0.05 0.04 0.03 0.02 0.02 0.02 0.02
200 3.98 2.19 1.17 0.67 0.37 0.21 0.13 0.08 0.06 0.04 0.04
300 19.06 10.39 5.62 3.08 1.68 0.91 0.52 0.30 0.18 0.11 0.09
400 61.59 32.04 16.59 8.77 4.53 2.43 1.35 0.73 0.40 0.24 0.15
600 * * 79.35 41.38 21.69 11.25 6.09 3.22 1.78 1.01 0.59
800 * * * 125.18 63.35 33.33 17.23 9.00 4.80 2.63 1.40

1000 * * * * 152.19 78.01 41.13 21.59 11.52 6.21 3.48
1200 * * * * * 157.86 81.49 42.20 22.05 11.80 6.46
1400 * * * * * * 152.59 78.99 41.33 22.14 10.87
1600 * * * * * * 253.92 128.75 65.41 33.98 17.91

backward transform
100 0.28 0.17 0.11 0.06 0.04 0.03 0.02 0.01 0.02 0.01 0.02
200 3.99 2.21 1.19 0.67 0.37 0.21 0.12 0.07 0.05 0.03 0.03
300 19.13 10.44 5.69 3.13 1.66 0.91 0.51 0.30 0.17 0.10 0.07
400 61.82 32.24 17.12 8.92 4.63 2.46 1.34 0.72 0.39 0.23 0.16
600 * * 80.27 41.79 21.96 11.39 6.01 3.34 1.80 1.01 0.58
800 * * * 127.55 64.07 33.35 17.19 9.12 4.77 2.66 1.43

1000 * * * * 153.40 78.62 41.46 21.56 11.57 6.19 3.47
1200 * * * * * 156.72 81.52 43.23 22.79 12.18 6.55
1400 * * * * * * 152.42 79.23 41.22 22.18 11.00
1600 * * * * * * 257.88 131.82 66.12 34.10 18.32

comparison was possible), for the backward double precision

DFT, for N = 400 and 256 nodes, speedup obtained on Galera

is 43, while on the BG/P it reaches 157. Furthermore, for the

same problem (backward double precision DFT) the execution

time on Galera on 256 nodes is 18 seconds, which is almost

exactly the time needed to compute the same problem on 1024

nodes of the BG/P. Overall, this indicates that, in the case of

the BG/P, somewhat slower nodes have been combined with

superior network infrastructure, which is exactly the opposite

than in the case of the Galera cluster (where more powerful

processors are connected through a slower network).

Finally, in Figure 1, we represent execution time of the code,

which performs one forward and one backward DFT. Results

are presented for single and double precision, for problems of

size N = 400 and N = 600. Here, it becomes even clearer

that for both problems, using more than 64 nodes on the

Galera cluster results in, so called, Amdahl’s effect (where

adding more resources does not result in a commensurate

time reduction). This is not the case for the BG/P machines.

Nevertheless, for up to 256 nodes, for N = 600, the cluster

is faster in completing the task.

V. CONCLUDING REMARKS

The aim of this paper was to describe our attempt at

implementing a slightly simplified version of a novel algorithm

for 3D forward/inverse discrete transforms, and to report its

performance on two different parallel computers. Obtained

results show that the proposed approach allows solution of

large 3D problems on a supercomputer as well as on a

cluster. Furthermore, the initial estimates indicate quite good

scalability of the proposed implementation. It should be noted

620 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

TABLE VI
SPEED-UP ON IBM BLUE GENE/P.

N nodes
2 4 8 16 32 64 128 256 512 1024

single precision DCT
forward transform

100 1.57 1.97 2.51 2.76 3.95 4.56 5.13 6.84 16.40 15.43
200 1.62 2.67 4.29 5.89 10.26 16.76 20.42 24.84 29.33 35.17
300 1.83 2.57 4.25 7.53 13.82 24.36 37.75 52.39 78.08 88.86
400 1.87 3.02 5.45 9.78 18.58 34.42 53.36 87.08 140.70 180.09
600 1.94 3.70 6.50 11.22 21.20 39.47 62.53 130.89 228.25 372.52

backward transform
100 1.58 2.07 2.97 3.78 6.80 9.29 10.69 13.50 15.14 14.33
200 1.61 2.64 4.18 5.91 11.03 19.81 27.45 35.69 52.30 56.93
300 1.80 2.45 4.24 7.52 13.96 25.90 41.00 66.22 95.26 133.22
400 1.83 2.98 5.33 9.58 18.60 35.57 54.84 89.59 156.33 218.11
600 1.94 3.54 6.30 11.01 21.22 40.11 62.13 129.60 230.57 388.31

double precision DCT
forward transform

100 1.44 1.99 2.17 2.84 3.75 4.58 5.45 8.54 14.48 15.43
200 1.60 2.72 4.46 6.52 11.00 17.46 20.23 23.82 32.91 39.41
300 1.78 2.70 4.64 8.22 14.38 24.21 37.95 45.96 65.02 86.02
400 1.83 3.24 5.88 10.88 19.29 34.97 58.15 82.13 128.29 154.47

backward transform
100 1.52 2.15 2.77 3.94 6.73 10.06 10.26 7.04 13.75 14.75
200 1.60 2.68 4.49 7.38 13.33 22.49 24.98 38.40 53.37 51.18
300 1.77 2.67 4.60 8.22 15.01 26.68 41.23 47.99 80.81 114.23
400 1.81 3.19 5.70 10.74 19.38 35.45 58.13 94.07 160.43 172.13

single precision DFT
forward transform

100 1.66 2.91 4.06 5.11 7.90 11.60 11.96 12.87 21.17 22.00
200 1.89 3.47 6.25 11.16 20.41 34.17 49.06 61.54 92.30 110.87
300 1.89 3.40 6.34 11.78 22.36 39.70 71.21 104.45 173.67 222.25
400 1.94 3.81 7.23 13.69 26.16 49.44 90.28 162.72 281.33 404.33

backward transform
100 1.70 3.17 4.58 6.08 10.38 16.00 22.77 18.99 20.82 20.72
200 1.88 3.37 6.14 11.54 21.50 38.36 56.38 74.31 110.65 141.26
300 1.89 3.38 6.27 11.67 22.20 40.56 73.45 111.63 202.70 263.55
400 1.93 3.78 7.16 13.47 26.13 49.31 88.81 165.38 293.04 427.32

double precision DFT
forward transform

100 1.62 2.56 4.05 5.75 7.86 11.45 13.54 13.19 11.92 15.16
200 1.82 3.38 5.96 10.77 18.85 31.19 49.06 61.22 89.00 99.92
300 1.83 3.39 6.19 11.34 20.90 36.34 64.60 103.16 168.98 220.23
400 1.92 3.71 7.02 13.61 25.32 45.66 84.68 153.37 260.39 407.95

backward transform
100 1.66 2.67 4.37 6.65 11.66 17.58 20.57 18.39 20.99 15.04
200 1.81 3.37 5.93 10.90 19.39 33.92 54.65 77.85 117.11 140.65
300 1.83 3.37 6.11 11.49 20.95 37.25 64.82 111.71 186.97 277.44
400 1.92 3.61 6.93 13.35 25.16 46.24 85.44 157.80 270.35 397.71

that the code was tested on the machines in case of which

we deal with a discrepancy between the physical layout of

the computing nodes and the layout assumed by the method.

Nevertheless, we believe that the initial results are encouraging

enough to continue work. Here, the first step will be to

perform more involved testing of the performance to establish

performance profile (especially for the largest problems). We

also plan to investigate the performance on the cluster utilizing

Intel Phi coprocessors.

ACKNOWLEDGMENTS

Computer time grants from the TASK computing center

in Gdansk, Poland, the Bulgarian Supercomputing Center,

and the HPC Center from West University of Timisoara are

kindly acknowledged. This research was partially supported by

grants DCVP 02/1 and I01/5 from the Bulgarian NSF. Work
presented here is a part of the Poland-Bulgaria collaborative

grant “Parallel and distributed computing practices.” Work of

Marcin Paprzycki was completed in part, while he was visiting

University of Aizu.

REFERENCES

[1] O. Ayala and L.P. Wang. Parallel implementation and scalability analysis
of 3D fast Fourier transform using 2D domain decomposition. Parallel

Computing, 2012. DOI: 10.1016/j.parco.2012.12.002

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF SCALABLE ALGORITHMS FOR 3D LINEAR TRANSFORMS 621

10
0

10
1

10
2

 1 4 16 64 256 1024

T
im

e

number of nodes

Execution time

Blue Gene N=400 single precision
Blue Gene N=400 double precision
Blue Gene N=600 single precision

Blue Gene N=600 double precision
Galera N=400 single precision

Galera N=400 double precision
Galera N=600 single precision

Galera N=600 double precision

Fig. 1. Execution time of code which performs forward and backward DFT for N = 400, 600.

[2] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S.
Duff. A set of level 3 basic linear algebra subprograms. ACM Trans-

actions on Mathematical Software (TOMS), 16(1):1–17, 1990. DOI:
10.1145/77626.79170

[3] Maria Eleftheriou, José E. Moreira, Blake G. Fitch, and Robert S.
Germain. A volumetric FFT for Blue Gene/L. In Timothy Mark Pinkston
and Viktor K. Prasanna, editors, High Performance Computing - HiPC

2003, volume 2913 of Lecture Notes in Computer Science, pages 194–
203. Springer Berlin Heidelberg, 2003. DOI: 10.1007/978-3-540-24596-
4 21

[4] Ning Li and Sylvain Laizet. 2DECOMP&FFT - A Highly Scalable 2D

Decomposition: Library and FFT Interface. In Cray User Group 2010

conference, pages 1–13, 2010.
[5] Stanislav G. Sedukhin, Co-design of Extremely Scalable Algorithms/Ar-

chitecture for 3-Dimensional Linear Transforms, Technical Report
TR2012-001, The University of Aizu, July 2012.

[6] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI:
The Complete Reference, second edition, Volume 1, The MPI Core. Sci-
entific and engineering computation series, The MIT Press, Cambridge,
Massachusetts (1998), ISBN: 9780262692151

[7] Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface.
Supercomputer, 12 (1), 56–68 (1996), ISSN 0168-7875

622 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

