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Abstract—We explore the on-line problem of coverage where
multiple agents have to find a target whose position is unknown,
and without a prior global information about the environment.
In this paper a novel algorithm for multi-target search is
described, it is inspired from water vortex dynamics and based
on the principle of pheromone-based communication. Accord-
ing to this algorithm, called S-MASA (Stigmergic Multi Ant
Search Area), the agents search nearby their base incrementally
using turns around their center and around each other, until
the target is found, with only a group of simple distributed
cooperative Ant like agents, which communicate indirectly via
depositing/detecting markers. This work improves the search
performance in comparison with random walk and S-random
walk (stigmergic random walk) strategies, we show the obtained
results using computer simulations.

I. INTRODUCTION

THE PROBLEM of finding multiple targets whose posi-

tions are unknown without a prior information about the

environment is very important in many real world applica-

tions [1]. Those applications vary from mine detecting [2] [3],

search in damaged buildings [4] [5], fire fighting [6], and ex-

ploration of spaces [7] [8], where neither a map, nor a Global

Positioning System (GPS) are available [9]. The random walk

is the best option when there is some degree of uncertainty

in the environment and a reduced perceptual capabilities [10]

because it is simple, needs no memory and self-stabilizes.

However, it is inefficient in a two-dimensional infinite grid,

where it results in an infinite searching time, even if the

target is nearby [11], it results also in energy consumption

and malfunction risks. To deal with these limits, some effective

ways to coordinate multiple agents in their searching task need

to take place. Recently many researchers have investigated

bio-inspired coordination methods [12] [13], in which agents

coordinate on the basis of indirect communication principle

known as stigmergy.

Complexity of multi-target search solutions depends on

simplifications considered over idealized assumptions, such as:

perfect sensors [14], stationary environments [15], unlimited

direct communication [16]. Even if these assumptions are far

from real world applications, they provide first basic solutions.

The algorithm presented in this paper avoids such type of

assumptions. It makes the following contributions:

1) it is of very low computational complexity, in which

agents have a very low-range of sensors;

2) it executes a search in nearby locations first by adopting

spiral turns around the starting cell and around agents

each other;

3) agents use stigmergic communication via digital

pheromone;

4) it can be executed on known or unknown static obstacle-

free environments or obstacle environments.

The rest of this paper is organized as follows. Section 2

discusses some related work. Section 3 describes the problem

statement and formulation. S-MASA algorithm is described in

detail in Section 4. Performance evaluation is given in Section

5. A comparison with the random walk and S-random walk

strategies are given in Section 6 and Section 7 concludes the

paper.

II. RELATED WORK

The problem of searching a target may be considered as a

partial area coverage problem that constitutes a key element

of the general exploration problem [17] where coverage can

be done by a single or multiple robots, with on-line or off-line

algorithms. In the on-line coverage algorithms, the area and

target positions are unknown, and are discovered step by step

while the robot explores the environment, whereas, in the off-

line algorithms, the robot has a prior information about the

environment, target and obstacles positions, so it can plan the

path to go through. Different approaches have been developed

in the literature to solve area coverage using single or multiple

robots. In this section, a brief overview of techniques that

are used to solve the coverage problem using both single

and multiple robots is presented. The single robot covering

problem was explored by Gabriely and Rimon [18]. One of

the most popular algorithms is the Spanning Tree Coverage

(STC). In an STC algorithm, the robot operates in a 2D grid

of large square cells. It aims to find a spanning tree for such

grid, and allow the robot to circumnavigate it. This algorithm

covers every cell that is accessible from the starting point, and

it is optimal because the robot passes through each cell at least

once [19]. Spiral STC is an online sensor based algorithm

for covering planar areas by a square shaped tool attached
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to a mobile robot. The algorithm incrementally subdivides

the planar work into disjoint D size cells, while following

a spanning tree of the resulting grid. The spiral STC covers

every subcell accessible from the starting point, and covers

these subcells in O(n) time using O(n) memory [20]. In this

new version of STC, the spanning tree is stored in the onboard

memory, which results in a dependency of the search area on

memory size. With the aim of resolving the memory problem,

Gabriely and Rimon propose in [21] the ant-like STC which

forms the third version of the basic STC algorithm, that uses

markers on visited cells. D-STC is introduced in [21] to solve

the problem of uncovered partially occupied 2D-size cells,

by visiting the previously uncovered cells, which results in

worst-case scenarios, a twice coverage of the environment

area. A generalization of STC to multi-robots is given in [22],

the MSTC, in which a spanning tree is computed, and then

it is circumnavigated by each robot. Another spanning tree

construction using multiple robots based on approximate cel-

lular decomposition is proposed in [23]. Another approach

developed in [1], where the environment is subdivided into

n concentric discs, each disc is covered by one robot, when

the entire disc is completely covered, the robot move to the

next disc not yet covered; an extension of this algorithm that

uses heterogeneous robots is given in [17]. Instead of focusing

on the on-board resources, some part of robotics literature use

a single ant or a group of robots to cover an area robustly,

even if they do not have any memory, do not know the

terrain, cannot maintain maps of the terrain, nor plan complete

paths. They use environmental markers such as pebbles [24],

[25], [26] or pheromone like traces [27] or greedy navigation

strategies [28].

Whether we deal with coverage, multi-target search as

foraging task, we need at the first stage to search the cor-

responding area. A search is defined as the action to look

into the area carefully and thoroughly in an effort to find

or discover something [29]. In most search strategies based

on random walk, the agent tends to return to the same point

many times before finally wandering away, because it has no

historical information about visited regions. But when time

and energy consumption are determinants, it will be efficient

to guide the agent to not visited regions and repulse it from

visited ones. In [30] a cooperative and distributed coordination

strategy (IAS-SS) is proposed, it is applied to exploration

and surveillance of unknown environments. It is a modified

version of the artificial ant system, where the pheromone left

has the property of repealing of robots either than attraction.

A guided probabilistic exploration strategy for unknown areas

is presented in [31], it is based on stigmergic communication

and combines the random walk movements and the stigmergic

guidance. The paper [32], provide a simple foraging algorithm

that works asynchronously with identical ants, based on mark-

ing visited grid points by pheromone. It lacks robustness to

faults. Authors in [33], propose a swarm intelligence based

algorithm for distribute search and collective clean up. In this

algorithm, the map is divided into a set of distinct sub-area and

each sub-area is divided into some grid. Each robot decides

individually based on its local information to which subarea it

should move. A direct communication via WIFI model is used

between robots and their neighbors. The paper [11], introduce

the ANTS (Ants Nearby Treasure Search) problem, in which

k identical agents, initially placed at some central location,

collectively search for a treasure in a two-dimensional plane,

without any communication between them. A survey of online

algorithms for searching and exploration in the plane is given

in [34]. S-MASA is a simple search algorithm that uses

pheromones to guide the search process, agents are reactive

and do not need any memory. It can locate nearby targets as

fast as possible and at a rate that scales well with the number

of agents, so it operates as some animal species that search for

food around a central location, known as central place foraging

theory [35]. Table I gives a comparison between our algorithm

and some of the related works according to the search process

used.

Even if chemical substances [36], electrical devices such

as Radio Frequency Identification Devices (RFIDs) [37]

[38] [39] [40] are examples of real implementation of stig-

mergic communication in real world experiments, it is still

important to understand and improve pheromone-based algo-

rithms in simulations. By understanding the optimal conditions

required for pheromone-based coordination, the real world

implementations can also be better directed [31].

III. PROBLEM STATEMENT AND FORMULATION

In a collective multi-target search task, there are a lot of

targets randomly distributed in an area. The agents (robots)

should find as fast as possible the targets and, after that,

remove them, if we deal with a cleanup task, or transport them

to a nest, if we deal with a foraging task. In this paper, a new

search algorithm is proposed that enables a group of agents,

each with limited perception capabilities to search quickly

the targets. The algorithm presented here uses the principle

of pheromone-based coordination where each agent deposits

pheromone on its environment to inform the others about

already visited areas. The finish time of the collective search

is when all targets have been found. This section defines and

clarifies some key terms which will be used in this paper.

• Environment: we assume that agents move in an N X M

grid-based environment. It is divided into N X M cells.

Each cell can be an obstacle, target or the base station,

and can also contain an agent.

• Agent: simple reactive agents, with limited range sensor

(can only perceive the four neighboring cells), have no

memory and use the environment as their shared memory.

Each agent has an initial position and heading (0, 90, 180

or 270).

• Pheromone: has a numerical meaning. It is represented by

a color. The intensity of the pheromone at time t is set

to arbitrarily chosen value c which is a small positive

constant. It evaporates with time with a coefficient p

fixed to 0.075 using equation 1 to avoid accumulation

of pheromone.
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TABLE I: A Comparison of Related Work

Reference [32] [30] [31] [11] [33] S-MASA

Multi-Agent Yes Yes Yes Yes Yes Yes

Heterogeneous No Yes Yes No Yes No

I.L (0,0) Room 1Random (0,0) RandomGiven

Online Yes Yes Yes Yes Yes Yes

Environment I.2D.G2D.G.R B.2D.G I.2D.GB.2D.G B.2D.G

Sensors F.G.N LS.R.S F.N L.R.S F.G.N F.G.N

Simulations No 2DX Robots No 3DX Agents

Redundancy No Yes Yes No No Yes

Robustness No Yes Yes Yes Yes No

Complete Yes Yes Yes Yes Yes Yes

Distributed Yes Yes Yes Yes Yes Yes

Collaboration Yes Yes Yes Yes Yes Yes

CommunicationS.C S.C S.C No Direct S.C

Problem M.T.S E.S ExplorationANTS D.S.C M.T.S and C

I.L: Initial Locations, I.2D.G: Infinite 2D grid, 2D.G.R: 2D

Grid with 7 Rooms, B.2D.G: Bounded 2D Grid, F.G.N: Four

Grid Neighbors, F.N: Five Neighbors, LS.R.S: LaSer Range

Sensor, L.R.S: Low Range Sensor, M.T.S: Multi-Target search,

E.S: Exploration and Surveillance, D.S.C: Distributed Search

and Clean up, S.C: Stigmergic Communication, C: Coverage

• Motion policy: each agent chooses the next cell to visit

using a motion policy that is function of the presence

of pheromone trail and obstacles. This policy helps the

agent to decide where to go next.

IV. DESIGN OF THE S-MASA ALGORITHM

The idea behind proposing this algorithm is to reproduce

the behavior observed in water vortex dynamics. The vortex

is a region in which a fluid flow is mainly a rotary movement

about an axis, rectilinear or curved. So each agent tries to turn

around the base station and around the other agents. Doing

this with agents only is difficult and needs a great number of

agents, but using pheromone to repulse agents from visited

cells was very helpful to reproduce the structure of a vortex.

A. Basic S-MASA

In S-MASA, each agent started from an initial given po-

sition and oriented toward a given heading. To turn around

the base station and around each other, each agent checks on

his right cell if it is visited or not. If it detects a pheromone

(Figure 1), it indicates to the agent that it is about to enter

to a visited cell and therefore the agent keeps going forward

(a) (b) (c) (d)

Fig. 1: S-MASA coordination principle: (a) Changing heading

from 180 to 270 (b) Changing heading from 270 to 0 (c)

Changing heading from 0 to 90 (d) Changing heading from

90 to 180, where white crosses represent already visited cells

its current heading, else the agent changes its heading and

moves toward a new heading. S-MASA is further detailed in

Algorithm 1.

Algorithm 1 S-MASA

Input: position and heading for each agent,

Output: iteration number,

1: while number of targets and boundaries are not reached

do

2: Move

3: Lay pheromone

4: Update Pheromone

5: end while

Move function is the motion policy. Each agent has initially

a given heading (0, 90, 180 or 270) that allows it to move up,

right, down or left in the four neighboring cells. The agent

checks always its right cell which is the up cell if the heading

is 270, the down cell if the heading is 90, if no pheromone

is there it can change his heading to the new one using the

move function and goes forward in that new heading. The

move function is detailed in Algorithm 2.

Algorithm 2 Function Move

1: if (pheromone is detected in right cell) then

2: go forward

3: else if (heading = 270) then

4: set heading to 0

5: else

6: set heading to heading + 90

7: end if

Update pheromone function is used for pheromone evapo-

ration, using the equation

Γi(t+ 1) = Γi(t)− p ∗ Γi(t) (1)

Where: p is a coefficient which represents the evaporation

of trail between time t and (t+1) and is set to 0.075 to

avoid unlimited accumulation of pheromone. S-MASA can be

applied to environment with or without obstacles, the agent

executes the function avoid obstacle to avoid obstacles, where
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the agent follows in this case the obstacle boundary until a

not visited cell is encountered, which means that agents are

going around the obstacle in the direction of visited cells to

guarantee the completeness of the algorithm.

B. S-MASA Extensions

The proposed algorithm allow to cover gradually the envi-

ronment starting from the base station and reproducing by the

way principle of central place foraging theory [35]. Although,

this algorithm generates very efficient search results based

on relatively simple motion rules, it can be extended to deal

with dynamically changing environments, and with coverage

problem in known or unknown environments.

V. PERFORMANCE EVALUATION

We used Netlogo framework [41] to evaluate the perfor-

mance of our algorithm in two scenarios. In the first scenario

we evaluate the algorithm by varying the number of agents

from 5 to 30 agents in two environment configurations:

obstacle-free environment and obstacle environment. In the

second scenario, we evaluate the algorithm by varying the size

of the environment from 20 X 20 cells to 100 X 100 cells.

Obstacles in the two scenarios were defined in two ways: (i)

given a desired percentage, cells were randomly designated

as obstacles (ii) obstacles were specifically designed by hand.

Then, one possible extension on S-MASA is discussed and

related simulation results are illustrated. To evaluate average

performance, each simulation is repeated 20 times, where time

is defined as the number of iterations required by the agents

to discover all the targets.

A. Scenario 1: Influence of Number of Agents on Performance

Agents start from initial given positions and each agent

has a heading, we vary the number of agents from 5 to 30.

The environment consists of a square of size 40 X 40 cells

shown in Figure 2, free or with obstacles, with four targets

distributed randomly. An example of execution of S-MASA on

a group of 5 agents, 30 agents on obstacle-free environment,

a group of 30 agents on obstacle environment (obstacles are

uniformly distributed) and a group of 5 agents on obstacle

cluster environment (where the distribution of obstacles in

the environment gives a cluster or line shapes either than the

uniform distribution) are illustrated in Figure 2.

Table II shows the performance of the algorithm in scenario

1 while the number of agents is varying from 5 to 30. It is

represented graphically in Figure 3. The search time becomes

dramatically faster with an increase in the number of agents.

Note that there is no direct communication between agents,

the only communication tool is the pheromone deposited in

the environment. The standard deviation of the number of

iterations reflects the impact of the random distribution of the

targets between simulations. There is a linear decrease in the

iterations number.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: The evolution of search achieved by S-MASA: (a),

(b) Initial and final position of the 5-agents group in an

obstacle-free environment. (c), (d) Initial and final position

of the 30-agents group in an obstacle-free environment. (e),

(f) Initial and final position of the 30-agents group in an

obstacle environment. (g), (h) Initial and final position of 5

agents group in an obstacle cluster environment.
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TABLE II: Effect of agent number on performance

5 10 15 20 25 30

Iterations in free env 242,85 122,2 78,85 63,5 54,8 43,9
STD Deviation 46,62 24,84 17,87 14,15 11,35 10,15
Iterations in obstacle env 289,85 143,35 114,15 93,55 71,8 69,55
STD Deviation 56,76 36,93 18,29 18,58 22,97 22,24

Fig. 3: Effect of agent number on performance in obstacle-free

and obstacle environment

B. Scenario 2: Influence of Environment Size on Performance

We now show how the size of the environment affects the

performance of the algorithm when the number of agents is set

to 20. Also here we used an obstacle-free environment and an

obstacle environment, just varying the size of the environment

from 20 X 20 cells to 100 X 100 cells.

Table III shows the performance of the algorithm in scenario

2. It is represented graphically in Figure 4. The search time

increases by increasing the size of the environment which is

evident because the number of cells increases. The results

show a difference in iterations number, S-MASA is robust

to obstacles but this increase in number of iterations is due

principally to the avoidance of obstacles that takes at least

four iterations more, to go around a simple obstacle.

TABLE III: Effect of environment size on performance

20X20 40X40 80X80 100X100

Iterations on free env 16,2 63,4 254,8 366,15
STD Deviation 3,28 13,48 50,47 101,03
Iterations on obstacle env 24,5 92,2 315,3 449
STD Deviation 8,06 23,37 71,49 131,06

C. Extension 1: S-MASA for Coverage Problem

Simulations presented in this section show that by changing

the finish condition of the algorithm, the agents can achieve

Fig. 4: Effect of environment size on performance in obstacle-

free and obstacle environment

coverage mission as well as search one. The S-MASA algo-

rithm can be applied for instance to known or unknown static

environments, free or obstacle environments. Each simulation

is repeated for 20 times in obstacle environments, because

the obstacles are disseminated randomly in the environment

and according to their position the agent take more or less

iterations to go around the obstacle. Figure 5 represents the

two simulations in obstacle-free and obstacle environment.

As in scenario 1 and scenario 2, we test the performance of

the algorithm on coverage problem by varying the number

of agents and by varying the size of the environment in the

two types of environments. Table IV and Figure 6 show the

obtained results when varying the number of agents. There is

a linear decrease in number of iterations when increasing the

number of agents, and there is a difference between iterations

in obstacle-free environment and obstacle environment, which

are similar to Scenario 1 results. A possible reason is the

random distribution of targets, so if there is one target close to

boundaries, the search will be very close to coverage task and

in the two tasks the number of iterations will be very close.

TABLE IV: Effect of number of agent on performance

5 10 15 20 25 30

Iterations in free env 320 171 120 89 80 68
Iterations in obstacle env 354,25 206,7 164,3 138,6 126,25 111,55

Table V and Figure 7 show the obtained results when

varying the environment size, because here there is no random

distribution of targets or there are no targets, the coverage time

in obstacle environment is greater than the coverage time in

obstacle-free environment, but there is always an increase in

the number of iterations in the two cases of simulations.

ZEDADRA OUARDA, NICOLAS JOUANDEAU, HAMID SERIDI, GIANCARLO FORTINO: STIGMERGIC MASA: A STIGMERGY BASED ALGORITHM 1481



(a) (b)

(c) (d)

Fig. 5: The evolution of coverage achieved by S-MASA:

(a), (b) 20-agents group in an obstacle-free environment in

iterations 78 and 101. (c), (d) 20-agent group in an obstacle

environment in iterations 44 and 108.

Fig. 6: Finish time of coverage in free-obstacle and obstacle

environment when varying the number of agents

TABLE V: Effect of environment size on performance

20X20 40X40 80X80 100X100

Iterations on free env 23 89 341 527
Iterations on obstacle env 55,4 135,7 435,9 625,1

Fig. 7: Finish time of coverage in free-obstacle and obstacle

environment when varying the environment size

VI. COMPARISON RESULTS

We compare S-MASA algorithm with two search strategies:

the random walk, in which the agent chooses randomly one

of the four neighbors even if it is already visited, that causes

a increase in the global finish time; and the S-random walk,

in which the agent chooses one of its four neighbors that are

not visited yet, at each step the agent deposit a pheromone to

mark already visited cells. Tables II and VI show the obtained

results with S-MASA algorithm, random walk and S-random

walk respectively when varying the number of agents from 5 to

30 in free-obstacle and obstacle environment where obstacles

are uniformly distributed ( 2 (e), (f)). Figure 8 represents a

comparison between these strategies according to Tables II

and VI. Our algorithm performs much better than the random

walk and the S-random walk, when the number of agents is

less than 15. The results of the three strategies are close when

the number of agents is more than 15, but our algorithm gives

the best results.

TABLE VI: Effect of agent number on performance in random

walk and S-random walk

5 10 15 20 25 30

random walk free 2536,3 1365,65 932,6 567,05 508,7 487,3
STD Deviation 2021,98 1014,65 811,29 271,43 242,56 340,66
random walk obs 673,5 313,6 218,35 164,7 111,45 105,35
STD Deviation 853,37 223,99 207,19 83,20 43,07 34,95
S-random walk free 320 171 120 89 80 68
STD Deviation 354,25 206,7 164,3 138,6 126,25 111,55
S-random walk obs 798,7 543,1 306,7 205,7 182 157,2
STD Deviation 653,18 343,38 87,74 129,71 99,00 66,57

Tables III and VII show the obtained results with S-MASA

algorithm, random walk and S-random walk respectively when

varying the size of the environment from 20 X 20 cells to
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Fig. 8: Comparison of S-MASA with random walk and S-

random walk when varying the number of agents (uniform

distribution of obstacles)

100 X 100 cells in free-obstacle and obstacle environment

where obstacles are uniformly distributed (2 (e), (f)). Figure 9

represents a comparison between these strategies according to

Tables III and VII. When the size of the environment is equal

to 20 X 20 cells , the three strategies provide very close results.

By increasing the environment size from 40 X 40 cells to 100

X 100 cells, our algorithm outperforms the two others.

TABLE VII: Effect of environment size on performance in

random walk and S-random walk

20X20 40X40 80X80 100X100

random walk free 108,2 789,65 2946,8 4501,85
STD Deviation 81,08 625,99 1398,71 2169,28
random walk obs 137,85 665,45 2651,5 3889,9
STD Deviation 68,93 376,37 1616,13 2307,50
S-random walk free 37,05 149,8 754 1312,25
STD Deviation 10,21 38,39 378,31 546,87
S-random walk obs 39,65 261,5 882,4 1502,75
STD Deviation 26,12 141,18 529,19 830,73

A comparison between the three strategies when varying

the number of agents from 5 to 30 in an obstacle cluster

environments (Figure 2 (g), (h)) is given in Figure 10, where

our algorithm proves its performance among pure random walk

and S-random walk. Table VIII shows the obtained results

and the standard deviation in each simulation for the three

strategies.

Fig. 9: Comparison of S-MASA with random walk and S-

random walk when varying the environment size (uniform

distribution of obstacles)

TABLE VIII: Effect of number of agent on performance in

S-MASA, random walk and S-random walk

5 10 15 20 25 30

S-MASA 242,85 122,2 78,85 63,5 54,8 43,9
STD Deviation 46,62 24,84 17,87 14,15 11,35 10,15
random walk 3472,95 1393,05 930,85 639,7 474,05 370,45
STD Deviation 2440,36 435,20 542,51 301,39 237,19 144,05
S-random walk 886,95 428,95 319,9 188,1 149,65 106,95
STD Deviation 717,16 230,36 398,51 96,82 79,94 39,23

Fig. 10: Comparison of S-MASA with random walk and S-

random walk when varying the number of agents (cluster

obstacle environment)
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VII. CONCLUSION

A multi-target search algorithm called S-MASA is presented

in this paper. This algorithm reduces overall finish time

without any direct communication between agents. Simulation

results demonstrate the higher performance of our algorithm

in comparison with the S-random walk which is guided by

pheromones to repulse agents from visited areas and with

random walk strategy. We believe that future work improve-

ments should reduce searching time, consider more complex,

dynamic and unknown environments in the context of foraging

problem.
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