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Abstract—The article presents a case study of applying data
cleansing methods and segmentation procedures in order to
correct and enhance the structure of the domain corpus of fire
service. During the study we present our approach and the results
in the task of correcting the misspellings, as well as the method
of segmenting the corpus into sentences.
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I. INTRODUCTION

O
VER the years, the National Fire Service of Poland

collected a large corpus of texts from about 6 million

incidents. Unfortunately, there was little validation of the input

which resulted not only in the (too much) free form of the texts

which is difficult to automatically process, but also in lots

of misspellings and lack of structure (sentences boundaries)

which further impede computer analyses.

Our research was focused on finding the characteristics of

the above problems and by using mostly regular expressions,

n-gram analysis, spell checkers and databases of some entities

(e.g. geographic locations) as well as reference domain texts

(fire & rescue journal) we tried to cleanse the corpus.

The paper is structured as follows: In section II we introduce

the fire & rescue text corpus named EWID. In section III

we present our motivation and the context of our research. In

sections IV and V we provide the details of how we corrected

the corpus.

II. CHARACTERISTICS OF THE EWID CORPUS

The national fire and rescue services (just like, e.g., police)

are typically equipped with the incident data reporting systems

(IDRS), which gather the information about conducted actions.

Each of approximately 500 Fire and Rescue Units (JRG) of

the State Fire Service of Poland (PSP) conducts around 3

fire & rescue actions per day. After every action a report

is created in EWID – the internal computerized reporting

system of PSP [1]. As of 2014, the total number of the reports

in EWID is around 6 million, of which about 0.3 million

records were available for the purposes of this research.

Each record contains 560+ attributes (only a few dozens are

usually set per record). Most of these attributes provide yes/no

information about action parameters (binary), but there are

also timestamps, quantities and short text entries. There is

one attribute which we consider distinct: the natural language

description of the action.

The collection of the 0.3 million EWID descriptions con-

tains about 60 MB of texts, which is about 8 mln of words,

written in semi-natural, technical language. Following is a

sample passage from the corpus (awkward vocabulary and

misspelled words are intentional):

"Affer arriving at the fire scene the undergrowth fire was

observed. Two firefighting jets ware applied and suction line

from the nearby lake was created. After putting out the fire,

appliance crew came back to fire station".

The concern is that over the years this large corpus which

contains valuable information has been collected with limited

validation of the input. This situation is considered quite

common in the real world data collections [2], [3]. The corpus

in scope requires data cleansing followed by further processing

in order to improve the semantics. This case study is focused

on the data cleansing only. It may be beneficial for other text

corpora, which are affected by typographic errors. We know

of projects where data cleansing step was explicitly skipped,

as the expected solution was no other than a laborious human

work [4], [5]. In this work we propose a mostly automatic,

iterative process supervised by domain experts. It is important

to mention that we are more interested in having the entities

in the text unified (disambiguated) rather than grammatically

correct. We assume, that for the purpose of further operations

on EWID corpus, such as clustering, statistical analysis, and

so on, this unification may be beneficial.

III. MOTIVATION

The motivation for the corpus reparation is to prepare the

ground for further processing. In our particular case there was

a need to have the data cleansed when working on a concept

of a decision support system named CLEWID [6]. CLEWID

is a proposition of a platform for fire & rescue data analyses.

It is built of 4 layers, namely: 1) the raw data layer (EWID
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and other sources), 2) the quality data layer, 3) the granular

(semantic) layer, 4) the models layer. The scope of this article

is to transform the raw data layer into the quality data layer

to have the higher level layers operate on the more precise

and strict data. The semantics are fixed on the granular layer,

since granulation is about organising the data based on various

aspects of their similarity.

IV. DETAILS OF CORRECTIONS OF THE MISSPELLINGS

The process was divided into stages. Each stage describes

another approach and provides the information how much gain

was achieved.

1) Removal of redundant characters: The lack of the vali-

dation for the description section in EWID database results

in various characters being incorrectly inserted. This may

result in creation of alternate forms of the same entities (e.g.

GBA3 vs GBA-3). The selection of the characters which

should be removed requires the input from the expert – this

step can be done by searching for the words containing non-

alphanumeric characters and deciding which of the characters

should be dropped. In the case of EWID corpus most of non-

alphanumeric characters were replaced by space. Additionally,

digits at the beginning of a word boundary and hyphens within

word boundaries after a letter and before a digit were removed.

2) Frequent words not recognized by the dictionary: At

this stage there were 8,044,535 words including 309,036

words which were not recognized by the popular aspell spell

checker 1 (3.8% error ratio). 500 most frequent (the reasonable

number for a human to manually process) of the 309,036 not

recognized words were extracted from the corpus. 200 of these

entries proved to be valid words from domain vocabulary –

it was reasonable that aspell didn’t have them in its database.

Automatic corrections by aspell were proposed for the remain-

ing 300 and they were later manually adjusted by the expert.

The knowledge from the domain expert was instrumental in

achieving reasonable outcome, as some cases were not quite

obvious. For example, aspell proposed ‘dzielenie’ (division)

as the correction for the misspelled word ‘dzialenie’, which

was overruled by expert’s ‘działanie’ (action). The corrections

were applied to the corpus and the spell checker was rerun.

The error ratio dropped to 2.9%. This particular fix was an

example of a huge gain with little effort.

3) The additional dictionaries: In order to extend the spell

checker, we searched for collections of the domain vocabulary.

There exist a number of texts collections which could serve

as a reference in composing the domain vocabulary (domain

knowledge). Ultimately, the expert decided that the domain

journal “Przeglad Pozarniczy” (PP)2 would contain the texts

that are most relevant for the operational content of EWID

corpus. PP publishes fire & rescue related articles, and by

the fact that it is a journal it (hopefully) contains very small

amount of misspellings. We spell checked the acquired PP

corpus and all the misspellings reported by aspell (words not

1GNU aspell, http://www.aspell.net/
2ISSN 0137-8910, http://www.ppoz.pl/

found in standard dictionary) were treated as candidates for

domain vocabulary, thus domain dictionary was created. The

extended spell checker reported error rate of 2.15%.

The idea to use a good quality domain corpus as an exten-

sion of a spell checker came after we already fixed the 500

most frequent words manually (as described in the previous

section). The spell checker extended by journal-based domain

vocabulary would likely have recognized most of the frequent

words from EWID since they come from the same domain of

fire & rescue. The lesson learned is that the domain vocabulary

should be used as early as possible (if it is available).

By knowing the content of EWID the expert added more

elements to dictionary. Geographical entities – streets, cities

and districts were obtained from the external public sources

(Polish governmental/administration organisations) and be-

came another extension to the dictionary. The spell checker

extended with the domain vocabulary and geographical entities

was rerun and the error ratio dropped to 1.75%.

Another key step was the inclusion of surnames. Surnames

in EWID are frequently reported as misspellings by aspell.

Fortunately most first names are recognized by aspell. The

public database of Polish surnames and first names was

acquired and roughly checked for the completeness against

our students surnames database (around 200 entries). 97% of

the surnames were recognized, so the completeness of the

surnames database was reasonable. However, this mechanism

proved to be too greedy – too many actual misspellings were

being forgiven as possible surnames. We needed to drop the

surnames database. The spell checker extended with domain

vocabulary, geographical entities and names reported 1.56%

of errors.

4) The n-gram approach: The knowledge-based extensions

of spell checker’s dictionary exhausted the inventory of easy

fixes. The remainder of the misspellings in the corpus required

more extensive approach. The method that we have applied

replaces (corrects) a misspelled words using their nearest

correct neighbor. The neighbor(s) of a given word needs to be

identified in a meaningful way. For this purpose, the list of all

3-grams (unique triplets of words in the corpus) was created.

This list was spell checked with the use of the extended spell

checker introduced above and, as a result, split in two. The

3-grams.correct and 3-grams.errors contain 3-

grams recognized as correct and misspelled, respectively. Then

the 3-grams.errors list was iterated to find the nearest

entry on the 3-grams.correct list. The measure we use

is the Levenshtein (editorial) distance [7]. The correction was

applied if the distance between the misspelled trigram and

correct trigram was less or equal 2. The threshold of 2 was

set by the domain expert after his inspection of a sample of

such corrections.

At this stage we faced a computational problem. The corpus

is a collection of about 8 mln words. The building of the

3-grams.errors (about 0.3 mln entries) and 3-grams.correct

(about 2 mln entries) databases proved to be unexpectedly

quick. However, the performance of finding the closest match

for each entry from 3-grams.errors in 3-grams.correct database
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was very poor when choosing a simple approach: for each

trigram in 3-grams.errors iterate over 3.grams.correct and

calculate the Levenshtein distance between the two elements

in each step. Database indexing of 3-grams.errors was not an

options, since we didn’t operate on exact matches, but needed

to always calculate the difference.

Therefore we searched for a better method than scanning

this large corpus and calculating the distance. The imaginary

example below illustrates our solution:

Let us consider an example corpus of words

a-correct b-correct c-error d-correct e-error f-error.

For this corpus, there are 4 possible trigrams. Let us search

for contexts contain the c-error:

(a) a-correct b-correct c-error

(b) b-correct c-error d-correct

(c) c-error d-correct e-error

A number of conclusions can be drawn from this observa-

tion: 1) the best context to fix the c-error is the (b)-trigram

as it provides most likely the best (left and right) context for

the misspelling, 2) the trigrams are redundant – it is enough

to consider just one from the three above to have the c-error

placed in the context, 3) the other two words in each trigram

can be either correct or misspelled.

The third conclusion can be inspected further. At this stage

the corpus contained around 2% of words with errors. The

chances for two misspelled words occurring in one trigram

seem low; assuming the misspellings are normally distributed

across the corpus – there should be very few such trigrams.

However, the assumption of normality proved to have a flaw,

since in the population of humans, there are ones that tend

to produce misspellings and others who do not. The result is

that there occur trigrams with 2 misspelled words and less

(but still) with all 3 words misspelled. Luckily, the prevailing

majority of the trigrams were composed of one misspelling in

the context of two correct words.

Considering the above, our approach proceeded as fol-

lows: the trigrams containing misspellings were split into two

groups: i) a large group of trigrams with only one misspelled

word, and ii) a small group of trigrams with two or three

misspelled words.

Concerning the ii) group the plan was simple: the accepted

Levenshtein distance was increased from 2 to 2 · n, where

n is the number of misspelled words in the trigram. Then

these trigrams were a subject to a linear scanning through the

3-grams.correct database and because the small number

of misspelled trigrams it proved not to be a computational

issue.

In the group i) we started with our conclusion that trigrams

are redundant. There are 3 setups for a misspelled word to be

placed in the trigram, of which we choose the scenario (b)

b-correct c-error d-correct (misspelling in the middle). The

other two setups can be safely dropped since the goal of fixing

the misspelled word can be achieved based on just a single

context. The trigram was then reorganized into an associative

array with the context as the key and the misspelled word as

the value, i.e. key="b-correct d-correct" and value="c-error".

This structure later evolved: since between b-correct and d-

correct more misspelled words may appear in the corpus,

the value of the array should be a placeholder for more

objects than just c-error. Therefore the final data structure

has the form: key="b-correct d-correct", value="array(’x1-

error’, ’x2-error’, ’xN-error’)". The same data structure was

applied to the 3-grams.correct database. The keys were

hashed. The task has now become the searching for a

hashed key of the misspelled trigram in the hashed keys of

3-grams.correct database. Once the matching key is

found, the Levenshtein distance between the given xN-error

word and all the correct words (a small array) for the corre-

sponding key in 3-grams.correct database is calculated.

This method proved to be very effective computationally and

resolved the issue. The overall error rate dropped to under 1%

after incorporating the ngrams method.

V. THE SEGMENTATION INTO SENTENCES AND THE

ABBREVIATIONS

Another step in enhancing the nature of the date was the

segmentation of corpus into sentences. It is important to note

that the standard procedures of segmentation into sentences

assume that the corpus is rather free from misspellings, that

upper/lower case and other language rules are strictly obeyed

– for such pure corpora the approaches like [8] could be more

easily applied.

There is a couple of aspects related to sentences: 1) it is

not proper to treat a dot as a terminator of a sentence since

dots also appear in abbreviations 2) words which end with a

dot may be not recognized by aspell either because they are

misspelled or because they are correct domain abbreviations

not known to aspell 3) for the n-grams analysis: trigrams

should not cross the sentence boundaries 4) having the corpus

segmented into sentences allows for enhanced further process-

ing in more abstract layers. In many applications the sentences

can be the smallest building blocks, e.g. in the Computer

Aided Translation systems such as OmegaT 3 the sentences

are atoms.

For the sake of simplifying our further considerations, let

us introduce the terms a sentence terminator meaning the last

word of the sentence and a dotted word meaning word ending

with a dot.

We tried to automatically extract the abbreviations from the

corpus. First we found all dotted words and sorted them by

the number of the occurrences in the corpus. Table I is the

header of the resulting list.

As this list extends there are less and less abbreviations, but

we can not make any assumptions that after a certain position

of this list there won’t be any abbreviations. This is particularly

true if we realize that the distribution of words in a text corpora

is a Zipf distribution [9]:

"In human languages, word frequencies have a very heavy-

tailed distribution, and can therefore be modeled reasonably

well by a Zipf distribution (...)" [10].

3OmegaT, The free (GPL) translation memory tool, http://www.omegat.org
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TABLE I
OCCURRENCES OF DOTTED WORDS

word en translation occurrences abbreviation?
st. fireman 54716 Y
ul. street 40162 Y
C. Celsius 39772 N
sprawny. operating 26733 N
ok. around 22184 Y
temp. temperature 18295 Y
p. floor 17087 Y
ůmieci. garbage 13662 N
zdarzenia. incident 12464 N
wody. water 9706 N
budynku. building 8097 N
lasu. forest 7159 N
zach. west 6368 Y
...

The result from being a heavy-tailed distribution is that most

words in the corpus (say 80%) appear relatively seldom (say 3

times). Taken the large number of the words, that means that

we should be aware of the weakness of any manual action

against the corpus, as we will only process a small portion of

all the entities. Therefore, we look for a more automatic way of

distinguishing the abbreviations from the sentence terminators.

We assumed that any sentence terminator may also appear

in other position than at the end of the sentence, thus not end

with a dot. Then we inspected the fraction: f = wd/(wd+w),
where wd is the frequency of occurrence a dotted word and

w is a the frequency of occurrence of the same word without

a dot. f should return higher values for abbreviations. By

inspecting the table II we can expect that the good threshold

should be somewhere around 0.50 – higher values would be

the abbreviations, lower values would be sentence terminators.

TABLE II
OCCURRENCES OF DOTTED WORDS AS A FRACTION OF

dotted/(dotted + notdotted). HIGH VALUES SHOULD INDICATE

ABBREVIATIONS

word en translation fraction abbreviation?
st. fireman 0.99 Y
ul. street 0.95 Y
C. Celsius 0.10 N
sprawny. operating 0.28 N
ok. around 0.84 Y
temp. temperature 0.89 Y
p. floor 0.77 Y
ůmieci. garbage 0.16 N
zdarzenia. incident 0.09 N
wody. water 0.14 N
budynku. building 0.20 N
lasu. forest 0.34 N
zach. west 0.52 Y
...

This method allows for pretty good results and abbreviations

can be easily separated. However, a quick inspection of the full

list reveals that false positives (not abbreviations) happen for

values of above even 0.80. Therefore a few more features are

added:

1. The number of characters in the word. Abbreviations

should be short, that is an implicit part of their definition.

The dotted words were getting benefit/penalty points for being

short/long.

2. Position at the end of a paragraph indicates towards a

sentence terminator. We added benefit points for each dotted

word ending any paragraph.

3. Similarly, position directly before the beginning of a

sentence indicates towards a sentence terminator. How to

define the beginning of a sentence? The first idea was to treat

any word beginning with an upper case as a likely beginning

of a sentence. However, "kpt. John Snow" phrase quickly

proves it is not entirely true. Instead, we built a list of bigrams

starting with an upper case. Then we selected just the bigrams

that occur often, more often than bigrams containing Names

and Surnames – "John Snow" is not a frequent phrase in

the corpus mentioning probably thousands of humans. Such

frequent bigrams should very likely be the beginnings of the

sentences. We added benefit points for the dotted word if it

occurred before any beginning of a sentence (one occurrence

is sufficient as it proves that such a word is a proper sentence

terminator).

Finally we constructed the classifier based on the above fea-

tures 1) the ratio of occurrence the dotted word with/without

the trailing dot 2) the number of characters in the word 3)

position at the end of a paragraph 4) position before the

beginning of a sentence. The classifier was simply the sum of

the 4 indicators, each of them normalized to <0,1> range. The

list of sentence terminators was obtained and the corpus was

segmented at each point were the sentence terminator with a

trailing dot occurred. Manual browsing proved that this method

was correct in about 97% cases, which seems a good score.

A. An example of the segmentation of a block of text into

sentences

Let us illustrate our approach with the segmentation of an

imaginary block of text: Today temp. was 10 C. Strong wind

from east. The fire was successfully put out.

There are following dotted words to consider: temp, C,

east, out. According to all of our considerations, the following

would happen:

a) temp seldom appears without a dot in the EWID corpus.

Some humans tend to write it without a dot (which is a

mistake), but most write it properly and the statistics suggest

it is an abbreviation. Our classifier correctly identified it as an

abbreviation.

b) C is very short which suggest an abbreviation. Some

firemen do follow C by a dot: "10 C." while it should be "10
◦C". However, C is often spotted without the trailing dot, also

spotted before the beginning of a sentence or even at the end of

paragraphs which is a strong premise for a sentence terminator.

Our classifier identified it as a sentence terminator.

c) east appears at the end of paragraphs and often without

a dot. Our classifier identified it as a sentence terminator.

d) out appears at the end of paragraphs and often without

a dot. Our classifier identified it as a sentence terminator.

The above block of text was therefore split into 3 sentences,

which is correct.
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B. Discussion

The knowledge-based data (text) correction method that we

propose makes it possible to reduce error (typo) ratio from

4% down to below 1% (four-fold) in the EWID corpus. The

cleansing/correction methods described above may also be

tweaked for clearing the corpus from sensitive and private

data. For example, there is an issue with sharing EWID

corpus because it contains personal data (names, addresses,

etc.) These sensitive data are not always easy to pinpoint,

and the presented methods may help in this task, making

anonymization of the text corpus feasible.
We also managed to quite successfully segment the corpus

into sentences – the algorithm correctly proposed the endings

of the sentences with about 97% accuracy. EWID system

was hopefully carefully designed, but life often proves to

find shortcomings in many designs, once these designs start

to operate in the real world. The issue is that the designers

seem to have lost their control over the content – there are

difficulties in finding certain, fuzzy information (e.g. finding

the information about all the accidents with the buses). Over

the years EWID became the collection of lots of information

in form of unstructured texts and it became a playground

for researches like this one. One of our future ideas is to

semantically inspect the content of EWID and sentences seem

to be the proper building blocks for such an analysis. Once we

have the sentences correctly defined we can cluster the whole

corpus based on the sentences and then inspect the meaning

(semantics) of each cluster. We believe that the system could

improve the validation of the input by checking the input

against it’s knowledge base and then tag/correct/propose or

otherwise interact with the human introducing the data.
What was learned from the experiment is a confirmation

of [11]: "Usually the process of data cleansing cannot be per-

formed without the involvement of a domain expert, because

the detection and correction of anomalies requires detailed

domain knowledge. Data cleansing is therefore described as

semi-automatic but it should be as automatic as possible

because of the large amount of data that usually is be processed

and because of the time required for an expert to cleanse it

manually. The ability for comprehensive and successful data

cleansing is limited by the available knowledge and informa-

tion necessary to detect and correct anomalies in data.".
The process of data cleansing has an iterative nature.

Different aspects appear after the nature of data is better know,

new thresholds must be checked, then parameters tweaked and

then the whole process must be rerun. There is a difficulty

with the order of the undertakings. On one hand we would

like to start segmenting into sentences very early in the whole

process of data cleansing. But at this time we would like to

have the misspellings fixed already. In order to fix misspellings

on the other hand, we use n-grams analysis which should not

cross the sentences boundaries, but the sentences boundaries

are not yet defined. We therefore need to run the analyses

simultaneously and iteratively, as stated before. There is also

the question whether bothering with data cleansing is worth-
while – the alternative is to accept that there is noise in the

data (google and other search engines accept such noise after

all). Answering the question of how much gain we achieve by

cleansing the data would be possible after performing specific

researches in higher level layers, e.g. the proposed CLEWID

platform, where models operate on these lower level data.

However, we didn’t conduct such experiments.
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