
Algorithms for Automating Task Delegation in
Project Management

Bogdan Pop
Department of Computer Science

Babes-Bolyai University

Kogalniceanu 1, 400084, Cluj-Napoca, Romania

Email: popb@cs.ubbcluj.ro, bogdan.pop@webraptor.eu

Florian Boian
Department of Computer Science

Babes-Bolyai University

Kogalniceanu 1, 400084, Cluj-Napoca, Romania

Email: florin@cs.ubbcluj.ro

Abstract—Project management can be defined as a complex set
of activities that are performed by project managers, individuals
or larger entities, that requires proper application of skills,
knowledge, tools and techniques in order to reach or exceed
project requirements. Two of the most important skills or
techniques that greatly influence the end result of a project
are task delegation and resource allocation. Poor decisions while
delegating tasks or planning resources’ allocation can result in
defective project results. Many project management applications
and models aid project managers in proper task delegation and
resource allocation. This paper presents models and task delega-
tion algorithms that can automate task assignment, thus reducing
manual delegation, reducing loss and improving projects’ end
results.

I. INTRODUCTION

D
URING a project’s lifecycle many factors can change at

any given point in time. In order to preserve the scope

and objectives of the project and its sub-projects, developers

have to take countermeasures swiftly. A single change during

a task or an unforeseen event can trigger a chain reaction

and derail greatly the project’s development. Changing the

terms and environment of the project can also add additional

risks and the development team must be able to asses the

situation quickly and make the proper adjustments in order to

deliver the project successfully. The longer it takes for such

countermeasures to be considered and performed the losses

are likely to be higher and growing.

Therefore projects should be proactively managed by con-

tinuously improving and detailing the plan of action as more

detailed and specific information and accurate estimations

become available during the project’s lifecycle. To achieve

this, the project managers and project owners and stakeholders

need to easily and fully grasp all aspects of the project.

The bigger the project the harder it is to generate reports

and project statuses. This is why it is recommended that

developers use proper project management applications for

their projects, allowing more focus to actual work than plan-

ning and calculating reports and project statuses. Furthermore,

project management applications simplify a variety of tasks

that project managers must perform with the help of dedicated

tools and features [1][3].

Since task delegation and resource allocation are one of the

most important aspects that greatly influence the outcome of a

project, it is clear that simplifying, streamlining and possibly

automating task delegations and resource allocations within

projects would have positive impacts on overall results, costs

and profits.

A concept application that automatically assigns, without

any human intervention, newly created tasks within a project

and its deployment model have been previously presented in

[4]. The end goal of the concept application was to ease

the project manager’s job, to minimise costs and maximise

resource usage to its fullest. The paper presented the database

model, the base algorithm and a deployment scenario as

software as a service of the presented concept application. The

algorithm was used to reduce the role of a project manager

as known today, allowing the usage of the project manager’s

knowledge for actual development.

This paper is structured as follows. Section 2 briefly de-

scribes the current proposed web application, its distribution

model and task delegation mechanism presented in [4] which

have shown promising results while being tested and studied

in comparison to some other popular project management

applications currently available on the market [5]. Section 3

presents enhancements and additions that can be applied to

the noSQL model and to the task delegation algorithm that

may improve the performance of the system and its yielded

results. The 4th section describes additional tests and studies

that can be performed on the amended system to asses if the

changes made have improved the performance of the system

or not. The final two sections present future developments and

conclusions, respectively.

II. CURRENT STATE OF THE TASK DELEGATION MODEL

AND ASSIGNMENT ALGORITHM

Achieving automation in the task delegation process can

be done by using a number of methods, most of them quite

new and derived from the field of artificial intelligence. This

includes, but is not limited to neural networks, evolutionary

algorithms or swarm intelligence algorithms.

However, the application developed based on the proposed

model [4] can potentially store vast amount of information,

which would complicate the A.I. algorithms, especially with

respect to computation times. Since time management is a

critical part of project management and plays an important

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1191–1196

DOI: 10.15439/2014F426

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1191

Fig. 1. JSON representation of the Tasks super column as presented in [4]

role in a project’s success, A.I algorithms may not be well

suited for the task.

Different approaches such as the Gale-Shapely Courtship

Algorithm described in [2] have been taken into consideration

as well. However, the chosen model was the usage of classic

iterative algorithms that create automation with respect to task

delegation by applying a set of instructions to properly stored,

sorted and indexed data available on the project’s backend

database.

Project data is being distributed across multiple nodes via

NoSQL databases, specifically Apache Cassandra [6]. A case

of why NoSQL is better suited than classic relational databases

is also presented in [4].

The initial proposed model used NoSQL databases to store

information regarding project tasks, their types, the people that

have worked on them, the time required to complete each task,

personnel availability for future tasks and more. An algorithm

that used this data to programmatically determine the best

match for a newly added task was created. Figures 1, 2, 3 and

4 present the original schema of the most important column

families in the database while the initial task delegation

method is presented by Alg. 1.

Fig. 1 stores information regarding the undergoing tasks of

the project, such as metadata keywords, comprising project,

deadline, if it were already assigned or finished or not. Fig.

2 stores the availability times of each user. Since the chosen

database system has a default lexicographic indexing, each

user’s availability is stored by using a date and username key

with its two parts separated by a hash tag. The value stored is

the time during a day when a particular user is available. The

performance score and number of tasks of each user based on

task metadata keywords is also stored as shown in Fig. 3.

By automating the task assignment process the project

manager was no longer required to manually perform dele-

gations and was able to have a more direct impact in the

actual development of the project, instead of only leading

it. Moreover, programmatically assigning tasks resulted in

fewer errors compared to those made by a human project

manager. Therefore, the development costs and time required

to complete projects were reduced [4].

Algorithm 1 Original task delegation algorithm as presented

in [4]

def f u n c t i o n addNewTask (t a s k)

f o u n d U s e r s = n u l l

i t e r = 1

t a s k A s s i g n e d = f a l s e

whi l e (t a s k A s s i g n e d == f a l s e && i t e r <10)

do

r e s e t O v e r a l l S c o r e (f o u n d U s e r s)

f o r keyword in t a s k . keywords do

f o u n d U s e r s . push (

g e t N U s e r s W i t h B e s t S c o r e _ t a s k A s s i g n (

keyword ,

S t a r t = 10∗ i t e r −9,

End = 10 ∗ i t e r)

)

f o r u s e r in f o u n d U s e r s

u s e r S c o r e =

Ge tKeywordScore_use rSco re s (

keyword ,

u s e r)

u s e r . o v e r a l l S c o r e += u s e r S c o r e

end

end

f o u n d U s e r s . s o r t _ b y { o v e r a l l S c o r e }

c o u n t = 0

whi le (t a s k A s s i g n e d == f a l s e &&

count < foundUser . s i z e)

do

i f foundUser [c o u n t] . i s A v a i l a b l e ?

addTaskToUser (

foundUser [c o u n t] ,

t a s k)

t a s k A s s i g n e d = t rue

return tru e

end

end

i t e r = i t e r + 1

end

return f a l s e

end

1192 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 2. JSON representation of the userAvailability column family as
presented in [4]

Fig. 3. JSON representation of the userScores column family as presented
in [4]

III. ENHANCEMENTS TO THE CURRENT MODEL AND

ALGORITHM

The initial algorithm described in [4] and presented in Alg. 1

worked in the following manner: when a new task was created

the algorithm looped through the taskAssign column family

(Fig. 4) for each keyword, starting from top to bottom, from

the best score to the lowest possible, in order to assign it

to the best suited user. The algorithm then computed each

user’s overall score counting zero if a user’s score was null

for a specific keyword. Following that, the user that got

the best score and was available for work, according to its

userAvailability (Fig. 2) column data, was assigned the task.

If the user with the best score could not complete the task on

time, the next user with the best score lower than the previous

user’s score was selected. Finally, if no suited users were

found, the task remained unassigned and the project manager

had to manually perform the delegation.

The study performed on the model and presented in [5]

revealed the aforementioned un-assignment issue. On the first

projects and for the first tasks within them, no users were

selected since not enough data on their performance was stored

in the database. The proposed modifications are designed to

solve this issue such that all tasks, no matter their creation

time, initial phases of the project, during the project or near its

closing, are all automatically assigned by the proposed concept

Fig. 4. JSON representation of the taskAssign column family as presented
in [4]

Fig. 5. JSON representation of the userSkillsetScore column family

Fig. 6. JSON representation of the userPreferenceScore column family

application and no manual input from the project manager is

required.

In order to achieve the proposed scope, the cause of the

problem had to be determined. The issue was in fact lack

of data within the database, so the solution was to pre-

populate the database with relevant information regarding each

user. This could theoretically be possible for different projects

within the same company or entity. However, this may not be

the case for each developed project and it is therefore not a

viable and feasible solution.

The proposed solution is a fallback within the task assign-

ment algorithm that would be triggered when the original algo-

rithm could not automatically assign a task based on data it can

access from the userScores, taskAssign and userAvailability

columns. This trigger would use two new column families that

would store information about the users, mainly their skill-set,

including all their certified and non-certified ones as well as

their preference to what kind of work and tasks they prefer.

Their skill-set information could be automatically computed

by using predefined scores for different types of certifications.

Their non-certified skills could only be scored and measured

by an authority within the company or within the project,

such as a HR or management representative. Fig. 5 shows

the database schema for the user’s skill-set score.

The mechanisms for generating a user’s preferences score

are trivial, each user having access to the project management

application in order to set their preferences. The database

schema of the preferences score is similar to that of the user’s

skill-set score and is presented in Fig. 6, while Alg. 2 presents

the modified task assignment delegation process.

Another approach for modifying the algorithm would be to

always take into account the skillset score and preference score

of every user on the project. If this approach were chosen,

a balance between users’ past performance score, their skill

score and preference score should be selected.

There are a couple of options for balancing the three

different scores as follows. The first one is to allow manual

BOGDAN POP, FLORIAN BOIAN: ALGORITHMS FOR AUTOMATING TASK DELEGATION 1193

Algorithm 2 Modified task delegation algorithm with skill-set and preference fallback

def f u n c t i o n addNewTask (t a s k)

f o u n d U s e r s = n u l l

i t e r = 1

t a s k A s s i g n e d = f a l s e

whi l e (t a s k A s s i g n e d == f a l s e && i t e r < 10)

do

r e s e t O v e r a l l S c o r e (f o u n d U s e r s)

f o r keyword in t a s k . keywords do

f o u n d U s e r s . push (g e t N U s e r s W i t h B e s t T a s k A s s i g n S c o r e (keyword ,

S t a r t = 10∗ i t e r −9, End = 10 ∗ i t e r))

f o r u s e r in f o u n d U s e r s

u s e r S c o r e = GetScoreForKeywordFrom_userScores (keyword , u s e r)

u s e r . o v e r a l l S c o r e += u s e r S c o r e

end

end

f o u n d U s e r s . s o r t _ b y { o v e r a l l S c o r e }

c o u n t = 0

whi le (t a s k A s s i g n e d == f a l s e and c o u n t < foundUser . s i z e) do

i f foundUser [c o u n t] . i s A v a i l a b l e ?

addTaskToUser (foundUser [c o u n t] , t a s k)

t a s k A s s i g n e d = t rue

return tru e

end

end

i t e r = i t e r + 1

end

t r i g g e r t h a t t a k e s s k i l l s e t and p r e f e r e n c e i n t o a c c o u n t

whi le (t a s k A s s i g n e d == f a l s e && i t e r < 10) do

r e s e t O v e r a l l S c o r e (f o u n d U s e r s)

f o r keyword in t a s k . keywords do

f o u n d U s e r s . push (g e t N U s e r s W i t h B e s t S k i l l S e t S c o r e (keyword ,

S t a r t = 10∗ i t e r −9, End = 10 ∗ i t e r))

f o r u s e r in f o u n d U s e r s

u S k i l l s e t S c o r e = G e t S c o r e _ u s e r S k i l l s e t S c o r e (t a s k . s k i l l s e t , keyword , u s e r)

u P r e f e r e n c e S c o r e = G e t S c o r e _ u s e r P r e f e r e n c e S c o r e (t a s k . s k i l l s e t , keyword , u s e r)

u S k i l l s e t P r e f e r e n c e S c o r e = u S k i l l s e t S c o r e ∗0 .7 5 + u P r e f e r e n c e S c o r e ∗0 .2 5

u s e r . o v e r a l l S c o r e += u S k i l l s e t P r e f e r e n c e S c o r e

end

end

f o u n d U s e r s . s o r t _ b y { o v e r a l l S c o r e }

c o u n t = 0

whi le (t a s k A s s i g n e d == f a l s e and c o u n t < foundUser . s i z e) do

i f foundUser [c o u n t] . i s A v a i l a b l e ?

addTaskToUser (foundUser [c o u n t] , t a s k)

t a s k A s s i g n e d = t rue

return tru e

end

end

i t e r = i t e r + 1

end

return f a l s e

end

1194 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

selections within each company and within each project. This

way, management personnel could modify the ratio based on

their preference and desired outcome within a project. The

second option would be hardcoding the ratio for the three

scores directly into the algorithm.

In order to obtain the perfect balance and ideal ratio, multi-

ple tests with different ratios should be performed on the same

set of tasks within identical projects in order to obtain relevant,

comparable data. Alg. 3 shows the modifications required to

use the balancing factor between users’ performance, skill-

set and preference scores, with their ratios being 50%, 25%

and 25% respectively. The ratios were empirically determined

as the algorithm allows modification for each project within

different companies. Future work may include a more formal,

mathematical approach to establishing the best ratios for the

algorithm.

IV. TESTING THE PROPOSED MODEL AND ALGORITHM

ENHANCEMENTS

The first step towards testing the modifications performed

on the model and on the algorithm is to implement and deploy

the changes into the web application developed based on the

initial model [7]. The original model and its corresponding

web application have already been tested and studied by

using a small scale project developed by a small three-man

development team [5].

The study revealed that the proposed concept is successful

and overall performance improves with each new project

that is managed via the application. The original study has

been performed on a small scale construction project, a

treehouse building process, and the results and outcomes may

be completely different on larger projects and with larger

teams or integrated ones. Therefore, future studies and tests

of the enhanced model and task delegation algorithm should

be performed by using larger, more complex projects.

The study presented in [5] also shown some drawbacks that

interfered with the project workflow in the initial steps of

the development, mainly because there was no information

stored that could be used to automatically assign tasks to

workers. The result of this test has generated the proposed

enhancements presented in this paper. It is straightforward that

if more tests are performed the likelihood to discover even

more extensions and improvements that can be applied to the

proposed concept will increase. It is therefore recommended

that more diverse tests should be performed.

Additionally, tests should be performed on identical projects

in order to obtain the golden ratio between the three scores:

user performance, skill and preference, described in section 3

of the current paper, ratio that could be used for hardcoding

the balancing factor within the task assignment algorithm.

V. FUTURE WORK

Proactive project management usually requires the following

tasks be performed: identifying the requirements and objec-

tives of the project, addressing the concerns and expectations

of the project owners / stakeholders, balancing the project

Algorithm 3 Modified task delegation algorithm with perfor-

mance, skill-set and preference balancing

def f u n c t i o n addNewTask (t a s k)

f o u n d U s e r s = n u l l

i t e r = 1

t a s k A s s i g n e d = f a l s e

whi l e (t a s k A s s i g n e d == f a l s e && i t e r <10)

do

r e s e t O v e r a l l S c o r e (f o u n d U s e r s)

f o r keyword in t a s k . keywords do

f o u n d U s e r s . push (

g e t N U s e r s W i t h B e s t T a s k A s s i g n S c o r e (

keyword ,

S t a r t = 10∗ i t e r −9,

End = 10 ∗ i t e r)

)

f o u n d U s e r s . push (

g e t N U s e r s W i t h B e s t S k i l l S e t S c o r e (

keyword ,

S t a r t = 10∗ i t e r −9,

End = 10 ∗ i t e r)

)

f o r u s e r in f o u n d U s e r s

uPe r fo rmance =

G e t S c o r e _ u s e r S c o r e s (keyword , u s e r)

u S k i l l s e t =

G e t S c o r e _ u s e r S k i l l s e t S c o r e (

t a s k . s k i l l s e t , keyword , u s e r)

u P r e f e r e n c e =

G e t S c o r e _ u s e r P r e f e r e n c e S c o r e (

t a s k . s k i l l s e t , keyword , u s e r)

u s e r S c o r e = uPer fo rmance ∗ 0 . 5 +

u S k i l l s e t ∗0 .2 5 + u P r e f e r e n c e ∗0 .25

u s e r . o v e r a l l S c o r e += u s e r S c o r e

end

end

f o u n d U s e r s . s o r t _ b y { o v e r a l l S c o r e }

c o u n t = 0

whi le (t a s k A s s i g n e d == f a l s e &&

count < foundUser . s i z e)

do

i f foundUser [c o u n t] . i s A v a i l a b l e ?

addTaskToUser (foundUser [c o u n t] , t a s k)

t a s k A s s i g n e d = t rue

return tru e

end

end

i t e r = i t e r + 1

end

return f a l s e

end

BOGDAN POP, FLORIAN BOIAN: ALGORITHMS FOR AUTOMATING TASK DELEGATION 1195

constraints: scope, budget, schedule, resources, quality and

risks [1]. The current proposed models and algorithms address

only scheduling of personnel. An important aspect that can

be improved upon is scheduling of hardware and other non-

human resources.
Future developments may include enhancements of the

current model such that tasks could be assigned to multiple

individuals or such modifications that each task may or may

not have preceding tasks to create proper dependencies. The

current additions to the model allows tasks assignment based

on user skill and preference. Similarly, a simple extension

could be added such that more difficult tasks are assigned

to individuals or teams with more experience and easier tasks

assigned to the rest of the development team. This can be

achieved if the model is modified in such a way that the

database stores the difficulty of each task which could be

assessed automatically or by the project manager. Similarly,

one can also define some tasks as urgent, and these tasks

should be assigned quicker based on their emergency level.
Future work may also include additional features such as

estimating budget costs and automatically determining any

risks before they affect the project. Another important aspect

that would dramatically increase the potential of the appli-

cation would be automatically identifying the requirements

and objectives of the project from client communications, and

translating them into tasks that developers understand and

know how to perform.

VI. CONCLUSIONS

The proposed application concept reduces the role of the

project manager by automatically delegating tasks and shows

potential for large growth. Further more, the original appli-

cation has performed up to 26.77% better than those of the

competitors, as shown in [5]. The same test also shown that

there is at least a 20% margin for improvement, leaving room

for continuous and future developments.

The few cases when manual input by project managers

was required [4] have also been reduced by the modifications

performed on the original model and presented in this paper.

REFERENCES

[1] A guide to the project management body of knowledge (PMBOK Guide),
Fourth Edition, Project Management Institute, Inc., 2008

[2] D. Gale, The two-sided matching problem. Origin, development and

current issues, International Game Theory Review, Vol 3, Nos. 2 &
3, p. 237-252, 2001

[3] H. Kerzner, Project Management a Systems Approach to Planning,

Scheduling, and Controlling, Tenth Edition, John Wiley & Sons, 2009
[4] B. Pop, Building an Automated Task Delegation Algorithm for Project

Management and Deploying It As Saas, Studia Univ. Babes-Bolyai,
Informatica, Volume LVIII, Number 2, June, 2013

[5] B. Pop, F. Boian, Comparative Study of Task Delegation Models in Soft-

ware As a Service Project Management Applications, Knowledge En-
gineering: Principles and Techniques Conference, KEPT, Cluj-Napoca,
July 5-7, 2013

[6] http://cassandra.apache.org
[7] http://automated.pm

1196 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

