
Implementation of a Network Based Cloud Load
Balancer

Sasko Ristov, Marjan Gusev, Kiril Cvetkov
University Ss Cyril and Methodius, FCSE,

Rugjer Boshkovic 16,

Skopje, Macedonia

Email:{sashko.ristov, marjan.gushev}@finki.ukim.mk, kiril cvetkov@yahoo.com

Goran Velkoski
Innovation LLC,

Vostanichka 118,

Skopje, Macedonia

goran.velkoski@innovation.com.mk

Abstract—Cloud service providers offer their customers to rent
or release hardware resources (CPU, RAM, HDD), which are
isolated in virtual machine instances, on demand. Increased load
on customer applications or web services require more resources
than a physical server can supply, which enforces the cloud
provider to implement some load balancing technique in order
to scatter the load among several virtual or physical servers.
Many load balancers exist, both centralized and distributed, with
various techniques. In this paper we present a new solution for
a low level load balancer (L3B), working on a network level of
OSI model. When a network packet arrives, its header is altered
in order to forward to some end-point server. After the server
replies, the packet’s header is also changed using the previously
stored mapping and forwarded to the client. Unfortunately, the
results of the experiments showed that this implementation did
not provide the expected results, i.e., to achieve linear speedup
when more server nodes are added.

Index Terms—Distributed Computing; HPC; Performance;
Web Services.

I. INTRODUCTION

THE dynamic way of living enforces the companies to

be more adaptive to changes. A lot of new companies

are emerging and growing fast, thus taking the market share

ruled of the leading companies. Therefore, services in each

company must be prepared for dynamic changes and cope

with increasing or decreasing the load [1]. If a company wants

to save costs and buy a smaller amount of resources, then

those resources cannot handle the load peaks. Nevertheless,

buying huge amount of resources will increase the costs and

the resources will be underutilized most of the time [2].

A possible solution is to migrate the services in commercial

clouds. This process requires a dynamic strategy for a given

company, to enable efficient acquiring or releasing the cloud

resources. Additionally, increasing the resources requires a

sophisticated load balancing strategy to maximize the effective

and efficient usage and utilization of the rented resources. The

final effect is to maximize the cost, performance and utilization

ratio.

Recently, we have proposed an architecture for a Low Level

Load Balancer (L3B) [3]. This architecture provides a scalable

cloud environment, which can distribute server load among

several active virtual machines that are integrated over the

communication link [4].

In this paper, we present a new load balancer, realized on a

network level. It dynamically balances the incoming network

packets among all active virtual machines and returns the

responses to the clients that send the requests. This balancer

adds a small latency, which does not impact the total response

time. The balancer also increases the security of the services

since the client cannot see the internal cloud network.

The rest of the paper is organized as follows. Section II

presents the related work in the area of load balancing. In

Section III, we briefly describe the architecture of L3B. The

development and the performance of the L3B balancer imple-

menting the proposed architecture is presented in Section IV.

Finally, Section V concludes the work and presents future

work.

II. RELATED WORK

Load balancing is an inherited feature from grids onto

clouds. It may have various uses in cloud computing, such

as:

• Failover, as continuation of a service after the failure of

a cloud resource;

• Energy conservation and resource consumption kept to a

minimum; and

• Scalability, as a feature of cloud computing requirements.

Rimal et al. [5] give an overview of load balancing

techniques used by various cloud providers and solutions,

including Amazon, Google, SalesForce, Azure, Eucalyptus,

OpenNebula, etc. Most of these techniques are implemen-

tations of a conventional Round Robin schema, weighted

selection mechanisms, HAProxy, Sticky session, SSL Least

Connect, Source address, cluster server load equalization, high

performance protocols over EC2, hardware load balancing,

cloud controllers, etc.

A lot of load balancing techniques have existed long time

before the introduction the cloud computing paradigm and the

virtualization technique, which can be grouped in three groups

[6]:

• Session switching at the application layer;

• Packet-switching mode at the network layer; or

• Processor load balancing mode.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 775–780

DOI: 10.15439/2014F454

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 775

Heinzl and Metz [7] classified the load balancers in two

groups: Hardware and software, and commercial and open

source.

In this paper we propose a network based load balancer,

realized by packet-switching mode at the network layer of

OSI model.

However, load balancing is not the only sufficient essential

part for realization of the cloud. Resource brokering is also

important, which is known as elastic load balancer (ELB), such

as Amazon’s ELB. Hu-Sheng et al. [8] proposed TeraScaler

ELB, which is able to dynamically adjust the processing

capacity of back-end server cluster with the applied load.

In our previous research, we proposed an architecture of

a L3B balancer [3]. We have developed the load balancer

and in this paper we present the architecture and design. A

set of experiments is also conducted in order to prove the

performance of our solution.

Load balancing in the cloud was analyzed by several

authors, with corresponding surveys about performance of

various load balancing algorithms [9], [10].

Load balancing techniques can be either centralized on a

specific server or distributed by content aware policy. The

centralized load balancing techniques are controlled by a

single central node and all the other nodes communicate with

this node, such as the Central Load Balancing Policy for

Virtual Machines (CLBVM) solution proposed by Bhadani

and Chaudhary [11], or the CLBDM solution proposed by

Radojevic and Zagar [12], which takes into consideration other

parameters as server load and application performance on top

of the Round Robin Algorithm.

Centralized load balancing approaches in cloud computing

do not offer full scalability features due to design limitations

and communication overhead [13].

III. PROPOSED ARCHITECTURE

This section describes the architectural design of the new

proposed L3B balancer.

A. Overall model

The overall system architecture is presented in Figure 1,

presenting the position of all items and their external intercon-

nections. L3B is placed in front of a pool of virtual machine

instances on the cloud, communicating with the Internet clients

from one side and with physical or virtualized servers from the

other side. The main function is to realize the load balancing

of the clients’ requests for services on various servers.

The latency that the L3B adds to the client requests should

be compensated with the reduced response time by the servers

due to reduced number of requests.

The internal architecture of the L3B balancer [3] consists

of two modules: Resource Management Module (RMM) and

Packet Management Module (PMM), as presented in Figure 2

[3]. The purpose of these modules is to realize accounting

functions, which is essential for load balancing.

The main objective of the RMM module is to manage the

provision of cloud resources with dynamic accounting of the

Internet

Load Balancer

Server 1

Server 2

Server 3

Fig. 1. L3B System architecture

Cloud

Controller

Cloud Node

Virtual

Machine 1

Virtual

Machine N

L3B

Resource Management

Module

Packet Management

Module

...

Fig. 2. Modules in the internal L3B architecture

current load and utilization of active virtual machine instances.

Whenever the accounting shows a need for more resources,

the RMM module communicates with the cloud controller,

by sending a command to initiate creation of a new virtual

machine instance. If there is an information of underutilization,

a corresponding command is sent by the RMM module to shut

an existing virtual machine instance.

Besides the connection to the cloud controller, the RMM

also communicates with the PMM module. Particularly, the

RMM module sends an information to the PMM module about

active virtual machine instances to enable quality information

about the work balance and to enable conditions for the PMM

to realize the load balacing. The PMM module’s main task

is to redirect the input packets to some of the active virtual

machine instances and then to forward the responses to the

client that has sent the request.

This paper presents an extension of this idea, with details on

the development of the PMM module, since we are interested

776 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Outside

Interface

Inside

Interface

RUR LBC

IPDA

PT

OPDA

PT

PTR

Clients Servers

RMM

PMM

Fig. 3. Design of the PMM module

in presenting a proof that it will be efficient for load balancing

of client requests among several active machines (or virtual

machine instances in the cloud). The development of the RMM

module is out of scope of this paper since it directly depends

on the cloud controller and its APIs and interfaces.

B. Design of the PMM module

The PMM module is the core of the L3B balancer. The

main functionality is to enable intelligent management of all

the inconsistent traffic coming from the clients.

The design of PMM module is presented in Figure 3. It is

used to manage the client’s requests, i.e. to forward particular

incoming packet to a particular virtual machine instance,

enabling an environment to balance the load of all virtual

machine instances. When the target virtual machine responds

back, PMM forwards the response packet to the client that has

sent the corresponding request.

The PMM module consists of two interfaces to establish a

communication to:

• the clients, presented by the client machines that sends

requests and

• virtual machine instances, presented by the Cloud Nodes.

Figure 3 shows the two internal modules for communication

with the external parts:

• L3B Outside Interface (OI) that communicates with the

clients, and

• L3B Inside Interface (II), responsible to communicate

with the virtual machine instances.

The main part of the L3B, realized as a core processing unit

is the

• Packet Translation Repository (PTR) responsible for re-

ceiving the packets in both directions, their processing

and forwarding to the destination.

The other internal PMM modules, which are designed

to establish communication in direction from outside LAN

to inside LAN, (direction from OI to II) and information

exchange with the RMM module are the following:

• Input Packet Decision Agent (IPDA), a part that realizes

the most important agent, which implements the intelli-

gent algorithm to derive smart decisions in assigning the

requests to appropriate resources,

• Resource Utilization Repository (RUR) is a part that

stores information about utilization of the physical re-

sources, by sensing the active virtual machines and com-

municating with the RMM module;

• Load Balancing Configuration (LBC) is dedicated to

store the information about configuration for the load

balancing;

• Packet Translation (PT) agent is the part that realizes the

low level networking on IP level in direction from OI to

II.

The PMM module contains also parts responsible for low

level network communication in direction from inside LAN to

outside LAN (direction from II to OI), as follows:

• Output Packet Decision Agent (OPDA) is the agent re-

sponsible to make decisions and assign responses to the

requestors, realized by appropriate communication with

PT and PTR.

• Inverted Packet Translation (PT) agent realizes the low

level networking on IP level in direction from II to OI.

The OI arbitrates among the clients and the PMM inner

agents. Its function is based on a decision making and trig-

gering some actions.

A typical scenario, when a new packet arrives, the OI

instantly sends information to the IPDA. The IPDA agent uses

a sophisticated intelligent algorithm to realize smart decisions

needed to assign the requests to appropriate resources. The

decision can be made only by using relevant information by

the RUR and LBC about current utilization of the physi-

cal resources and load balancing configuration. Finally, after

IPDA has analyzed the real time information of the hardware

utilization, it determines which virtual machine can handle

the request in order to preserve sustainable performance. The

realized decision is sent to the PT agent, which receives the

packet from OI and uses it to proceed with the IP header

translation using the NAT/PAT (Network Address Translation

/ Port Address Translation). This functionality enables an en-

vironment to translate internal and external network addresses

for each packet. These translations are then stored in the PTR

and finally the corresponding transformed packet is forwarded

to the II part, as inside interface to forward it to the target

virtual machine instance.

As soon as the packet reaches the II part, it is forwarded to

the corresponding cloud node and the target virtual machine

instance. The packet has modified header to be transmitted

in the network. The information stored in the header can be

efficiently used for packet flow in the opposite direction. In

this case the II receives the packet with responses from the

SASKO RISTOV ET AL.: IMPLEMENTATION OF A NETWORK BASED CLOUD LOAD BALANCER 777

Fig. 4. The L3B implementation

virtual machine. The packet encapsulated in data link frame

contains the corresponding MAC addresses of the source and

target. Now the packet is sent to OPDA, which communicates

to the PTR to receive detailed PT instructions. Note that there

is an inverted PT in this section, which repeats the inverse

NAT/PAT procedure to translate the external IP address into

the original destination IP address. Then the packet is sent to

the OI to forward the response to the client.

IV. THE IMPLEMENTATION OF L3B

This section presents the implementation of L3B according

to the architecture described in Section III. The results of

the experiments to determine its impact to the end-service’s

performance are also presented.

A. L3B functional requirements

The efficient and effective load balancer should comply with

the following functional requirements:

• To balance all incoming packets that are sent by the

clients to the active end-point servers;

• Must have a configuration file where a specific port can

be configured where the clients should sent their requests;

• Must have a configuration file to specify the IP addresses

of active end-point servers where the incoming packets

will be balanced; and

• Introducing L3B between the client and more end-point

servers must reduce the overall response time of the client

requests.

B. The Architecture

The L3B is implemented in JAVA to be platform indepen-

dent. This feature compensates the small JAVA deficiency,

manifested as a reduced performance. Recently, this is not

emphasized a lot, since modern Java virtual machines’ perfor-

mance do not fall behind other solutions such as C or C++

[14].

The architecture of the L3B implementation is depicted in

Figure 4. Only one end-point server is presented in order to

simplify the explanation. The participants in this communica-

tion scenario are the client, L3B server and end-point server

(virtual machine hosted on the cloud). There are two LANs

identified in the figure, LAN1 as a network segment between

TABLE I
HEADER VALUES OF A REQUEST IN DIFFERENT STATES IN THE L3B

IMPLEMENTATION

Header Value T1 T2 T3 T4

Source IP cIP bIP sIP bIP
Destination IP bIP sIP bIP cIP

Source port cPort obPort sPort bPort
Destination Port bPort sPort obPort cPort

Source MAC Def. Gateway bMac sMac bMac
Destination MAC bMac sMac bMac Def. Gateway

the default gateway and the L3B server, and LAN2, as a

network segment between the L3B server and the end-point

server (virtual machine hosted on the cloud). We assume that

these LANs are supported by corresponding fast switches. In

addition, this organization allows the end-point servers and

L3B to be in the same subnet to decrease network latency.

Considering the L3B modules, actually OI communicates

with default gateway in LAN1 and II communicates with

virtual machines hosted in LAN2. The participant’ parameters

(IP address, Mac address, Port) are presented below each

participant, as presented in Figure 4.

Lets discuss a typical scenario in this L3B architecture and

implementation. When a client sends a request, it is routed

through Internet until the L3B default gateway, identified as

T1 state in LAN1. Now, the incoming packet is received by

the OI module in the L3B balancer. This packet is processed,

as discussed in Section III.

The packet header processing, transforms its Ethernet, IP

and TCP headers. More details for the scenario presented in

Figure 4 are specified in Table I. Besides transformation, the

old and new headers are stored in corresponding repository

(PTR). As explained in the previous Section, IPDA is the agent

that makes the decision to select the end-point server as a

destination where the packet should be sent. In the figure, this

is labeled as T2 in the LAN2.

When the end-point server processing is finished, a response

packet starts to be sent in the opposite direction in the analyzed

architecture. The end-point server replies back to the L3B,

by sending the packet in the LAN2, labeled with T3 in the

figure. Similarly to the previous explanation, II unit from

the L3B balancer receives the packet, and OPDA uses the

778 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

information stored in PTR repository to make a decision about

the header translation. Then the inverse PT agent transforms

the corresponding Ethernet, MAC and IP addresses, according

to the decision made by OPDA, and updates the configuration

in PTR. After header translation, PT sends the packet with

changed headers to the OI unit, which forwards it to the

relevant client, which originated the counterpart request.

C. Implementation challenges

Our implementation of the architecture uses jNetPcap li-

brary [15] to sniff the network traffic and alter the incoming

packets. Using the jNetPcap library made some problems

during the packet forwarding.

The packet sniffer Wireshark [16] showed that a regular

packet arrived at the server T2, with correct values for appro-

priate fields in Ethernet and IP header. However, the server

did not respond back to the L3B balancer and T3 was not

initiated.

The solution to this problem, acquired more experiments

and programming. We redeveloped the L3B to open a new

socket to the end point server for each packet. However,

although this change solved the problem and the packet was

sent back to the L3B balancer, and then from L3B to the

client, the results were not promising. The following two

sections present the testing methodology and the results of

the experiment to determine the L3B performance.

D. Testing methodology

Four workstations with the same hardware resources and

platform are used as a testing environment. Each workstation

has Intel(R) Xeon(R) CPU X5647 @ 2.93GHz with 8GB

RAM memory, installed with Ubuntu 12.04. The client is on

the same LAN as the L3B workstation and two end-point

workstations to reduce the network latency.

A client requests a packet with constant web page content,

which size is 56KB. The different number of concurrent

requests are then initiated to create various loads. We choose

this page size in order to be smaller than the IP packet limit

of 64KB. Usually the web requests and responses are smaller

than 64KB.

The concurrent requests are simulated with SOAPUI. Each

test case consists of sending N concurrent requests per second,

such that N varies in each test case starting from N = 5 until

N = 100 requests, by increasing N with step 5. Each test

case lasts 60 seconds.

E. Performance analysis of the L3B implementation

The defined test cases were executed in order to check the

impact of the L3B balancer to the end-point web server. Both

experiment scenarios are examined, with and without L3B.

Figure 5 presents the results of the experiments. We observe

that the last functional requirement is not satisfied for neither

test case, meaning that the most important feature is not

realized. In reality it shows that introducing the L3B balancer

made the response time even worse, compared to the scenario

without L3B.

Fig. 5. Results of the experiments for the L3B implementation

The results show that although opening a new socket for

each incoming packet was a solution to reply the server, it is

performs worse and overall it is a bad solution.
This motivated us to analyze various proposals how to make

the L3B more efficient. The main idea was to try to open one

or several sockets from the L3B server to the servers in order

to reduce the overall response time.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a new approach for a load

balancer, that is, the low level load balancer that works on

a network layer of OSI model. The balancer is developed

according to the L3B architecture [3], but its implementa-

tion have even reduced the performance when two end-point

servers are used compared to the case when only one end-point

server is used without the L3B balancer.
Since this implementation of the L3B balancer did not

yield the expected results, we will proceed to improve the

L3B architecture and implementation. Creating a new socket

for each arrival packet reduced the performance of the L3B

balancer and the architecture will be improved by creating a

virtual client.

REFERENCES

[1] A. Murua, I. Gonzalez, and E. Gomez-Martinez, “Cloud-based assistive
technology services,” in Computer Science and Information Systems

(FedCSIS), 2011 Federated Conference on, Sept 2011, pp. 985–989.
[2] S. Ristov, M. Gusev, G. Armenski, K. Bozinoski, and G. Velkoski,

“Architecture and organization of e-assessment cloud solution,” in
Global Engineering Education Conference (EDUCON), 2013 IEEE,
March 2013. doi: 10.1109/EduCon.2013.6530189. ISSN 2165-9559 pp.
736–743, best paper award. [Online]. Available: http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=6530189&isnumber=6530074

[3] M. Simjanoska, S. Ristov, G. Velkoski, and M. Gusev, “L3b:
Low level load balancer in the cloud,” in EUROCON, 2013 IEEE,
Zagreb, Croatia, 2013. doi: 10.1109/EUROCON.2013.6624994 pp. 250–
257. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=6624994

[4] L. Schubert, M. Assel, and S. Wesner, “Resource fabrics: The next level
of grids and clouds,” in Computer Science and Information Technology

(IMCSIT), Proceedings of the 2010 International Multiconference on,
Oct 2010. ISSN 2157-5525 pp. 677–684.

SASKO RISTOV ET AL.: IMPLEMENTATION OF A NETWORK BASED CLOUD LOAD BALANCER 779

[5] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in INC, IMS and IDC, 2009. NCM ’09. Fifth Inter-

national Joint Conference on, Aug 2009. doi: 10.1109/NCM.2009.218
pp. 44–51. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5331755&isnumber=5331299

[6] B. Radojevic and M. Zagar, “Analysis of issues with load balancing
algorithms in hosted (cloud) environments,” in MIPRO, 2011

Proceedings of the 34th International Convention, May 2011, pp.
416–420. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5967092&isnumber=5967009

[7] S. Heinzl and C. Metz, “Toward a cloud-ready dynamic load
balancer based on the apache web server,” in Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE), 2013 IEEE 22nd

International Workshop on, June 2013. doi: 10.1109/WETICE.2013.63.
ISSN 1524-4547 pp. 342–345. [Online]. Available: http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=6570639&isnumber=6570561

[8] H.-S. Wu, C.-J. Wang, and J.-Y. Xie, “Terascaler elb-an algorithm
of prediction-based elastic load balancing resource management
in cloud computing,” in Advanced Information Networking

and Applications Workshops (WAINA), 2013 27th International

Conference on, March 2013. doi: 10.1109/WAINA.2013.79 pp. 649–
654. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6550470&isnumber=6550285

[9] K. Nuaimi, N. Mohamed, M. Nuaimi, and J. Al-Jaroodi, “A survey
of load balancing in cloud computing: Challenges and algorithms,”
in Network Cloud Computing and Applications (NCCA), 2012 Second

Symposium on, Dec 2012. doi: 10.1109/NCCA.2012.29 pp. 137–
142. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6472470&isnumber=6472451
[10] N. J. Kansal and I. Chana, “Cloud load balancing techniques: A step

towards green computing,” IJCSI International Journal of Computer

Science Issues, vol. 9, no. 1, pp. 238–246, 2012.
[11] A. Bhadani and S. Chaudhary, “Performance evaluation of web servers

using central load balancing policy over virtual machines on cloud,”
in Proceedings of the Third Annual ACM Bangalore Conference,
ser. COMPUTE ’10. ACM, 2010. doi: 10.1145/1754288.1754304.
ISBN 978-1-4503-0001-8 pp. 16:1–16:4. [Online]. Available: http:
//doi.acm.org/10.1145/1754288.1754304

[12] B. Radojevic and M. Zagar, “Analysis of issues with load balancing
algorithms in hosted (cloud) environments,” in MIPRO, 2011

Proceedings of the 34th International Convention, May 2011, pp.
416–420. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5967092&isnumber=5967009

[13] D. Ardagna, S. Casolari, and B. Panicucci, “Flexible distributed
capacity allocation and load redirect algorithms for cloud systems,”
in Cloud Computing (CLOUD), 2011 IEEE International Conference

on, July 2011. doi: 10.1109/CLOUD.2011.32. ISSN 2159-6182 pp.
163–170. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=6008706&isnumber=6008659

[14] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,

Fourth Edition: The Hardware/Software Interface. Morgan Kaufmann,
2009. ISBN 978-0-12-374493-7

[15] S. Technologies, “jnetpcap,” 2014. [Online]. Available: http://jnetpcap.
com/

[16] “Wireshark,” 2014. [Online]. Available: http://www.wireshark.org/

780 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

