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Abstract—We present an approach for evaluation of a heat
release rate of compartment fires. The approach is based on the
idea of matching the actual condition of the fire to the pre-
generated CFD simulations. We use an IR image of imprint
of the temperature on the ceiling as a similarity relationship
between actual fire and the set of the simulations. We extract
the invariants, features and similarity measures of the fires using
machine learning approach.
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I. INTRODUCTION

M
ODELING of fire dynamics in buildings attracts many

researchers from the fire safety science domain [1],

[2]. The achievements of the research are successfully imple-

mented in the processes of building design such as installation

of fire detection and suppression, segmentation of the spaces

and ventilation. All these activities are destined to prevent fire

spreading in the building. However, there are rare cases when

fire overcome these controls and is threatening the occupants

and the building. In such cases the management of the emer-

gency scene is delegated to the Incident Commanders (IC). Old

buildings were designed with currently obsolete fire engineer-

ing approaches. In these buildings fires occur more frequently

and generate much more losses. Currently, the forecasting

of fire dynamics is bound to the designing of the buildings

and not really to the management of the emergency scene by

the commanders. This is the result of the complexity of the

calculation, which forces the long computation times and the

uncertainty of the input parameters for the fire modelling. The

geometry of the room and the heat release rate (HRR) are

the key input parameters for the successful simulation in the

fuel controlled regime. The new achievements in the computer

aided design (Building Information Management BIM1) allow

to hope that in the near future the layouts of the insides

of the buildings will be more available, as opposed to the

availability of the HRR, unfortunately. The HRR is strongly

dependent on the type, amount and distribution of combustible

1http://en.wikipedia.org/wiki/Building_information_modeling

material inside the room, which is generally difficult to predict

or evaluate. Therefore, a set of researches has been conducted

which were focused on the evaluation of HRR based on the

occurring fire [3], [4], [5]. Each of the approaches in the

domain were grouped under one umbrella called inverse fire

modelling. However, the approaches are strongly dependent

on high sensor density in the compartment, which makes them

infeasible during the F&R actions, taking into account the poor

sensors infrastructure in buildings today.

In the previous works on evaluating of the HRR, the authors

focused on creating the physical model of the phenomenon. In

these models all the parameters represent the physical features.

Moreover, their goal was to obtain the strict values of the

HRR. These approach is not feasible in the case of F&R

action, where the IC is interested in the approximation of HRR

only. During the F&R action the evaluation of the HRR with

accuracy of ±100 kW is good enough to estimate the type of

the fire (furniture, TV, curtains) and its future course of action.

Therefore in the case of supporting the IC during the action

some conditions can be relaxed.

In this paper we address the problem of inverse fire mod-

elling. We analyze the possibilities of utilizing the inverse fire

modeling approach in order to facilitate the management of

the emergency scene by the IC. We present a new approach

to inverse fire modeling which can be practically used on

the emergency scene. The rest of the paper is structured

as follows. Section II contains description of our approach

and experiments conducted to validate our model. Section III

introduces the results obtained in our experiments. In the

Section IV we discuss the result obtained and the perspectives

of future work for model improvements.

II. METHOD

Our method is based on the simple intuition that during

the compartment fire, the unique – for a given type of fire –

imprint of temperature on the ceiling is created. The imprint

depends on a set of physical parameters such as HRR, the type

of the materials the ceiling is produced from, the geometry of

the compartment and others. We also assumed that if we relax
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the conditions for the approximation of HRR purposes then

the category of similar compartment will be created allowing

for the reduction of invariants considered. It opens the way for

running a set of simulations for each of the categories and store

them in the database. Then, by comparing the imprint of the

actual fire against the completed simulations in the database

we can evaluate the HRR and the fire dynamics.

We also assumed that for the approximation purposes during

the F&R action the physical interpretation of the parameters

of our model are not important. It allows us for the usage of

the approaches from artificial intelligence domain. According

to these approaches the feature extraction and their impact

on the decision class (HRR value in our case) is obtained

automatically during the training process. There is only one

demand: large enough amount of training data. This condition

is however, easy to meet in our case, because we are able to

massively generate the simulations.

In our analysis we focused mainly on the measurement

of the temperature distribution on the structural elements

of the compartment using IR camera. This method allows

to obtain large number of individual measurement points.

Number of points and quality of the obtained measurements

depends on the accuracy of measuring device. The long-wave

IR cameras have become increasingly common in the F&R

actions [6], [7]. In many countries almost all fire departments

have at least one IR camera. It helps rescuers to navigate

through smoke filled compartments and also speeds up the

localization of the fire source. Except from the camera, the

rescuers could be equipped with the module for analyzing the

temperature distribution on structural elements. This analysis

could dynamically estimate many fire parameters such as the

HRR, smoke layer temperature, fire area or critical conditions

e.g. flash over (combined with information from BIM).

In most cases the thermal response depends on the building

materials from which the compartment was made. Building

obstructions are mainly heated by radiative and convective heat

transfer from fire and conductivity. For large spaces, the uni-

form heating of walls and ceiling may prove to be a very long

process. However, the ceiling above the fire source is always

heated identically and comparatively fast. This approach can

be universal for all compartments sizes. However, there are

many factors that can affect the final imprint of temperatures.

Ceiling temperature distribution depends on many variables

i.e. HRR, combusted material, fire area, base of the fire, height

of the compartment, type of building materials and many

others but final imprint is related to the amount of heat released

from fire which means that there is a physical dependence of

these two parameters.

A. Preliminary experiments

We conducted the preliminary experiment in order to rec-

ognize, whether there are possibilities of using the machine

learning algorithms to resolve the problem. We generated, for

this purpose, a representative numer of simulations of various

fire scenarios in a single compartment. We ran all simulations

on the Fire Dynamics Simulator (FDS) [8] software version

6.0.1. FDS is a computational fluid dynamics model of fire-

driven fluid flow, with an emphasis on smoke and the heat

transport from fires. Launching the FDS simulation requires

a large number of input parameters. The parameters affect

the simulation results. In order to simplify the conditions of

preliminary experiment we divided the input parameters into

invariants and variants. The setup of invariant parameters is as

follows:

• the properties of the building materials,

• height of the room – 2.6m,

• base of the fire – 0.0m,

• room dimensions – 5.0× 3.0m,

• burning material – ethyl alcohol,

• FDS model settings except radiation model,

• cell size – 0.2m,

• fire always is located at least 1.0m away from the

building walls,

• ventilation hole – entrance door with 1.0m width and

2.0m height,

• simulation time – 600 s.

The properties of the building materials are crucial in this

analysis. Depending on physical properties the different rate

of heat loss by the hot gases to compartment boundaries is

transfered. We considered the room made of fire resistant

calcium silicate boards (both the walls and the ceiling). The

assumed physical properties are presented in the Table I.

TABLE I: The physical properties of calcium silicate boards

Parameter Value

Density 480 kg/m3

Thermal conductivity 0.09W/(m×K)
Specific heat at 293K 1.074 kJ/(kg ×K)
Specific heat at 473K 1.000 kJ/(kg ×K)
Emissivity 0.9

The parameter specific heat was introduced in order to

define the boundary conditions. This parameter is a linear

function of the temperature and is defined by two points:

y1 = 1.074 at 293K and y2 = 1.0 at 473K (physical

parameters of the boards). We also assumed that the height

from the fuel source to the ceiling is constant (fire basis) for

all the experiments. This parameter as well as the height of

the compartment may strongly influence the temperature dis-

tribution on the ceiling. The higher is the fire basis the higher

temperatures may be reached by ceiling jet. It mainly depends

on the plume mass flow above the flames [1]. Moreover, the

position of the fire in the room affects these temperatures. If

the burning fuel is located close to the walls the cool air is

entrained into the plume only from one or two directions. This

causes higher temperatures and higher flames from the same

fire [9].

We used ethyl alcohol as a burning material. It is commonly

used in the real experiments because of its well known physical

and chemical properties. It allows to precisely estimate the
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HRR using the following function [10]:

H = 345 + 1139A− 1108A2 + 320A3

where H is HRR and A is the area of the fire.

As variant parameters we assumed the total HRR, the area

of the fire and its location in the compartment. We considered

steady-state fires with constant HRR which was changing in

the range of 50 to 1,000 kW every 50 kW for all fire areas

and locations. The total number of combinations were 600.

Fig. 1: The compartment view used in the CFD simulations.

Next step of our analysis was the extraction of the data from

the simulations. The results e.g., the wall temperature was

collected for each cell on all boundaries in the compartment.

We recorded the values every 5 seconds. The binary output

from the FDS was converted to comma separated values file

(CSV) with the fds2ascii tool. All cells from the ceiling

were inserted to monetDB2 database. Each record contains

the information about temperature, location (x, y coordinate)

of the cell (z axis fixed) and other data needed to distinguish

the fire scenario i.e. HRR, fire area and position. From the

total ceiling area only 1m2 was considered for the analysis –

this area is chosen by spotting the hottest cell and centering

the one square metre around it.

The data from the database was used as a training set for

classifiers. We constructed our information system by defining

the object as an avaraged values of attributes within defined

(30 s) time window of the given fire test. The object in our

information system was represented by following attributes:

time from ignition, maximum temperature, average tempera-

ture form selected area and standard deviation. As a decision

class the HRR was used. We used in our experiment the total

number of objects (samples) equal 36,600.

Due to the large amount, the data were first discretized. The

original values of HRR were in range from 50 to 1,000 kW
with 50 kW growing step. We conducted two tests with HRR

discretized into 20 and 10 equal-width sets. The time of

simulation was in the range from 0 to 600 second. We

2http://www.monetdb.com/Home

discretized this parameter into 20 equal-width sets in both

cases.

Then we used the orange-canvas3 software to run the

classifications. We used the 5-folds cross-validation technique

for estimating the performance of predictive models. In 5-

fold cross-validation, the simulations data were randomly

partitioned into five equal size subsamples. Out of the five sub-

samples, a single subsample was retained as the validation data

for testing the classifiers, and the remaining four subsamples

were used as training data. The cross-validation process was

then repeated five times, with each of the five subsamples used

exactly once as the validation data. We averaged the five results

from the folds to produce a single estimation. The advantage

of this method over repeated random sub-sampling is that all

observations are used for both training and validation, and each

observation is used for validation exactly once.

We used in our experiments two classification algorithms,

i.e., Classification Trees [11], [12] and Support Vectors Ma-

chine (SVM) [13]. We decided to use these two algoritms

because they are based on two different foundations. Classifi-

cation Trees represents the algoritms with descriptive method

of classification. The model created as a result of training

process is interpretable and understandable by the fire safety

domain experts – the trees with decision rules. The selected

algorithm allowed us for better controling the experiments and

keeping the physical interpretation of the obtained results.

SVM represents respectively the algoritms with procedural

method of classification. The model defined within trainig pro-

cess is not interpretable by domain experts. However, we chose

this algorithm for the comparision with Classification Trees

and because of good performance in similar problems [14].

The goal of the classifiers was to predict the value of HRR

from testing subsample. We used the Balanced Classification

Accuracy (BCA)4 measure for measuring the performance

of the classifiers. At the current state of our researches, the

conducted experiments were aimed at checking the possibility

of using proposed method. Our intention was not to tune

up classifier settings for better performace rather we used

default options. We used the following settings of classifiers:

SVM type: C-SVM (cost = 1, complexity bound = 0.50),

SVM Kernel: RBF5, SVM Numerical tolerance = 0.0010.

Classification Tree attribute selection criterion: information

gain, Classification Tree Pre-Running: min. instances in leaves

= 2, pruning with m-estimate m = 2.

B. Real experiments

In order to check whether the method could be applied in

the real situation, when the distribution of the temperature on

the cell is obtained by the physical equipment, we conducted

a set of real experiments. Three surveys of three different

HRRs were made within the compartment with dimensions

5.25m length, 2.54m width and 2.55m height. The whole

building was made of prefabricated concrete slabs, however

3http://orange.biolab.si/
4http://en.wikipedia.org/wiki/Accuracy_and_precision
5http://en.wikipedia.org/wiki/Radial_basis_function_kernel
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the analyzed compartment was protected by non-combustible

low density calcium silicate boards. Fire resistant boards were

mounted on steel construction. The compartment had three

exits with dimensions 2.1 × 1.0m each. Two of them were

closed and the third one, the exit from the building was

opened.

The fire source was placed in the compartment at least 1m
from the walls. 90% methylated spirits was used as a burning

material. Alcohol was burned in steel fire trays based on ISO

international paper sizes i.e. A3 and A2, located directly on

the floor. The total HRR was estimated according to Australian

Standard [10] i.e. 60 kW 140 kW and 200 kW for A3, A2 and

A3 + A2 fire trays, respectively. Tests were planned to reach

steady-state conditions with constant HRR. During the tests

the following parameters were recorded:

• imprint of the temperature on the ceiling captured by IR

camera,

• temperature distribution in the compartment measured by

thermocouple trees,

• video image.

Fig. 2: Experimental setup with A2 fire tray.

Temperature distribution on the ceiling was captured by

long-wavelength IR camera – wavelength 8 – 14µm . Res-

olution of the camera was 640×480 pixels. The distance from

the measured area to the camera was approximately 2.7m.

The pictures were captured every 1 second. We also measured

the temperature distribution in compartment using three ther-

mocouple trees which held 6 (Type-K) thermocouples each.

These trees were spread in compartment with distance 1m,

2m, 3m from center of the fire source. The values from the

thermocouples were logged at frequency of 1Hz. One video

camera was used to monitor the fire growth.

After the fire tests we processed 60 pictures from IR camera.

We selected pictures form all tests with a 30 s step. Next we

extracted the attributes needed for the predictions methods

i.e. maximum temperature, average temperature and standard

deviation from 1m2. Finally we used already trained classifiers

from preliminary experiments to match most suitable decision

class.

C. Towards the Generalization of the Model

The goal of the experiments described above was a gen-

eral validation of our approach. It allows for proving that

the concepts are reasonable and for evaluating the results.

However, the method, even if it obtained quality is satisfying,

is not quite practical so far. To make the approach usable,

the generation of massive number of simulations for every

particular compartment is required. Moreover, taking into ac-

count that for a given compartment different conditions of the

ventilation could appear (windows and doors could be opened

or closed) the generation of the simulation scenarios requires

some sampling method such as Monte Carlo. Therefore our

next experiments were concentrated on the generic features

of the compartments. The extracted features allow to create

groups of similar compartments – from the fire scenario

point of view. Such grouping, thus allows for relaxing the

conditions of generation of the simulations for every particular

compartment.

Similarly to preliminary experiments we set a couple of

invariant parameters. Most of them were the same except from

the following:

• building materials properties,

• height of the room – 2.8m,

• simulation time – 1,200 s.

This time the test was performed in the room made of

gypsum boards. It is a more common material for typical

offices or flats. Moreover, we changed the height of the

compartment. The previous one was matched to the test room

where the real experiments were made.

TABLE II: Variant parameters assumed in simulations.

Parameter Number

of combination

Room dimensions 14

Number of the fire location 140

Area of the fire 10

Total heat release rate 10

Total 14,000

The assumed variant parameters were presented in Table II.

Dimensions of the room were changing from 3×3m to 7×7m
which is corresponding to the real conditions in a dwelling or

an office. The increment step was set to 1m in both directions

except from the repeated dimensions. Also the location of the

fire was moving by 1m, however, the minimal distance from

obstructions was set to 1m. We assumed ten combinations of

fire area and total heat release rate i.e. from 0.4 × 0.4m2 to

1.0×1.0m2 and from 100 kW to 1,000 kW, respectively. The

total numer of combinations was 14,000.

Due to the large number of generated input files the

coarse grid size of 20 cm was chosen. According to previ-

ous works [4] and results from preliminary experiments we

decided to study the case with the mentioned size of the grid.
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Fig. 3: Temperature distribution on the ceiling in the simulation. Legend: X-axis – discretized time, Y-axis – average temperature.

We chose a similar methodology as in the preliminary exper-

iments for preparing and processing the data for classification

methods. We decided upon 10 discrete equal-width sets of the

HRR.

III. RESULTS

The results were collected in each step of the experiments.

Firstly we tested the classification accuracy for preliminary

experiments. Then we compared the results from the classi-

fiers against the real experiments. Finally we measured the

classification accuracy for generalized model. In all steps we

considered BCA for Classification Tree and Support Vector

Machine (SVM) classifiers. We also provide the confusion

matrix6 as the measure of classifiers’ performance.

A. Preliminary experiments

The preliminary experiments aimed at verifying whether the

machine learning approach is appropriate for characterizing

the HRR from the temperature imprint on the ceiling. We

prepared 600 simulations for a single room with varying fire

area, fire localization and Heat Release Rate Per Unit Area

(HRRPUA). For all the simulations we registered the time, the

average and maximum temperatures and the standard deviation

of the temperatures in the measured (1 square metre) area. In

total there were 36,600 records registered.

6http://en.wikipedia.org/wiki/Confusion_matrix

The Figure 3 illustrates the dependence of the HRR on

the average temperature and time. In this case the HRR

were discretized into 10 sets. Each set is presented in a

distinct color. The figure shows that the sets of the HRRs are

quite separable, especially for the lower HRR. For the higher

HRR the classification is less certain. However, the additional

attributes – maximum temperature and the standard deviation

of the temperatures improve the classification of the HRR.

In the Table III we collected the results of the classification

accuracy. It shows the results of the test learners for all the

classifiers used. We distinguish two groups of the results

dependent on the HRR discretization. First group assumes

discretization into 20 sets (every 50 kW) and the second into

10 sets (every 100 kW).

TABLE III: The test learners obtained by the classifiers in the

preliminary experiments.

Test learners BCA BCA AUC AUC

(HRR step) 50 kW 100 kW 50 kW 100 kW
Classification Tree 0.6292 0.7713 0.9745 0.9701

SVM 0.3711 0.6727 0.9619 0.9781

In the Table IV and V we present the confusion matrix for

the Classification Tree. The results are for best and worst HRR
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(a) t = 240 seconds (b) t = 360 seconds

(c) t = 480 seconds (d) t = 600 seconds

Fig. 4: Temperature distribution on the ceiling.

classification classes for 20 and 10 equal-width sets (50 and

100 kW HRR step). It can be observed that the accuracy of the

classifier is high because of the low number of false negatives

and because these false negatives were assigned to the nearby

sets.

B. Real experiments

The purpose of the study was to validate the classification

methods against the results of the full scale experiments.

During the real experiments we captured the imprint of the

temperature on the compartment ceiling using IR camera.

The pictures were captured every second. However, only

sixty pictures were used to extract the average and maximum

temperatures and the standard deviations of the temperatures.

Figure 4 presents the imprints of the ceiling temperature for

burning A2 fire tray.

Afterwards we used the prediction module in orange-canvas

to verify the classifiers accuracy. In Table VI we present the

performance of the classifiers for HRR discretized into 20 and

10 equal-width sets.

TABLE VI: The performance obtained by the classifiers in the

real experiments.

Classifier BCA BCA

50 kW 100 kW

Classification Tree 0.5833 0.9167

SVM 0.6667 0.900

C. Generalized model

In Table VII we present the performance obtained by the

classifiers. The total number of all instances was 293,976.
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TABLE IV: Confusion matrix for Classification Tree (50 kW step).

(0.00, 50.00] (100.00, 150.00] (200.00, 250.00] âĂę (700.00, 750.00] (800.00, 850.00] (900.00, 950.00]

(0.00, 50.00] 1,781 7 0 âĂę 0 0 0 1,830

(50.00, 100.00] 13 15 2 âĂę 0 0 0 1,830

(100.00, 150.00] 5 1705 7 âĂę 0 1 0 1,830

(150.00, 200.00] 4 43 57 âĂę 1 0 0 1,830

(200.00, 250.00] 1 11 1578 âĂę 3 0 0 1,830

(250.00, 300.00] 0 4 91 âĂę 0 0 3 1,830

(300.00, 350.00] 0 7 22 âĂę 4 0 1 1,830

(350.00, 400.00] 0 2 16 âĂę 7 1 0 1,830

(400.00, 450.00] 0 8 6 âĂę 5 3 4 1,830

(450.00, 500.00] 0 3 10 âĂę 8 3 9 1,830

(500.00, 550.00] 0 0 6 âĂę 13 2 0 1,830

(550.00, 600.00] 0 0 3 âĂę 21 8 5 1,830

(600.00, 650.00] 0 1 2 âĂę 69 10 5 1,830

(650.00, 700.00] 0 4 0 âĂę 381 24 6 1,830

(700.00, 750.00] 0 1 7 âĂę 735 72 18 1,830

(750.00, 800.00] 0 0 13 âĂę 378 370 21 1,830

(800.00, 850.00] 0 0 2 âĂę 89 757 101 1,830

(850.00, 900.00] 0 0 0 âĂę 23 379 375 1,830

(900.00, 950.00] 0 0 0 âĂę 23 123 661 1,830

(950.00, 1,000.00] 0 0 0 âĂę 9 44 453 1,830

1,804 1,811 1,822 âĂę 1,769 1,797 1,662 36,600

TABLE V: Confusion matrix for Classification Tree (100 kW step).

(0.00, 100.00] (100.00, 200.00] (200.00, 300.00] âĂę (700.00, 800.00] (800.00, 900.00] (900.00, 1,000.00]

(0.00, 100.00] 3,552 41 25 âĂę 23 10 0 3,660

(100.00, 200.00] 49 3,430 91 âĂę 22 16 0 3,660

(200.00, 300.00] 14 101 3,248 âĂę 35 13 4 3,660

(300.00, 400.00] 5 38 243 âĂę 41 21 2 3,660

(400.00, 500.00] 4 27 48 âĂę 35 29 18 3,660

(500.00, 600.00] 2 21 32 âĂę 80 35 17 3,660

(600.00, 700.00] 0 21 18 âĂę 594 55 34 3,660

(700.00, 800.00] 0 17 28 âĂę 2,285 607 60 3,660

(800.00, 900.00] 0 20 18 âĂę 624 2,185 696 3,660

(900.00, 1000.00] 0 12 25 âĂę 113 634 2,800 3,660

3,626 3,728 3,776 âĂę 3,852 3,605 3,631 36,600

TABLE VII: The performance obtained by the classifiers in

the generalized method.

Classifier BCA

Classification Tree 0.6569

SVM 0.5436

IV. DISCUSSION

The presented results prove that there is a potential in the

described approach. We reached a high value of BCA (0.77) in

the preliminary experiments. No less optimistic are the results

of the real experiments with the IR camera. These experiments

resulted in BCA equal 0.92. The separability of the (especially

lower) HRR in the analyzed data were observed. In order to

improve the performance in higher HRR, the observed area

of the ceiling should be extended by lower focal length of

the objective of IR camera. There is a room for other more

sophisticated statistics and operations on the features from the

pictures, e.g. calculating the parameters of spatial distribution

of temperature instead of the mean etc.

The main goal of the research was to asses whether the

proposed approach may be used on the fire ground. The results

from the real experiments showed that this method may be

used to characterizing HRR. The BCA ratio for full scale

experiments could be higher, however there were problems

with selecting correct values of the attributes from IR camera

pictures. In many cases products of combustion i.e. water

vapour and aerosols radiation veil created imprint on the

ceiling. In order to overcome these shortcomings we consider

processing of the images to get the lowest temperatures from

the analyzed set of frames. For this purpose we will record the

sequence of frames and then use the fluctuating phenomenon

of flame and gases to obtain the points of interest. Obviously

we may face further problems with more dense smoke where

soot yield is higher and the combustion reaction is incomplete.

However, we also consider to use mid-wave IR camera to find
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regions in infrared spectrum where these particles emit less

electromagnetic wave.

The proposed method has a number of general assumptions.

Most of them determined the final results of generated simu-

lations and the type of the temperature imprint. In our opinion

most decisive parameters are the fire base, fire localization and

physical properties of the building materials. In all tests we

located the fire on the floor and at least 1 m from the walls.

Both of these parameters may strongly affect the amount of the

incoming air to the convection column which influences the

temperatures reached in combustion process. Moreover various

building materials show different speed of conduction process.

Even though the density, specific heat, thermal conductivity or

emissivity may affect the results, we hope to distinguish the

specific groups of materials in common buildings.

Further problems may be encountered if the fire varies in

its area and its total HRR. In our analyses we considered

the fire with fixed area and constant HRRPUA. Both factors

have crucial influence on temperature imprint on the ceiling,

however to check usefulness of machine learning method these

assumptions were made.

Another problem may arise when few fire sources occur

in considered compartment. Our method can deal with only

one source of fire. The main goal is to localize the warmest

area on the ceiling and then extract the needed attributes. This

assumption may be inappropriate if there are multiple sources

of fire.

At this stage of the research we are also uncertain about

the number of exemplars of compartment which should be

used in order to evaluate most of the fire scenarios. If we

were to consider each small difference in geometry, ventilation

conditions and other parameters then we would be forced to

generate and store an enormous amount of simulations which

is impractical. However, we choose the sensible experiments

scenarios and thus limit their number.

One of the parameters which was used as a descriptor of the

current condition of the fire (except from the temperature) was

time from the beginning of the fire. This requires that the IC

provides the accurate (within 1 minute) time of the ignition.

Less experienced ICs may be not able to evaluate the time

so accurately, which makes the whole approach fail. This will

not be an issue for the fires detected by fire detecting systems

with the time log.

In our further works we will focus on finding principal

factors determining the results of the simulations. For this pur-

pose we will consider the application of Principal Component

Analysis (PCA)7, Non-negative matrix factorization (NMF)8

methods or rough set approach9. All these approaches will be

used in order to determine the most important features which

affect the temperature imprint on the ceiling. This allows

us for the more comprehensive addressing the problem of

reduction of the number of generated simulations for a specific

7http://en.wikipedia.org/wiki/Principal_component_analysis
8http://en.wikipedia.org/wiki/Non-negative_matrix_factorization
9http://en.wikipedia.org/wiki/Rough_set

compartment. After that we will try to generate a new set

of the simulations including research results and create new

classifiers for this set. Even later we will prepare the full-scale

experiments with various ceiling materials and various HRR.
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