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Abstract—Often in multi-agent systems, agents interact with
other agents to fulfill their own goals. Trust is, therefore,
considered essential to make such interactions effective. This
work describes a trust model that augments fuzzy logic with Q-
learning to help trust evaluating agents select beneficial trustees
for interaction in uncertain, open, dynamic, and untrusted
multi-agent systems. The performance of the proposed model is
evaluated using simulation. The simulation results indicate that
the proper augmentation of fuzzy subsystem to Q-learning can
be useful for trust evaluating agents, and the resulting model can
respond to dynamic changes in the environment.

I. INTRODUCTION

A
MULTI-AGENT Systems (MAS) involves multiple au-

tonomous, self-interested, and goal-driven interacting

intelligent agents [1]. An open MAS is a class of these

systems in which agents can freely enter and leave at any

time [2]. As each agent has only limited capabilities, it may

need to rely on the services or resources from other agents in

order to accomplish its goals [3]. Agents cannot assume that

other agents share the same core beliefs about the system,

or that other agents make accurate statements regarding their

competencies and abilities. In addition, agents must accept

the possibility that other agents may intentionally spread

false information, or otherwise behaving in a harmful way,

to achieve their own goals [1]. Therefore, agents should be

equipped with a strong trust assessment model that is capable

of maximizing the benefit, also referred to as utility gain

(UG), of interacting with other agents. The estimation should

be accurate enough that allows trust evaluating agents, also

referred to as trustors (TRs), to identify the most beneficial

trustee (TE) in their systems. The trust estimation model

should consider all relevant factors, which affect the trust that

an agent has about other agents. Failure to gather those factors

would lead to compute a non-accurate trust value, which could

explicitly affect agent’s outcome [4]. Moreover, the model

should dynamically update agents’ belief sets to capture new

characteristics of the environment, and should not rely on any

centralized entities. Furthermore, the failure or takeover of any

node must not lead to the failure of the whole system.
Trust has been defined in many ways in different domains

[5]. For this work the definition used in [4] for trust in MASs,

will be adapted. An agent’s trustworthiness is considered as

a measurement of the agent’s possibility to do what it is

supposed to do. In this work, we describe a trust model for

MAS that combines the advantages of both: fuzzy logic and re-

inforcement learning for trust modeling in MAS. Moreover, we

use a suspension technique in combination with reinforcement-

learning to speedup the response of the model to dynamic

changes in the system.

The paper is organized as follows: the related work is

presented in section II followed by a general overview about

fuzzy logic systems and reinforcement learning in section III.

Section IV presents the details of the proposed model, while

performance analysis is presented in section V. The last section

presents conclusions and future work

II. RELATED WORK

According to [3], most existing research on trust evaluation

models can be divided into four main categories: direct trust

evaluation models, that depends on past experience, indirect

or reputation-based trust evaluation models, that depends on

third-party testimonials from other agents in the same envi-

ronment, socio-cognitive trust evaluation models, that depends

on examining the social connections among agents to deter-

mine their trustworthiness, and organizational trust evaluation

models, that depends on some organizational affiliations or

endorsements issued by some trusted third-party to determine

the trustworthiness of agents

FIRE [2] is a well-known decentralized trustworthiness

estimation model for open MASs. The model categorizes trust

components into direct experience called Interaction trust,

Witness reputation, Role-based trust and Certified reputation.

The model assumes that witnesses are honest and willing to

cooperate and uses weighted summation to aggregate trust

components.

Fuzzy logic offers the ability to handle uncertainty and

imprecision effectively, and is therefore ideally suited to

reasoning about trust [6]. Fuzzy inference copes with impre-

cise inputs and allows inference rules to be specified using

imprecise linguistic terms, such as “very high” or “slightly

low” [6].

FuzzyTrust [7] uses fuzzy logic inferences to estimate trust

based on direct experience and witnesses testimonials taking

into consideration uncertainties and incomplete information in

a peer to peer system. The authors compare the performance

of FuzzyTrust with the well known EigenTrust algorithm
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[8], over the public domain transaction data from eBay, and

demonstrated that it is more effective than EigenTrust.

A reinforcement learning (RL) based trustworthiness es-

timation model for buying and selling agents in an open,

dynamic, uncertain and untrusted e-marketplace is described

in [9] and further elaborated in [10], where buyers model the

trustworthiness of the sellers as trustworthy, untrustworthy and

neutral sellers. A buying agent chooses to purchase from a

trustworthy seller. If no trustworthy seller is available, then

a seller from the set of non-untrustworthy sellers is chosen.

The seller’s trustworthiness estimation is updated based on

whether the seller meets the expected value for the demanded

product with proper quality. A decentralized extension to

the model used in [9] is describe in [11], [12], to enable

indirect trustworthiness where advising agents are partitioned

into trustworthy, untrustworthy and neutral sets to address

buyers’ subjectivity in opinions. However, the authors did not

present any experimental results to justify their theoretical

approach [13].

Recent survey such as [3][14] provide more insight on

existing work in the field of MAS trust modeling.

III. BASIC CONCEPTS

A. Fuzzy Logic System (FLS)

FLSs have been extensively applied with success in many

diverse application areas due to their similarity to human

reasoning, and their simplicity [15]. An FLS provides a

nonlinear mapping of input data vector into a scalar output.

Such system maps crisp inputs into crisp outputs. It has four

components: fuzzy logic rules, fuzzifier , an inference engine,

and defuzzifier [16].

The main idea is that, the sets are based on the concept of

a membership function (MFs), that defines the level to which

a fuzzy variable is a member of a set. One represents full

membership, whereas zero represents no membership; in other

words, sets used for expressing input and output parameters are

fuzzy [6]. An MF provides a measure of the level of similarity

of an ingredient to the fuzzy subset. It is necessary to note that

in fuzzy logic an ingredient can reside in more than one set to

varying levels of association, which can’t happen in crisp set

theory. Triangular, trapezoidal, piecewise linear and Gaussian,

are commonly used shapes for MFs [16].

Rules may be implemented by experts or can be derived

from numerical data. In either case, fuzzy rules are repre-

sented as a collection of IF- THEN statements. MFs map

input values into the interval [0,1] by the process known

as “fuzzification” [6]. The fuzzifier maps crisp inputs into

fuzzy sets, to stimulate rules which are in terms of linguistic

variables. Fuzzy logic rules define the relationship between

inputs and output. The inference engine, handles the way in

which rules are combined. The conclusion membership levels

are aggregated by superimposing the resultant membership

curves. In many applications, crisp numbers must be collected

at the output of an FLS. The defuzzifier maps output sets into

crisp numbers[16]. Figure 1 presents the general architecture

of an FLS.

Fig. 1. Fuzzy Logic System [16]

During fuzzy inference, for each fuzzy rule, the inference

engine determines the membership level for each input. Then

measures the degree of relevance for each rule based on

membership levels of inputs and the connectives (such as

AND, OR) used with inputs in the rule. After that, the engine

drives the output based on the calculated degree of relevance

and the defined fuzzy set for the output variable in the rule[17].

Mamdani min-max method [18] is a well known direct

inference method. where the degree of membership of rule

conclusions is clipped at a level determined by the minimum

of the maximum membership values of the intersections of the

fuzzy value antecedent and input pairs. This ensures that the

degree of membership in the inputs is reflected in the output

[6]. In this work, Mamdani’s method is used.

The centroid defuzzification method is an appealing defuzzi-

fication method [17]. The centroid method takes the center of

gravity of the final fuzzy space in order to produce an output

sensitive to all rules. In this work, the centroid defuzzification

method is used.

B. Reinforcement learning

The reinforcement learning problem is the problem of

learning from interaction to achieve a goal. In this problem, an

agent observes a current state s of the environment, performs

an action an on the environment, and receives a feedback r

from the environment (reward, or reinforcement). The goal of

the agent is to maximize the cumulative reward it receives in

the end [10].

Temporal-difference (TD) learning algorithms can learn

directly from experience without a model of the environment.

TD algorithms do not require an accurate model of the

environment and are incremental in a systematic sense [10].

One of the most widely used TD algorithms is known as

the Q-learning algorithm. Q-learning works by learning an

action-value function based on the interactions of an agent

with the environment and the instantaneous reward it receives.

For a state s, the Q-learning algorithm chooses an action a to

perform such that the state-action value Q(s, a) is maximized.

If performing action a in state s produces a reward r and a

transition to state s′, then the corresponding state-action value

Q(s, a) is updated accordingly. State s is now replaced by s′

and the process is repeated until reaching the terminal state

[10]. The detailed mathematical foundation and formulation,

as well as the core algorithm of Q-learning, can be found in

[19] therefore it is not repeated here.

Q-learning is an attractive method of learning because of

the simplicity of the computational demands per step and also
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because of proof of convergence to a global optimum, avoiding

all local optima, as long as the Markov Decision Process

(MDP) requirement is met; that is the next state depends only

on the current state and the taken action (it is worth noting

that the MDP requirement applies to all RL methods) [15].

IV. USING FUZZY LOGIC AND Q-LEARNING FOR TRUST

MODELING IN MULTI-AGENT SYSTEMS

In this section, we propose the use of Fuzzy Logic and Q-

Learning for Trust Modeling in Multi-agent Systems (FQT)

as an improvement over RL based trust estimation by incor-

porating fuzzy subsystems to perform human-like decisions.

A. Overview

According to the proposed model, TRs classify TEs into

three non-overlapping sets. The first set includes trustworthy

TEs, the second set contains untrustworthy TEs and the third

set includes neutral (neither trustworthy nor untrustworthy)

TEs. Additionally, TRs classify witnesses in a similar way.

If a TR is not satisfied by the interaction with a TE, the TR

suspends the use of that TE for incoming transactions for a

while. TRs suspend witnesses in a similar way.

TRs use Q-Learning to estimate the trustworthiness for TEs

based on direct experience (DT). For those TEs that are not

categorized as untrustworthy, the calculated DT is used as

an input to the direct trust fuzzy subsystem, together with

suspension period and the average of time-decayed utility gain

within the last G interaction with the TE. The defuzzified

output of this fuzzy subsystem is the fuzzy direct experience

(FDT) of trustworthiness estimation.

For those TEs that are not categorized as untrustworthy,

TRs consult witnesses for their testimonials about TEs. This

is known as indirect trust (IT). Then information from both

sources (direct experience and testimony of witnesses) are

combined to compute total trust estimation (TT).

TRs request TEs to bid for coming transactions. The cal-

culated TT is used as an input to the TE selection fuzzy

subsystem (TSF). The second input is the difference between

the bid value of the TE and the average bidding of all TEs for

the same transaction. The third input is the difference between

the average of time-decayed utility gain within the last H

interaction with the TE and the average of time-decayed utility

gain within the last H interaction with all TEs. The TR selects

the TE that maximizes the outcome of TSF.

Figure 2 present the general architecture of the proposed

model.

B. Fuzzy Direct Trustworthiness Estimation FDT (TR,TE):

In the proposed model, TRs use Q-learning to estimate the

direct trust of TEs in a way similar to the process in [10]. If

the TR is satisfied by the interaction with the TE, Eq. (1) is

used to update the credibility of the TE as viewed by the TR.

DTi(TR, TE) = DTi−1(TR, TE)+α(1−|DTi−1(TR, TE)|)
(1)

Fig. 2. Architecture of FQT

Here DTi (TR, TE) is the direct trust estimation of the TE by

the TR at time i. The value of DT (TR, TE) varies from -1 to 1.

A TE is considered trustworthy if the trustworthiness estima-

tion is above an honesty threshold (HT). The TE is considered

untrustworthy if the trustworthiness estimation value falls

below a fraudulent threshold (FT). TEs with trustworthiness

estimation values between the two thresholds are considered

neutral. The cooperation factor α is positive (1>α > 0) and the

initial value of the direct trustworthy estimation is set to zero.

TR will consider TE as being cooperative if the resulting UG

of the transaction is greater than or equal the TR’s satisfactory

threshold.

If the TR is not satisfied by the interaction with the TE, Eq.

(2) is used to update the credibility of the TE as viewed by

TR.

DTi(TR, TE) = DTi−1(TR, TE)+β(1−|DTi−1(TR, TE)|)
(2)

Here β is a negative factor called the non-cooperation factor

(0> β > -1). TR will consider TE as being non-cooperative

if the resulting UG of the transaction is less than the TR’s

satisfactory threshold. [10] described mathematical formulas

to calculate the cooperation and non-cooperation factors in the

context of an e-marketplace; however, we believe that those

factors are application dependent and should be set by each

agent independently. In general, we agree with [10] that the

factors should be related to the value gain of the transaction.

Furthermore, the TR suspends the use of the TE for a period

of time determined by equation (3)

SUSi(TE) = SUSi−1(TE) +BSI ∗ IV (3)

Where SUSi(TE) is the suspension penalty associated with

TE at time instant i. Basic Suspension Interval (BSI) is

application dependent, it could be days in e-marketplace or

seconds in a robotics system that has a short life time and

Interaction Value (IV) indicates how much the TR values the

interaction, not the actual utility gain of the interaction.
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The value SUSi(TE) decreases with time if ther

is no dissatisfactory transaction. That is SUSi(TE) =
SUSi−1(TE)− 1, but can’t be less than 0.Therefore, a large

value of SUSi(TE) for a TE means a recently misbehaved

TE

In the proposed model, each trust evaluation agent uses a

direct trust fuzzy subsystem to find the Fuzzy Direct Trustwor-

thiness Estimation (FDT). We define three input parameters for

the fuzzy engine of the trust model and one output parameter;

the input parameters are:

• The calculated DT using Q-Learning, calculated in equa-

tions 1 and 2. This parameter represents the long term

relationship between the TR and the TE. A TE with a

large value of DT means a TE that used to be cooperative

for a relatively large number of transactions

• The suspension period of the TE, calculated in equation

3. This parameter is used to address the short term

relationship between the TR and the TE. It helps the TR

to address a recently malfunctioning TE that used to be

honest for a relatively large number of transactions.

• AUG’tThe average of time-decayed utility gain within

the last G interactions with the TE, calculated in equation

4. UG is the net benefit that the TR achieves from the

transaction. Time decaying is used to to emphasize that

UG from recent transaction weigh more compared to

UG from old transactions if they have the same absolute

value.

AUG′

t =

∑G

j=1
e−λ∆TjUGj

G
(4)

Here ∆Tj = Current Time - Time of transaction j, λ is the

decaying factor, UGj is the utility gain for transaction j with

the TE being evaluated, and G is the size of the historical

window considered for calculating AUG’t
The input parameters should be fuzzified before being used

in the engine. We define the FDT as the defuzzified output. The

individual “if. . . then” rules for driving the FDT is of the kind

“if DT is HIGH and the SUS is LOW, and the AUG’t is HIGH

then the FDT is VERY HIGH”. This rule intuitively states that

if the estimated direct trust is high and the suspension period

is low, and the average utility gained by interacting with this

TE is HIGH then the TE is expected to be honest and the

transaction result is expected to be very high based on local

experience of TR.

In the proposed model, we use the rules presented in Table

I. Since each of the input parameters can be categorized as

being Low (L), Medium (M), and High (H) and the output

parameter can be categorized as being Very Low (VL), Low

(L), Medium (M), Very High (VH), and High (H). We use

a Mamdani min-max approach of inference and the centroid

technique for the defuzzification

In table I, we insisted that a recently suspended TE will

have a low direct trust value. The idea is that a TR will

stop interacting with a misbehaving TE immediately, and wait

utile it is clear whether this misbehaviour is accidental or

it is a behavioural change. Because suspension is temporary,

TABLE I
DIRECT TRUST FUZZY SUBSYSTEM RULES

Rule DT Suspension AUG’ Output

1 L L L L
2 M L L L
3 H L L M
4 L M L L
5 M M L L
6 H M L M
7 L H L VL
8 M H L VL
9 H H L VL
10 L L M L
11 M L M L
12 H L M H
13 L M M L
14 M M M L
15 H M M H
16 L H M VL
17 M H M VL
18 H H M VL
19 L L H L
20 M L H M
21 H L H VH
22 L M H L
23 M M H L
24 H M H H
25 L H H VL
26 M H H VL
27 H H H VL

and because TR uses information from witnesses, the effect

of accidental misbehavior will phase out, but the effect of a

behaviour change will be magnified

C. Indirect Trustworthiness Estimation IT(TR, TE):

To estimate indirect trust, a TR consults other witnesses

who interacted previously with the TE. To reduce the effect of

fraudulent witnesses, a TR excludes reports from any witness

where the mean of the differences between the witness’s trust-

worthiness estimation and the TR’s trustworthiness estimation

of TEs other than the one under consideration is above the

witnesses differences threshold (WDT). An honest witness

(WT) reports its testimony (RT) about a TE as

RT (WT, TE) = FDT (WT, TE) (5)

where FDT (WT, TE) is the WT fuzzy direct experience of

trustworthiness estimation of the TE.

A TR will calculate the indirect trust (IT) component as

IT (TR, TE) =

∑N

k=1
weightk ∗RT (WT k, TE)

N
(6)

where N is the number of consulted witnesses. RT (WTk,

TE) is the testimony of witness k about TE, and weightk is

the weight assigned by the TR to testimony of WTk. The cal-

culation of the weight factor, or the adaptation of a calculation

technique from the literature, is considered a future work.

TRs track the credibility of their witnesses. Each TR updates

its rating for the witnesses after each interaction as follows

• If the transaction was satisfactory for the TR and the

witness WT had recommended TE or
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• If the transaction was NOT satisfactory and WT’s opinion

was “not recommend”.

Then the trustworthiness estimation of WT is incremented as

in equation 7

DT (TR, WT ) =

DT (TR, WT ) + γ(1− |DT (TR, WT )|) (7)

• Otherwise, the trustworthiness estimation of WT is decre-

mented as in equation 7

DT (TR, WT ) =

DT (TR, WT ) + ζ(1− |DT (TR, WT )|) (8)

where γ and ζ are positive and negative factors respectively

and chosen by the TR as cooperation and noncooperation

factors. The value of DT (TR, WT) varies from -1 to 1.

A witness is considered trustworthy if the trustworthiness

estimation is above the witnesses’ honesty threshold (WHT).

A witness is considered untrustworthy if the trustworthiness

estimation falls below the witnesses’ fraudulence threshold

(WFT). Witnesses with trustworthiness estimation values in

between the two thresholds are considered neutral.

When a TR wants to interact with a TE at instant i, the TR

avoids any WT that is untrustworthy.

D. Total Trustworthiness Estimation TT(TR,TE):

The proposed trust model takes into consideration TRs’ di-

rect trust of TE(s), testimonials of witnesses, and credibility of

witnesses. Therefore, the total trust estimate can be calculated

using Eq. (9)

TT (TR, TE) = x∗FDT (TR, TE)+(1−x)∗IT (TR, TE)
(9)

Here FDT(TR,TE) is the fuzzy direct experience estimation

component of the TR for the TE, IT(TR,TE) is the indirect

trust estimation component of the TR for the TE and x is a

positive factor, chosen by the TR, which determines the weight

of each component in the model.

E. Trustee Selection

In the proposed model, TRs request TEs to bid for the

coming interactioneach. Each TR uses a fuzzy engine to select

a profitable TE. We define three input parameters for the fuzzy

engine of the trust model and one output parameter; the input

parameters are

• The total trust estimation (TT), as calculated by com-

bining information from direct experience and testimony

of witnesses, detail calculations described later in this

section.

• Bidding Difference (BD): The difference between the

promised UG, i.e. bidding value, of the TE (Bt) and

the average bidding values of all TEs bidding for the

same transaction.This parameter is used to differentiate

a TE that promises high UG while the average promise

is relatively low, from one that promises high UG while

almost every TE promises high UG. In both cases, the

TE promises high UG. but this value in more important

in the first case compared to the second case

BD = Bt −

∑M

l=1
Bl

M
(10)

• Average UG Difference (DAUG’t): The difference be-

tween the average of time-decayed UG within the last

H interactions with the TE and the average of time-

decayed utility gain within the last H interactions with

all TEs. Time decaying is used to emphasize that recent

transaction weighs more compared to old transactions if

they have the same value of UG.

DAUG′

t =

∑H

p=1
e−λ∆TUGp

H
−

∑H

q=1
e−λ∆T ¯UGq

H
(11)

Here ∆T = Current Time - Time of the transaction. UGpis

the utility gain for transaction p with the TE being evaluated,
¯UGq is the utility gain for transaction q, regardless of the

TE, and H is the size of the historical window considered for

calculating AUG’t
The input parameters should be fuzzified before being used

in the engine. We define the fuzzy estimated utility gain (FUG)

as the defuzzified output parameter. The individual “if. . . then”

rules for driving the fuzzy estimated utility gain FUG is of the

kind “if the estimated total trust is HIGH and the DAUG’t is

HIGH and the BD is HIGH then the Fuzzy UG is VERY

HIGH”. This rule intuitively states that if the estimated trust

is high and utility gained by interacting with this TE is higher

than the overall average utility gain, and the TE is promising

higher utility gain compared to other bidding TEs, then the TE

is expected to be honest and the transaction result is expected

to be very high.

In the proposed model, we use the rules presented in Table II

for TSF. Since each of the input parameters can be categorized

as being Low (L), Medium (M), and High (H) and the output

parameter can be categorized as being Very Low (VL), Low

(L), Medium (M), Very High (VH), and High (H). Here, again,

we use a Mamdani min-max approach to inference and the

centroid technique for the defuzzification.

TR evaluates the trustworthiness of TEs that are not un-

trustworthy. TEs whose trustworthiness cannot be determined

(due to no available rating) are placed in the Unknown Trust

(UT) set. Those, whose trustworthiness has been determined,

are placed in the Known Trust (KT) set. On one side, selecting

a TE from the set KT is likely to give a more predictable value

for the expected UG. However, the TR has not learnt enough

about the TE population, therefore, it may get a non-optimal

performance. On the other side, selecting a TE from the set UT

allows TR to explore more about the TE population, although

it may risk losing utility if it encounters a bad TE [2]. To

encourage honest bidding when selecting a TE from UT set, a

random TE with the second highest bidding value is selected.

Obviously, if one of the two sets is empty, TR can only

select from the other set. Otherwise, it needs to determine
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TABLE II
TRUSTEE SELECTION RULES

Rule TT BD DAUG’t Output

1 L L L VL
2 M L L L
3 H L L M
4 L M L L
5 M M L M
6 H M L M
7 L H L L
8 M H L M
9 H H L M

10 L L M L
11 M L M M
12 H L M M
13 L M M L
14 M M M M
15 H M M M
16 L H M M
17 M H M H
18 H H M H
19 L L H L
20 M L H M
21 H L H H
22 L M H L
23 M M H M
24 H M H H
25 L H H M
26 M H H H
27 H H H VH

which action it should take. The exploit-vs explore dilemma

can be addressed by using the Boltzmann exploration strategy

[20]. Using this strategy, an agent tends to explore its environ-

ment first and then gradually move towards exploitation when

it learns more about the environment. When exploiting, TR

selects the TE with the highest FUG.

V. PERFORMANCE EVALUATION

It is often difficult to find suitable real world data set

for comprehensive evaluation of trust models, since the ef-

fectiveness of various trust models needs to be assessed

under different environmental conditions and misbehaviors [3].

Therefore, in trust modeling for MASs research field, most

of the existing trust models are assessed using simulation or

synthetic data [3]. One of the most popular simulation test-

beds for trust models is the agent reputation and trust (ART)

test-bed proposed in [21]. However, even this test-bed does

not claim to be able to simulate all experimental conditions

of interest. For this reason, many researchers design their own

simulation environments when assessing the performance of

their proposed trust models [3].

A. Simulation Environment

We use simulation to evaluate the performance of the

proposed model for distributed, multi-agent environment us-

ing the discrete-event multi-agent simulation toolkit MASON

[22] with TEs, that provide services, and TRs, that consume

services. For the Fuzzy subsystems, we used the jFuzzyLogic

Java package [23]. As with [2], we assume that the perfor-

mance of a TE in a particular service is independent from that

TABLE III
VALUES OF USED PARAMETERS

Parameter Value

Total number of Trustees 10
Total Number of trustors 100
Number of Good Trustees 2
Number of Bad Trustees 3
Number of Ordinary Trustees 3
Number of Intermittent Trustees 2
Number of Categories for Trustees 4
Maximum utility gain 10
trustee cooperation factor 0.1
trustee non-cooperation factor -0.3
Witnesses cooperation factor 0.1
Witnesses non-cooperation factor -0.3
Direct trust fraction 0.5
Degree of decay 0.1
Trustees’ honesty threshold 0.5
Trustees’ fraudulent threshold -0.5
Witnesses’ honesty threshold 0.5
Witnesses’ fraudulence threshold -0.5
Trustor satisfactory threshold 0
Witnesses differences threshold 0.5

in another service. Therefore, without loss of generality, and in

order to reduce the complexity of the simulation environment,

it is assumed that there is only one type of service in the

system simulated and all TEs offer the same service with, pos-

sibly, different performance. In order to study the performance

of the proposed trust model for TE selection, we compare the

proposed model with the well known FIRE trust model [2].

Each simulation experiment is repeated 10 times with differ-

ent seed values for the random number generators, and the

average of the 10 experiments is presented as the simulation

result. Network communication effects are not considered in

this simulation. Each agent can reach each other agent. The

simulation step is used as the time value for interactions.

Transactions that take place in the same simulation step are

considered simultaneous. Locating TEs and witnesses are not

part of the proposed model; therefore, TRs locate TEs and

witnesses through the system. TRs evaluate the trustworthiness

of the TE(s), and then selects one to interact with.

Having selected a TE, the TR then interact with the selected

TE and gains some utility from the transaction (UG). The value

of UG is in [−10, 10] and depends on the level of performance

of the TE in that transaction. A TE can serve many users at

a time. A TR does not always use the service in every round.

The probability it needs and requests the service, called its

activity level, is selected randomly when the agent is created.

After each transaction, the TR updates the credibility of the

TE participated in the transaction. It is assumed that TEs may

be selfish, liars, non cooperative or simply malfunctioning. In

order to compare our work with FIRE [HuynhJS2006], honest

witnesses assumed.

TEs can be in one of four types: good, ordinary, bad, and

intermittent. Each of them, except the last, has a mean level

of performance. The actual performance follows a normal

distribution around this mean which is in the reange of (5,10]

for good TEs, [0, 5] for ordinary TEs and [-10,0) for bad
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TABLE IV
DIRECT TRUST FUZZY SUBSYSTEM INPUT AND OUTPUT MFS

DT Suspension AUG’ Output

VL
- - - (PWL)

- - - -1.0, -0.5, -0.3

L
(PWL) (PWL) (PWL) (TR)

-1.0,-0.5,0.01 0.0,0.25,0.5 -10, -0.1, 1.0 -0.35, -0.1, 0.1

M
(TR) (TR) (TR) (TR)

0.0, 0.2, 0.5 0.4, 0.7, 1.0 0, 2.5, 5 0.0, 0.2, 0.4

H
(PWL ) (PWL ) (PWL ) (PWL)

0.4, 0.7, 1 0.9, 1, 999 4, 6, 10 0.3, 0.5, 0.6

VH
- - - (PWL)

- - - 0.5, 0.7, 1.0

legend PWL: piece-wise linear TR:triangular

TEs. Intermittent trstees, on the other hand, yield (random)

performance levels in the range [-10, 10] and they can result

in positive UG some times and negative UG other times.

Since agents are owned and controlled by various stake-

holders, the performance of an agent may not be consistent

over time. A TE may change its behavior. In this simulation

study, the performance of a TE can be changed by a randomly

selected amount with a probability selected randomly when the

agent is created. When bidding, an honest (good or ordinary)

TE bids its utility gain value, this value is considered the

value of the transaction with the corresponding TR. A bad

(unhonest) TE bids a positive value for its utility gain, but the

utility gain that the corresponding TR can get is the true utility

gain that the bad TE can afford (negative value).

Table III presents the number of agents, and other pa-

rameters used in the proposed model and those used in the

environment.

The membership functions for the input, output parameters

used for direct trust fuzzy subsystem in our evaluation are

summarized in Table IV, the membership functions for the

input, and output parameters used for the TE selection fuzzy

subsystem in our evaluation are summarized in Table V.

B. Experimental results

1) Performance in a static environment: The first thing to

test is whether the proposed model helps TRs select profitable

TEs (i.e. those yielding positive UG) from the population and,

by so doing, helps them gain better utility than when using

FIRE trust model. In this section, we use a static environment,

which means that each TR attempt to make a transaction each

step, and witnesses and TEs do not change their honesty levels.

Figure 3 describes the average UG per transaction as the

number of transactions increases from 5 to 50 in the static

environment. The charted UG is calculated as the averaged

value for 10 different runs of the experiment. For each run, the

summation of UG that all TRs accumulated at the end of each

fifth simulation step is divided by the number of TRs (note that

in the static environment, each TR interact in each simulation

step.). The figure shows that selecting providers using the

proposed model perform closely to FIRE despite the fact that

FIRE make use of rule-based trust that can’t be assumed to

be available all the time. Moreover, the performance of both

TABLE V
TRUSTEE SELECTION INPUT AND OUTPUT MFS

TT BD DAUG’t Output

VL
- - - (PWL)

- - - 0.0, 0.25, 0.4

L
(PWL) (PWL) (PWL) (TR)

-1.0,-0.1,0.1 -20.0, -0.1, 0.1 -20, -0.1, 0.1 0.3, 0.5, 0.9

M
(TR) (TR) (TR) (TR)

0.0, 0.2, 0.6 0.0, 1.0, 3.0 -0.1, 0.5, 2 0.8, 1.0, 1.2

H
(PWL ) (PWL ) (PWL ) (PWL)

0.5, 0.7, 1 2, 4, 20 1.5, 2.5, 20 1.1, 1.4, 1.6

VH
- - - (PWL)

- - - 1.5, 1.6, 2.0

legend PWL: piece-wise linear TR:triangular

Fig. 3. Performance in Static Environment

models stabilize after a while. For FIRE, this is consistent

with the results obtained in [2]. This stabilization in the

performance of the two models indicates that they both learned

to interact with the most beneficial TEs in the system

2) Performance in a dynamic environment: A trust model

designed for MAS should be able to function properly in a

dynamic environment. In this section we test the performance

of the proposed model in a changing environment, as described

below. As with static environment, we compare the perfor-

mance of the proposed model with the case of using FIRE.

Specifically, the same experiments will be run, but with each

of the following conditions: each TE may alter its average level

of performance at maximum 1.0 UG unit with a probability

of 0.10 each simulation step. A TR uses the service with

probability in the range [0.25 - 1.0], intermittent TEs flip their

honesty randomly and TEs may leave the system and new TEs

may join the system with probability 0.5

Figure 4 describes the average UG per transaction as the

number of transactions increases from 5 to 50 in the dynamic

environment. The charted average UG is calculated as the

averaged value for 10 different runs of the experiment. For

each run, the summation of UG that all TRs accumulated when

the total number of transaction in the system equals a multiple

of five of the number of TRs is divided by the number of TRs.

This value is averaged for 10 different runs of the experiment.

ABDULLAH AREF, THOMAS TRAN: USING FUZZY LOGIC AND Q-LEARNING FOR TRUST MODELING IN MULTI-AGENT SYSTEMS 65



Fig. 4. Performance in Dynamic Environment

The figure shows that selecting TEs using the proposed model

performs consistently better than using FIRE in terms of UG

in a dynamic environment, which indicates that the proposed

model responds better to dynamic changes compared to FIRE.

Moreover, the performance of both models stabilize after a

while. For FIRE, this is consistent with the results obtained in

[2]. However, FIRE is not able to respond to the dynamics of

the system as fast as the proposed model. This is due to the

use of the fuzzy subsystems and due to picking the TE with

the second highest bid.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a trust model for MASs that

combines the use of Q-learning to estimate trustworthiness and

incorporate two fuzzy subsystems for TE selection to enhance

the utility gain estimation. The presented model allows direct

and indirect sources of trust information to be integrated to

provide a collective trust estimation. In addition, the proposed

model incorporates fuzzy subsystems to account for suspen-

sion periods, average utility gain, bidding differences, and the

relative average utility gain of a TE compared to the overall

utility gain. The proposed model has been simulated using

MASON with the use of the jFuzzyLogic package. The results

indicate that the model can help TRs enhance their utility gain

and that the proposed model can respond better to dynamic

changes in the environment. In short, we believe the proposed

model can provide a trust measure that is sufficiently useful

to be used in MASs

Dynamically determining parameter values for the fuzzy

subsystems, enabling TEs to actively promote their honesty,

bootstrapping trust for new TEs and using Q-learning to

dynamically select the proper action in each rule of the fuzzy

subsystem are considered as future work.
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