
Feature Selection for Naive Bayesian Network
Ensemble using Evolutionary Algorithms

Adam Zagorecki
Centre for Simulation and Analytics

Cranfield University

Defence Acedemy of the United Kingdom

Shrivenham, UK

Email: a.zagorecki@cranfield.ac.uk

Abstract—This document describes the winning method for
the AAIA’14 Data Mining Competition: Key risk factors for
Polish State Fire Service. The competition challenge was a feature
selection problem for a set of three classifiers, each of them in a
form of ensemble of naive Bayes classifiers. The method described
in this paper uses a genetic algorithm approach to identify an
optimal set of variables used by the classifiers. The optimal set of
variables is found through a three-stage procedure that involves
different settings for the genetic algorithm. The first step leads to
reduction of attribute set under consideration from 11,582 to 200
attributes. The following two steps focus on finding an optimal
solution by first exploring the solution space and then refining
the best solution found in an earlier step.

I. INTRODUCTION

T
HIS paper describes the winning method for the AAIA’14

Data Mining Competition: Key risk factors for Polish

State Fire Service. The challenge was a feature selection

problem for a set of three classifiers, each of them defined as

ensemble of ten naive Bayes (NB) classifiers sharing the same

set of features. The description of the competition and the task

can be found at: http://challenge.mimuw.edu.pl/contest/view.

php?id=83.

The method described here is based on genetic algorithm

(GA) approach. I treated the challenge task as an optimisation

problem, where the task was to find an optimal set of variables

(it was divided into 10 sets of variables by the competition

rules). The set was to optimise the objective function that was

based on the score function defined for the competition. In

my solutions, the objective function was slightly modified in

order to avoid the overfitting phenomenon by using n-fold

cross-validation (CV) in the process (with varying n).

The method described in this paper consisted of three

different steps. For each step a different GA setup was used.

The three steps can be summarised as follows:

• In the first step a small subset of informative variables

from the original 11,852 variables was identified. For

this task a single NB classifier was used rather than an

ensemble of NBs.

• In the second step, solutions based on ensemble of

NBs were identified, using only the informative variables

subset identified in the first step.

• In the third step, the GA was used to improve the best

solution obtained in the second step.

II. GENETIC ALGORITHMS

Genetic algorithms (GAs) introduced by Holland [1] are a

category of evolutionary computation. Evolutionary computa-

tion is used to solve mathematical optimisation problems by

means of heuristics, and therefore it can be viewed as a meta-

heuristic optimisation algorithm. Evolutionary computation is

concerned about developing algorithms and techniques that are

inspired by the natural evolution. Concepts borrowed from the

nature include generations, individuals and populations, genes,

mating, natural selection, survival of the fittest, etc.
GAs are the most popular class of evolutionary algorithms

[2] that uses genes and chromosomes to represent the indi-

viduals (which correspond to solutions). Genes are basically

encoding of the solution by means of a string of numbers

(typically binary, with possible other representations). New

solutions are generated by means of combining typically

pairs of individuals (existing solutions) form the population

(working set of solutions). The combination mimics generic

crossover with possible additional mutations. It has been be-

lieved that suitable chromosome representation can be critical

to achieving satisfactory performance of the GA for the given

problem. This premise was used in defining approach that I

used in the competition.

III. THE CHALLENGE

The challenge was to predict three binary decision attributes

based on a subset of 11,852 attributes. The challenge imposed

a classifier model – for each of the three decision variables

an ensemble of exactly 10 naive Bayes (NB) classifiers was

to be used, with each NB having at least 3 attribute variables.

The same set of NB classifiers was to be used for the three

decision attributes.
The performance of the classifiers was determined by means

of the receiver operating characteristic (ROC) curve. The goal

was to maximise the average area under the ROC curve for

the three classifiers. Additionally, a penalty for using a large

number of attributes (beyond 30) was introduced. The penalty

term p was defined as:

p = (
n− 30

1000
)2

where n is the number of attributes in the solution. Fig. 1

visualises the effect of penalty as the function of the number

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 381–385

DOI: 10.15439/2014F498

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 381

Fig. 1. Penalty as a function of the number of attributes included in the model

of attributes included in the ensemble. Taking into account

that the area under the ROC curve should range between

0.5 and 1 and that the baseline solution provided by the

competition organisers achieved the score of approximately

0.91, one should conclude that the number of attributes in the

ensemble should not be greater than 200 to 300.

The data provided for competition was comprised of 11,582

variables and approximately 50,000 records. For each record

a complete set of attributes is available. The distributions of

values for the most of variables are heavily unbalanced and

that applies to the decision variables as well.

IV. CROSS-VALIDATION

One of the basic challenges in data mining is overfitting [3].

To account for overfitting, I used k-fold cross-validation (CV)

[4] embodied in the objective function. I used a simple k-fold

CV schema, where data records were assigned to appropriate

folds using modulo k operator and the original order of the

records in the dataset. I used k-1 folds as a training set and

the remaining fold as the test set, repeating it for each fold

(round robin). The objective function was calculated based on

the average of results for k folds.

I experimented with different values for k, as generally there

is no widely accepted way to determine a good value of k.

It is believed, that good values depend on the problem and

particular dataset. In fact, I varied values for k for different

steps. For the first step I used k=10, for the second step I

used k=5, while for the third step I used k=3. While the

change for the change between the first and second step

was dictated just by the desire to avoid artefacts coming

from the k selection, the reason for the change to k=3 was

a result of simple investigation I decided to do after the

second step: I evaluated performance of the same algorithm

run with different CV settings: n=3,4,5,7, and 13 using the

competition submission website that allowed to get feedback

based on the evaluation set. I noticed that the results for n=3

and n=4 produced the same solution that scored better on

the competition leaderboard than the solutions achieved using

greater values of n. Therefore, for the final step I decided to

use n=3.

V. THE METHOD

In this section I will describe the method to find solutions

to the competition challenge. The approach taken consisted of

three steps that varied in the details of the experimental setup.

The idea was to in the first step to identify attributes that can

lead to good solutions. For the following steps I decided to

use only a subset of attributes to improve the performance of

the search heuristic.

My approach was dictated by two observations: (1) initial

data analysis indicated that there are many variables that

are in present state very rarely (and therefore arguably are

not contributing much information or leading to overfitting)

and (2) that initial experiments suggested that the good solu-

tions quite consistently preferred certain variables over others.

Based on those observations I decided first to narrow a subset

of candidate attributes to 200.

In the three steps the same simple GA was used. However

the chromosome and operator definitions, method of con-

structing initial population and the population size, and other

parameters were varied throughout the steps. Below I provide

the details of the algorithm for each step.

VI. THE FIRST STEP – IDENTIFYING INFORMATIVE

ATTRIBUTES

In the first step, the goal was to reduce an attribute set by

identifying a subset of attributes that was most informative. In

order to do that, I used a GA that would identify a NB (note: a

single NB, not an ensemble of ten NBs) that otherwise would

be optimising the problem as stated in the competition.

A. Chromosome Definition

Chromosome was defined as a list of integer values that

were allowed to take values from 1 to 11,852. The length of

chromosome was constrained to be at least 30, with upper

limit set to 250 (but effectively solutions never exceeded 200

attributes anyway).

B. Crossover

As the crossover operator I used the uniform crossover

method with mixing probability 0.5.

C. Mutation

Mutation had two operators, each of them applied with 0.5

probability:

• Remove – in that case the attribute would be removed

from the list of attributes for that NB

• Replace – it would replace an attribute with a random

attribute sampled from the uniform distribution. The

addition of attributes was achieved by replacing an empty

(denoted as 0) gene with a value related to one of the

attributes (denoted as an integer 1 to 11,852).

The probability of mutation was set initially to the value

0.01 and was designed to decline after each generation. After

382 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

each iteration (generation), the probability of mutation was

multiplied by a constant delta equal to 0.999. The parameters

were set in such a way that a mutation would occur for a new

individual with probability over 0.9.

D. Initial Population

Initial population consisted of 200 individuals. The initial

number of attributes for individuals from the initial population

was sampled from the uniform distribution with lower and

upper limit 30 and 130 correspondingly. The attributes were

sampled from the complete set of 11,582 attributes using the

uniform distribution. The size of the initial population of 200

individuals was determined based on the size of the problem.

The total number of possible attributes in the population (200

multiplied by 80, where 80 is an average chromosome size

in the initial population) would exceed the total number of

attributes in the data (11,852).

E. Simulations

In order to identify the informative attributes I run 200

independent simulations and collected the best result (an

individual with the highest score at the end of simulations)

for each of the 200 simulations. Each simulation terminated

after 2500 generations. For each generation I generated 50 new

individuals (25%) and subsequently rejected 50 individuals

with the lowest score.

To perform simulations I used my own implementation of

the algorithm written in C++ programming language. The

implementation was intended to provide optimised code for

the task. Rather than using the raw data, I used pre-calculated

conditional probability tables for each attribute (given decision

attribute and CV fold).

F. Result

As the result of simulations I obtained a set of 200 solutions.

Please note that those solutions assumed a single NB model,

rather than an ensemble of 10 NB models. To evaluate those

solutions using the competition leaderboard I used a simple

technique: I assumed that the first 27 attributes will be assigned

for the 9 NBs in the ensemble with each contacting only 3

attributes (the minimum required). The remaining attributes

were assumed to belong to the last NB in the ensemble.

Additionally I sorted the attributes for the evaluation purpose.

Solutions obtained using this method resulted in scores in the

range of 0.93 to 0.945 on the competition leaderboard.

But the most valuable result for this step was the set of

informative variables. It turned out that the 200 solutions

shared a lot of common attributes, suggesting that there were

clearly attributes that were more informative than the others.

The attributes regarded informative as were (sorted accord-

ing to the ranking): 5270, 143, 2887, 8179, 10062, 460, 2924,

8914, 258, 2182, 7187, 7980, 5306, 1880, 7999, 11266, 1509,

11463, 7299, 5909, 3273, 5835, 1244, 72, 142, 8985, 6961,

10114, 6660, 2835, 7055, 8959, 304, 7148, 8039, 8107, 6779,

10880, 5446, 11359, 3294, 3492, 3951, 4323, 11459, 1335,

2684, 401, 4347, 3257, 7755, 8990, 675, 5519, 1772, 6949,

Fig. 2. Performance as a function of the number of attributes

2883, 6196, 766, 6238, 9846, 6534, 5990, 5996, 7425, 10446,

1111, 3598, 3735, 8110, 8114, 9873, 691, 759, 10902, 2380,

3324, 4415, 8249, 40, 2971, 4959, 9926, 8972, 2635, 4962,

11802, 8772, 3290, 5572, 6163, 8529, 3402, 9715, 10019, 27,

6430, 7172, 8216, 8794, 9657, 9771, 1161, 7243, 7520, 10771,

271, 1540, 4153, 4469, 5655, 8034, 8853, 11196, 3166, 5229,

5350, 8159, 9848, 11701, 73, 799, 3890, 5861, 6474, 6653,

480, 2966, 3706, 6388, 11217, 11231, 327, 896, 3479, 5393,

5778, 9725, 8397, 648, 840, 1954, 2538, 7158, 10300, 11604,

833, 2697, 4594, 7046, 8314, 10740, 11088, 2273, 2402, 2868,

4137, 6162, 7304, 8553, 10014, 11483, 2539, 5262, 6750,

10638, 11421, 135, 220, 1307, 3751, 4443, 6222, 6498, 6507,

7103, 7414, 8093, 8663, 9055, 11594, 282, 1289, 1767, 2568,

4198, 5041, 5143, 5859, 6579, 6602, 7069, 7356, 8807, 11587,

11636, 364, 426, 958, 2218. I arbitrarily decided to use 200

attributes for the further experiments. The 200th attribute was

close to 0.05 probability of occurring in the solution.

As well, at this step I determined that the optimal number of

parameters ranged between 60 and 80 (assuming single NB,

not an ensemble). It should be noted that the definition of

the chromosome and the simulation allowed the algorithm for

adjusting the number of attributes in the solution, and therefore

I did not need to be concerned about specifying the right

number of the attributes in the solution.

In fact I run the experiments for which I used constant

chromosome size, in order to ensure that the results I get are

consistent with the fixed chromosome size experiments. Those

experiments shed some light on the problem of the optimal

number of attributes in the solution. The results are shown

in Fig. 2. This analysis conformed that the optimal number

of attributes should be approximately in range of 60 to 80

attributes if the penalty term is included.

VII. THE SECOND STEP – FINDING OPTIMAL ENSEMBLE

In the second step, the task was to come up with a good

solution for NB ensemble.

ADAM ZAGORECKI: FEATURE SELECTION FOR NAIVE BAYESIAN NETWORK ENSEMBLE 383

A. Chromosome Definition

For this step, the chromosome encoded the structure of the

classifier ensemble, as stated in the competition requirements.

The chromosome was defined as a vector of 10 lists of integers,

where each list corresponded to one NB in the ensemble. The

list was constrained to have at least three elements, with no

upper limit on the number of elements.

B. Crossover

For both crossover and mutation, I treated each list of 10

chromosomes as individual chromosomes, applying crossover

to i-th chromosome from the first individual with the i-

th chromosome form the other individual. I indeed tried to

crossover i-th chromosome from the first individual with j-

th chromosome from the second individual, but performance

of such algorithm was inferior to the one used, therefore I

rejected the idea.

This time I used single point cross-over with the point

randomly generated from the uniform distribution.

C. Mutation

The probability of mutation for a single NB classifier

definition (repeated for each list in the vector) was set initially

to be 0.05, and it was decreased at each generation with factor

of 0.999. The mutation algorithm used one of three mutation

operators applied with different probabilities:

• Add – adding a new element to the list (sampled from

200 attributes using uniform distribution), applied with

probability 25%

• Remove – remove an attribute from the list (if there are

more than 3 attributes in the list), applied with probability

25%

• Replace – replace an existing attribute with a randomly

selected attribute (sampled from 200 attributes using

uniform distribution), applied with probability 50%

D. Initial Population

Initial population consisted of 100 individuals. This time the

chromosomes were randomly initialised using 200 attributes

identified in the first step. The initial chromosome size was

assumed to be 3 for all individual lists within a chromosome

(hence started with 30 attributes in each solution).

E. Simulations

Each simulation included 5000 generations. For each gen-

eration I generated 25 new individuals (25%) and rejected 25

individuals with the lowest score. I run over 50 of simulations

and collected the final best results for each of the simulation

runs.

F. Results

The best solution identified at this step allowed me to

achieve a score of 0.9512 at the competition leaderboard.

VIII. STEP THREE – IMPROVING THE SCORE

The final step was inspired by the idea of using evolutionary

algorithms that alter the initial solution in order to improve

it. But rather than using any specific approach, I decided to

us the same GA framework I used previously, with the only

difference that I decided to focus on the mutation operator as

the search driving mechanism. The basic setup was the same as

the algorithm in the second step, with some changes described

below.

A. Chromosome Definition and Corssover

Chromosome definition and crossover operators were ex-

actly the same as in the second step.

B. Mutation

The mutation operator was exactly the same as in the second

step. The only difference was that the initial probability of

mutation for each list element (individual NB in an ensemble)

was increased to 0.15 to induce more mutations.

C. Initial Population

The key change was the initial population – this time I used

seeding. I decided to use initial population that comprised of

50 copies of the same individual – the one that was achieving

the highest score in the second step.

D. Simulations

Each simulation had 5000 generations, but in fact I used

several simulations:

• I terminated the first simulation at around 500 genera-

tions, and I achieved the leaderboard score of 0.9522.

• I used the best result achieved so far as the seed for

the initial population, and this time I allowed to run the

complete 5000 generations. That allowed me to achieve

the leaderboard result of 0.9561.

• Consequently, I used the best result so far to repeat the

procedure. This time I decided to use several parallel runs

with the same seeding. Most of the results were infe-

rior to the initial (seeding) solution (0.9561) with most

of leaderboard submissions ranging between 0.954 and

0.946. One outlier was the solution with the leaderboard

result 0.9583 that I used at the final submission.

The solution that I used for the final submission was as

follows:

• 11463, 11088, 8179, 6498, 2883, 460, 143, 6388, 2924

• 10880, 4415, 1880, 258, 2966, 5926, 6491

• 10446, 9771, 8249, 7980, 7187, 5270, 401, 5990, 8039,

8959, 8093, 3890

• 833, 72, 3751, 1266

• 8914, 7999, 6474, 5041, 4962, 10019, 947

• 10902, 5996, 2835, 748

• 8034, 7055, 6961, 5909, 1244, 27, 3324, 7172, 270

• 11701, 8110, 7356, 7187, 6222, 6162, 7158, 9873, 7560

• 11266, 10062, 220, 11231, 2971, 7521

• 11459, 7148, 7755, 3951, 2887, 766.

384 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

IX. CONCLUSION

In this paper I presented the description of the method used

to optimise the set of variables used for classifiers based on

ensembles of NB. I used the same GA framework, however

in three different ways to address the challenge problem:

• First, I used GA to reduce the number of attributes in

the problem in order to improve performance of the

consequent simulations

• Then I used GA to find a set of optimal solutions to the

competition problem,

• Finally, I used GA with focus on mutation to refine the

solutions obtained from the previous step.

I would like to emphasise that I strongly believe that the

winning solution I obtained can be improved. Similar applies

to the algorithms used – they can be refined and improved in

terms of convergence efficiency, chromosome encoding, etc.

ACKNOWLEDGMENT

I would like to thank my wife, Katarzyna Holownia, for

encouragement and support during the competition.

REFERENCES

[1] J. H. Holland, “Adaptation in natural and artificial systems”, Ann Arbor:
The University of Michigan Press, 1975

[2] M. Mitchell, “An Introduction to Genetic Algorithms”, MIT Press, 1998
[3] T. Dietterich, Overfitting and undercomputing in machine learning, ACM

Comput. Surv. 27, (3), 326-327, 1995
[4] S. Geisser, “The predictive sample reuse method with applications”, J.

Amer. Statist. Assoc., 70:320–328, 1975

ADAM ZAGORECKI: FEATURE SELECTION FOR NAIVE BAYESIAN NETWORK ENSEMBLE 385

