
Abstract—We present here new results and algorithms for
the Linear Arrangement Problem (LAP). We first propose a new
lower bound, which links LAP with the Max Cut Problem, and
derive a LIP model as well as a branch/bound algorithm for the
general case. Then we focus on the case of interval graphs: we
first show that our lower bound is tight for unit interval
graphs, and derive an efficient polynomial time approximation
algorithm for general interval graphs.

I. INTRODUCTION

ET G = (X, E) be a non oriented graph where X and E

respectively denote the vertices and edges of G. The

Linear Arrangement Problem (LAP) consists of finding a

one-to-one mapping φ from X to {1, ... , |X|}that minimizes:

L

f (G ,φ)= ∑
(x , y)∈E

|φ(y)−φ(x)|

The LAP problem has applications (see [3, 11]) in

Information Retrieval and Industrial Storage, and may also

appear as a sub-problem of some Network Design models

(see [4]). It is, even in practice, a very difficult

combinatorial optimization problem. The corresponding

decision LAP was first shown to be NP-complete for

arbitrary graphs (see for example [8, 9]) and next, for

interval graphs [5] and bipartite graphs [9]. However,

polynomial time algorithms were designed for trees [4], unit

interval graphs [6], paths, cycles, complete bipartite graphs,

grid graphs [11] and restricted series-parallel graphs [1]. A

survey is available in [3].

Since LAP is NP-hard, even for graphs which usually turn

most difficult problems into time-polynomial ones, the

heuristic approach is therefore justified to deal with it. So

the goal of this theory oriented study is to provide tools for

the design of exact and approximation LAP algorithms with

some focus on interval graphs. The paper is organized as

follows. Section 2 introduces an linear ordering based

reformulation of LAP. In Section 3, we propose a general

lower bound, which links LAP with the well-known Max

Cut Problem, and next derive, in Section 4 and 5, an ILP

model together with a branch/bound algorithm. Finally, in

section 6 we restrict our study to the case of interval graphs

and propose an approximation algorithm, whose efficiency

is briefly tested in Section 7.

II. NOTATIONS, DEFINITIONS, LAP REFORMULATION

A simple (non oriented) graph with no loop is denoted by

G = (X, E): X (E) is the node (edge) set of G. We denote by

(x, y) = (y, x) an edge with end-nodes x and y in X. If A ⊆

X, then GA is the sub-graph induced by A from G. If x ∈ X,

then ΓG(x) = {y ∈ X such that (x, y) ∈ E} is the neighbour

set of x. The complementary graph Gc = (X, Ec) of G is

defined by: Ec = {(x, y) such that (x, y) ¿ E and x ≠ y}. A

triangle of G is a clique with 3 nodes. An anti-edge is a pair

e = (x, y) = (y, x), x ≠ y, such that (x, y) ∉ E. A fork with

root x is any (non oriented) triple f = {x, y, z} = {x, z, y}

such that (x, y), (x, z) ∈ E, and (y, z) ∉ E. An anti-fork with

root z is any triple f = {x, y, z} = {y, x, z} such that (x, y) ∈

E and (x, z), (y, z) ∉ E.

Figure 1: Triangles, Forks and Anti-Forks

LAP Reformulation: A linear ordering of a set X is a

binary order relation σ such that, for any pair x, y in X, x ≠

y, we have either x σ y or y σ x. Given a graph G = (X, E)

and a linear ordering σ of X. For any edge e = (x, y), we set

BE(e, z, σ) = (elementary break of e by z according to σ) =

1 if x σ z σ y or y σ z σ x, and 0 otherwise. We set BG(G, σ)

= (Global Break of G according to σ) = Σ e, z BE(e, z, σ). If

φ(σ) is the one-to-one mapping from X into {1, ...,|X|}

which derives from σ, then: f(G, φ(σ)) = Σ (x,y) ∈ E |φ(y) –

φ(x)| = BG(G, σ) + |E| = Σ e, z BE(e, z, σ) + |E|.

Exact and Approximation Algorithms for Linear Arrangement
Problems

Alain Quilliot
LIMOS CNRS UMR 6158

LABEX IMOBS3
Université Blaise Pascal
Bat ISIMA, BP 10125
Campus des Cézaux,

63173 Aubière, France
Email: alain.quilliot@isima.fr

Djamal Rebaine
UQAC

Département d’Informatique
Chicoutimi, Saguenay, Quebec

Canada
Email: Djamal.Rebaine@uqac.ca

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 493–500

DOI: 10.15439/2014F50

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 493

 So, solving LAP means seeking σ that minimizes the

Global Break BG(G, σ): we denote by LAP(G) the related

optimal value Inf σ BE(G, σ).

III. LINKING MAX CUT AND LAP: A GENERAL LOWER

BOUND

Computing a good linear ordering σ of the vertices of a graph

G = (X, E) means efficiently deciding, for any x ∈X, which

vertices of the neighbour set ΓG(x) are located before x

according to σ. This local decision process may be linked to

the well-known Max Cut Problem [2,7,10]:

Max Cut Problem: Let H = (Z, F) be a simple graph. We

denote by Z = A ∪
Ex

 B any partition of Z into 2 disjoint

subsets, and Cut(A, B) the number of edges of H with one

extremity into A and the other into B. Solving the Max Cut

Problem means seeking a partition Z = A ∪
Ex

 B that

maximizes Cut(A, B). We denote by Max-Cut(H) the

related optimal value.

Let us consider now some graph G = (X, E). We denote by

Tr(G) the number of triangles of G. For any vertex x in X, we

set:

- H(x) = the complementary graph of the sub-graph of G

which is induced by ΓG(x). Note that x is not a node of the

graph H(x), since G has no loop;

- m(x) = the number of edges of H(x); V(x) = m(x) – Max-

Cut(H(x)).

Theorem 1: For any graph G = (X, E), we have: LAP(G) ≥

Tr(G) + Σ x V(x).

Proof: Let us consider a linear ordering σ of G, and set:

- Fk(G, σ) = number of forks f = {x, y, z}, f with root x,

of G, such that ((x σ y) ∧ (x σ z)) ∨ ((y σ x ∧ z σ x)).

- AFk(G, σ) = number of anti-forks f = {x, y, z} of G, f

with root z, such that (x σ z σ y) ∨ (y σ z σ x).

Let us first check that: BG(G, σ) = Tr(G) + Fk(G, σ) +

AFk(G, σ). (E1)

In order to do so, we consider an edge e = (x, y), and a node

z, different from x and y. While counting BE(e, z, σ), we

consider three cases:

Case 1: x, y and z define a triangle. Then BE(e, z, σ) = 1 if

either x σ z σ y or y σ z σ x. In such a case no quantity

BE((x, z), y, σ), BE((z, y), x, σ) is equal to 1. So, if x, y, z

define a triangle, there exists exactly one node t in{x, y, z}

such that BE(e(t), t, σ) = 1, where e(t) is the edge which is

defined by {x, y, z} – t. We get Σ e = (x, y), z such that (x, y, z) is a

triangle BE(e, z, σ) = Tr(G).

Case 2: f = {x, y, z} is a fork with root x. Then BE((x, y), z,

σ) = 1 if either x σ z σ y or y σ z σ x, and then BE((x, z), y,

σ) = 0. Conversely, BE((x, z), y, σ) = 1 if either x σ y σ z or

z σ y σ x, and then BE((x, y), z, σ) = 0. So, (x, y, z) yields an

elementary break iff y and z are located on the same side of x

according to σ. Then:

 Σ e = (x, y), z adjacent to exactly 1 extremity of e BE(e, z, σ) =

 Σ x Σ y,z ∈ ΓG(x), (y, x) ∉ E, y , z located the same way with respect to x, σ 1

 = Fk(G, σ).

Case 3: f = {x, y, z} is an Anti-Fork with root z. Therefore, we

have:

Σ e = (x, y), z such that (x, z) ∉ E and (y, z) ∉ E BE(e, z, σ) = AFk(G, σ).

We get (E1) from the relation: Σ e, z BE(e, z, σ) = Σ e = (x, y), z such

that (x, y, z) is a triangle + Σ e = (x, y), z adjacent to 1 extremity of e BE(e, z, σ) + Σ

e = (x, y), z adjacent to no extremity of e BE(e, z, σ).

For any x ∈ X, a feasible solution A(x,σ) ∪
Ex

 B(x, σ) of Max

Cut is defined on H(x), by setting: A(x,σ) = {y ∈ ΓG(x), such

that y σ x}; B(x, σ) = {y ∈ ΓG(x), such that x σ y}. Its value,

in Max Cut sense, is: m(x) - Σy,z ∈ ΓG(x), (y, x) ∉ E, y, z located the same

way with respect to x , σ 1 ≤ Max-Cut(H(x)). It follows that, for any x

∈ X, Σ y,z ∈ ΓG(x), (y, x) ∉ E, y and z, located the same way with respect to x, σ 1 ≥

V(x). Then we get: Fk(G, σ) = Σ x Σ y,z ∈ ΓG(x), (y, x) ∉ E, y, z located

the same way with respect to x ,σ 1 ≥ Σ x V(x). We conclude. □

 Figure 2: Theorem 1 Counting Argument

Remarks: Small experiments make appear that this bound is

often tight, specifically in the case of chordal graphs. Still, the

Max Cut Problem, which has been extensively studied, is NP-

Hard [9]. So, one may ask about the practical use of the above

lower bound. The answer is two-sided:

494 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

1. Even though Max Cut is NP-Hard, it may be considered as

easier to handle than LAP: it admits a natural quadratic

{0,1} formulation ([4, 11]) and instances related to the

H(x), x ∈ X, are smaller than for original LAP.

2. We shall see in Section 6 that, in the case of interval

graphs, our bounding scheme gives rise to an efficient

polynomial time approximation scheme.

IV. QUADRATIC AND LINEAR MODELS FOR LAP

The counting argument of Theorem 1 may also be used in

order to derive a quadratic model for LAP. For every pair of

nodes (x, y), we need to decide whether y is located right or

left in relation to x according to the linear ordering σ. We

express this information through a {0, 1} valued W = (Wx,y,

x ≠ y) whose semantics is that: Wx,y = 1 (0) � y located on

the right (left) side of x according to linear ordering σ.

Counting argument of Theorem 1 tells us that the number of

elementary breaks induced by some linear ordering σ is a

sum of:

- the number of triangles, which does not depend on

 linear ordering σ;

- the number of fork {x, y, z}, which are such that y and z

are located on the same side with respect to root x

according to σ ; (Q1)

- the number of anti-fork {x, y, z}, which are such that x

and y are located on different side with respect to root

z according to σ. (Q2)

In order to deal with quantity Q1, we introduce a {0, 1}

valued vector U= (Ux,y, (x, y) edge ∈ E)), whose semantics

are: Ux,y = 1 (0) � y located on the right (left) side of x. In

order to deal with quantity Q2, we introduce a {0, 1} valued

vector V= (Vx,y, (x, y) anti-edge ∉ E)), whose semantics

are: Vx,y = 1 (0) � y located on the right (left) side of x.

While it is easy to state the constraints which must be

satisfied by U, V, W in order to make them define a

consistent linear ordering σ, we see that Q1 becomes equal

to:

 (Number of forks with root x) –

Σ x Σ z, y such that (y, z) ∈ E
c
 Ux,y. (1 – Ux,z).

 Also Q2 becomes equal to:

Σ z Σ x, y such that (x, y)∈ E Vz,x.(1 – Vz,y).

We deduce the following quadratic LAP model:

A Quadratic Linear Formulation of LAP.

• Variables

− Ux,y, x, y such that (x, y) edge ∈ E: Ux,y = 1

(0) � y located to the right (left) of x

− Vx,y, x, y such that (x, y) anti-edge ∈ E
c
: Vx,y

= 1 (0) � y located to the right (left) of x

− Wx,y, x ≠ y: Wx,y = 1 (0) � y located to the

right (left) of x

• Constraints (Consistency)

− For any x, y, Wx,y + Wy,x = 1

− For any edge (x, y) ∈ E, Ux,y = Wx,y

− For any anti-edge (x, y) ∈ E
c
, Vx,y = Wx,y

− For any x, y, z, all distincts, Wx,y + Wy,z ≥ Wx,z

− For any x, y, z, all distincts, (1 -Wx,y) + (1 -

Wy,z) ≥ (1 - Wx,z)

• Minimize

Σ z Σ (x, y)∈ E Vz,y.(1 – Vz,x) –

Σ x Σ (y, z)∈ E
c
 Ux,z. (1 – Ux,y)

If we denote by Fork(G) the number of forks of the graph G,

we easily get:

Theorem 2 : The optimal value of this quadratic {0,1}

program is equal to LAP(G) – Tr(G) – Fork(G).

This quadratic {0, 1} model may be easily turned into a

linear one by introducing additional vectors S and T as

follows:

− S = (Sf, f = (x, y, z), fork with root x) subject to: Sf ≤

(1- Ux,z) and Sf ≤ Ux,y ; we consider here that forks

are oriented, that means that (x, y, z) and (x, z, y)

define 2 distinct forks with root x;

− T = (Tf, g = (x, y, z), anti-fork with root z) Tg subject

to: Tg ≥ (1- Vz,x) and Tg ≥ Vz,y ; we consider here

that anti-forks are oriented, that means that (x, y, z)

and (y, x, z) define 2 distinct anti-forks with root z.

Then minimizing the quadratic quantity Σ z Σ (x, y)∈ E Vz,x.(1

– Vz,x) - Σ x Σ (y, z)∈ E
c
 Ux,y. (1 - Ux,z) means minimizing the

linear quantity Σg Tg - Σ f Sf.

ALAIN QUILIOT, DJAMAL REBAINE: EXACT AND APPROXIMATION ALGORITHMS 495

V. A BRANCH/BOUND ALGORITHM FOR LAP

We may derive from previous section an exact Branch/Bound

method for LAP:

- Branching is performed by picking up some pair (x, y)

of nodes and considering the two alternatives x σ y and

y σ x according to linear ordering σ; Any sequence of

such decisions may be extended through transitivity

into a partial ordering of the node set X;

- Bounding is performed through integer linear

programming, while extending Theorem 1 in a natural

way: if σ is a partial ordering of the node set X

obtained as above, we may set, for any node x:

- Max-Cutσ(H(x)) = Optimal value of the Max-Cut

instance which is defined on the graph H(x),

augmented with the following constraints:

� If y such that (x, y) ∈ E is also such that y σ x ,

then y must be on the subset A of the partition

ΓG(x) = A ∪
Ex

 B;

� If z such that (x, z) ∈ E is also such that x σ z ,

then z must be on the subset B of the partition

ΓG(x) = A ∪
Ex

 B;

- Vσ(x) = m(x) - Max-Cutσ(H(x));

- Wσ(x) = Inf partitions A ∪Ex B of X – {x} - ΓG(x) Card({(x, y)

∈ E, with x, y such that x ∈ A, y ∈ B})

Then we see that the quantity Tr(G) + Σ x Vσ(x) + Σ x

Wσ(x) provides us with a lower bound for the best (in

LAP sense) linear extension of σ.

- Branching strategy comes in a natural way: we give

priority to pairs (x, y) which define edges of the graph

G, and choose them in such a way the difference

between the best alternative and the worst one is the

largest possible.

VI. THE CASE OF INTERVAL GRAPHS: A RESTRICTED VERSION

OF LAP

We first introduce additional definitions related to interval

graphs:

- A simple graph with no loop G = (X, E) is an interval

graph if it is the intersection graph of a set [o(x), d(x)], x

∈ X, of closed intervals of the real line. Those intervals

may be chosen such that points o(x), d(x), x ∈ X, are

distinct. We assume this hypothesis to be always satisfied.

We set:

- x ⊂ y if o(x) < o(y) and d(y) < d(x);

- x << y if d(x) < o(y);

- x Ov y if o(x) < o(y) < d(x) < d(x).

- In case X is an interval family with distinct endpoints, we

say that a linear ordering σ of X is (Ov, <<)-consistent if

it is consistent with both orderings Ov and <<. We denote

by σ-can the canonical linear ordering, which is defined

as follows: x σ-can y if, and only if, o(x) < o(y).

- Then, we say that a fork f = {x, y, z} with root x of such an

interval graph G = (X, E) is a strong fork if there exists t

∈ {y, z} such that t ⊂ x, and that a triangle (x, y, z) is a

strong triangle if at least some node is contained into

another one (for instance z ⊂ x).

Figure 3: Strong fork f = {x, y, z} Figure 4: Strong

 triangle = {x, y, z}

- We say that G is a Unit Interval graph if intervals [o(x),

d(x)], x ∈ X may be chosen in such way that no pair x, y

exists such that x ⊂ y.

- We finally say that a subset Y of X is a Left-(Ov, <<)-

Section (Right-(Ov, <<)-Section) if, for any x, y ∈ X such

that x ∈ Y and (y Ov x) ∨ (y << x), then we also have y ∈

Y (x ∈ Y).

A. A Direct Application of Theorem 1 to Unit Interval Graphs

In the case of unit interval graphs, Theorem 1 allows us to state:

Theorem 2: If G = (X, E) is a unit interval graph, then σ-can is

an optimal solution of LAP.

Proof: Let us suppose that an elementary break (e = (x,y), z,

σ-can) exists, and that x Ov y, which implies that x σ-can y.

If x << z then y σ-can z and z does not break e. Similarly, if z

<< x then z << x and z does not break e. It comes that x ∩ z

is not empty. By the same way, y ∩ z is not empty and{x, y,

z} is a triangle. So, there is a one-to-one correspondence

between triangles and elementary breaks. So, BG(G, σ-can)

= Tr(G), and we conclude. □

496 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Figure 5: Theorem 2 Argument

B. An Approximation Result.

 In the case of general interval graphs, σ-can may not be

optimal. As a matter of fact, optimal solution may even not be

(Ov, <<)-consistent:

Figure 6: non consistency of (Ov, <<)

Still, what can be easily checked is that σ-can produces a 2-

approximation if we refer to the standard definition of LAP:

Theorem 3: Given an interval graph G = (X, E) with m

edges. Then the following inequality holds:

 BG(G, σ-can) ≤ 2LAP(G)+m.

Proof: A Global Break oriented proof comes by induction on

the cardinality of X. Let x0 be the first (smallest) element of X

according to σ-can, and σ-opt some optimal solution of LAP.

Induction tells us that: (E2)

 Σ e, z ≠ x0 BE(e, z, σ-can) ≤

 m – |ΓG(x0)| + 2. Σ e, z ≠ x0 BE(e, z, σ-opt).

Since all vertices of ΓG(x0) ∪ {x0} are consecutive according

to σ-can, we get that:

 Σ x∈ ΓG(x0), z ∈ X BE((x0, x), z, σ-can) =

 Σ x, z ∈ ΓG(x0) BE((x0, x), z, σ-can)

 = |ΓG(x0)|×(|ΓG(x0)| – 1)/2.

On the other hand, if we refer to σ-opt, we get: (E3)

 Σ x∈ ΓG(x0), z ∈ X BE((x0,x), z, σ-opt) ≥

 Σ x, z ∈ ΓG(x0) BE((x0,x), z, σ-opt) ≥

   ()    () .2/12/)(2/)(2/1)(2/)(0000 −ΓΓ+−ΓΓ xxxx GGGG

We derive the result by combining (E2) and (E3). □

C. A Restricted Version CLAP of LAP.

However, experiments will show that best linear orderings are

most often (Ov, <<)-consistent. So we are going to study the

following restriction CLAP of LAP:

(Ov, <<)-Consistent Linear Arrangement Problem

(CLAP): {Compute a (Ov, <<)-consistent linear ordering

σ which minimizes BG(G, σ)}.

The following lemma bridges CLAP with Theorem 1.

Lemma 1: In the case the linear ordering σ is (Ov, <<)-

consistent, we have that: BG(G, σ) = Tr(G) + SFk(G, σ),

where SFk(G, σ) is the number of strong forks f = (x, y, z), x

= Root(f) such that ((x σ y) ∧ (x σ z)) ∨ (y σ x) ∧ (z σ x)).

Proof: left to the reader (same proof as for Theorem 1). □

Extending Theorem 1 to CLAP leads us to introduce a

specific version of Max-Cut:

(Ov, <<)-Consistent Unit Cost Max-Cut Problem (C-

Max-Cut): Given a graph H = (Z, F), which is the

complementary graph of an interval graph H
c
 = (Z, F

c
),

and two disjoint subsets A0 and B0 of Z, such that:

- A0 (B0) is a Left-(Ov, <<)-Section (Right-(Ov, <<)-

Section) of H
c
;

- Both A0 and B0 define complete sub-graphs of H
c
 = (Z,

F
c
).

Compute a partition Z = A ∪
Ex

 B, such that:

1. A contains A0 and is a Left-(Ov, <<)-Section of H
c
;

2. B contains B0 and is a Right-(Ov, <<)-Section of H
c
;

3. the number of edges of H which connect A and B =

|{(x, y) ∈ E, x ∈ A, y ∈ B}| is the largest possible;

4. A is maximal for the set inclusion order, provided 1,

2, 3 are satisfied.

We denote by C-Max-Cut(H, A0, B0) the related optimal

value. Then we set, for the interval graph G = (X, E) and for

any vertex x in X:

- Γ
Ov,⊂

G(x) = (0v, ⊂)-neighbour set of x = {y ∈ ΓG(x), y ≠

x, such that (y ⊂ x) or (y Ov x) or (x Ov y)};

- H(x) = complementary graph of the sub-graph induced by

Γ
Ov,⊂

G(x);

- A0(x) = {y ∈ Z such that y Ov x}; B0(x) = {y ∈ Z such

that x Ov y};

ALAIN QUILIOT, DJAMAL REBAINE: EXACT AND APPROXIMATION ALGORITHMS 497

- m(x) = number of edges of H(x); CV(x) = m(x) - C-Max-

Cut(H(x), A0(x), B0(x)).

Then we get:

Lemma 2: CLAP(G) ≥ Tr(G) + Σ x CV(x).

Proof: For every x ∈ X, we set E*(x) = {non oriented pairs

(y, z) such that:

- y ∈ Γ
Ov,⊂

G(x), z ∈ Γ
Ov,⊂

G(x); (y, z) ∉ E ;

- at least one of both relations y ⊂ x or z ⊂ x holds;

- relation ((x σ y) ∧ (x σ z)) ∨ ((y σ x) ∧ (z σ x)) holds}

SFk(G, σ) may be written as Σ x ∈ X |E*(x)|. Since σ is (Ov,

<<)-consistent, we may relax the “at least … y ⊂ x or z ⊂ x

holds” constraint which characterizes E*(x).

So, for any x ∈ X:

 |E*(x)| ≥

 Σ y,z ∈ ΓG(x), (y, x) ∉ E, y,z are located the same way with respect to x, σ 1.

For any x ∈ X, we get a feasible solution A(x,σ) ∪
Ex

 B(x, σ)

of the C-Max-Cut instance defined by H(x), A0(x), B0(x), by

setting: A(x,σ) = {y ∈ Γ
Ov,⊂

G(x), such that y σ x}; B(x, σ) =

{y ∈ Γ
Ov,⊂

G(x), such that x σ y}. Its value is:

 m(x) –

 Σ x,y ∈ ΓOv,⊂G(x), (y, x) ∉ E, y, z located the same way with respect to x, σ 1

 ≤ C-Max-Cut(H(x), A0(x), B0(x)).

It follows that, for any x ∈ X:

 |E*(x)| ≥

 Σ x,y ∈ ΓOv,⊂G(x), (y, x) ∉ E, y, z located the same way with respect to x, σ 1

 ≥ CV(x).

 Then, we get that SFk(G, σ) = Σ x |E*(x)| ≥ Σ x CV(x). We

conclude. □

D. Solving C-Max-Cut and Evaluating CV(x)

The complexity of the Max Cut problem in the case of the

complementary graph of an interval graph is still an open

issue. However, things are easier with C-Max-Cut:

Theorem 4: Given = (Z, F), A0 and B0 as in the definition of

C-Max-Cut. Let us set, for every vertex z ∈ Z – (A0 ∪ B0):

- dH
-
(A0, z) = |{t ∈ Z – A0 such that t << z }| + |{t ∈ A0

such that t << z}|;

- dH
+
(B0,z) = |{t ∈ Z – B0 such that z << t }| + |{t ∈ B0

such that z << t }|.

Then we solve C-Max-Cut by setting:

- A = {z ∈ Z – (A0 ∪ B0) such that dH
-
(A0, z) ≥ dH

+
(B0, z)}

∪ A0;

- B = {z ∈ Z – (A0 ∪ B0) such that dH
-
(A0, z) < dH

+
(B0, z)}

∪ B0.

Proof: Left to the reader. □

E. An Exact Solution σ-bal for CLAP.

We construct this solution σ-bal, by setting, for any pair x, y

in X, x σ-bal y if, and only if, one among the following

options holds:

- (x << y) or (x Ov y);

- (x ⊂ y) and dH(y)
-
(A0(y), x) ≤ dH(y)

+
(B0(y), x);

 (E5)

- (y ⊂ x) and dH(x)
-
(B0(x), y) < dH(x)

+
(A0(x), y).

(E6)

Figure 7: A σσσσ-bal construction

Lemma 3: The σ-bal relation is transitive.

Proof: left to the reader. □

We are now ready to state the optimality of σ-bal.

Theorem 5: The relation σ-bal is an optimal solution of

CLAP, which satisfies:

1. BG(G, σ-bal) ≤ BG(G, σ-can).

2. Tr(G) ≤ BG(G, σ-bal) = Tr(G) + Σ x CV(x) ≤ Tr(G) +

Strong-Fork/2, where Strong-Fork is the number of

strong forks of the interval graph G.

Sketch of the Proof: From Lemma 3, we have that σ-bal is a

(<<, Ov)-consistent linear ordering. Then the optimality of σ-

bal (and so, the fact that BG(G, σ-bal) ≤ BG(G, σ-can))

derives, through a simple computation, from the fact that

since it locally achieves, for any node x, the lower bound

CV(x), then it also globally achieves the lower bound of

Lemma 2. □

We easily deduce that this result has an algorithmic

interpretation:

498 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Corollary 3 (left to the reader): Computing σ-bal may be

done in O(Arc-⊂) time, where Arc-⊂ is the number of arcs of

the digraph induced on X by the ⊂ ordering.

VII. NUMERICAL EXPERIMENTS

 We implemented both the Branch/Bound algorithm of

Section 5 and the Approximation algorithm σ-bal. We did it

on a LINUX server CentOS 5.4, Processor Intel Xeon 3.6

GHZ, while using the CPLEX 12 library when dealing with

integer linear programs. For interval graphs, our

Branch/Bound scheme could solve, in no more than few

minutes, instances with up to 40 nodes. This allowed us to

perform a comparative analysis of the precision of the Lower

Bound LB(G) = Tr(G) + Σ x V(x) provided by Theorem 1,

and of both approximation algorithms σ-can and σ-bal.

We use 10 instance groups related to Card(X) = 10, 20, 30

and 40, and for every instance group, compute:

- the mean gap LB-GAP =

 (LAP(G) –LB(G))/LB(G)

between the optimal LAP value and the lower bound

LB;

- the mean gap CLAP-GAP =

 (BG(G, σ-bal) -LAP(G))/LAP(G)

between the optimal value of CLAP, computed by σ-

bal, and the optimal value;

- the mean gap CAN-GAP =

 (BG(G, σ-can) -LAP(G))/LAP(G)

between the value defined by the canonical ordering σ-

can, and the optimal value.

We get results which are described in the following Table 1.

N 10 20 30 40

LB-GAP 9.8% 12.5% 10.7% 14.5%

CLAP-

GAP

3.2% 4.5% 4.1% 5.0%

CAN-GAP 9.6% 12.3% 11.5% 10.9%

Table 1: Comparative precision of lower bound LB and

approximation solutions σσσσ-can and σσσσ-bal.

Table 2 provides now the specific results related to n = 10,

which by the way, gives an estimation of the LAP(G) values

which may derive from interval graph of this size:

INSTANCE

NUMBER

LB(G) LAP(G) CLAP(G) CAN(G)

1 10 12 12 13

2 8 8 8 8

3 13 16 17 19

4 12 13 14 15

5 12 13 13 14

6 10 11 11 11

7 15 15 17 18

8 13 15 15 17

9 11 11 11 12

10 9 10 10 10

Table 2: Values LAP(G), LB(G), CLAP(G) and CAN(G)

related with a 10 instances group with Card(X) = 10.

VIII. CONCLUSION

This paper, with theoretical focus, proposes approximation

results for the Linear Arrangement problem, in the case of

interval graphs. Further research should be about the

extension of our approaches to chordal graphs and circular

graphs, as well as about the design of efficient exact

algorithms.

REFERENCES

1. Achouri S., Bossart T., Munier-Kordon A. (2009): A

polynomial algorithm for MINDSC on a subclass of series

parallel graphs, RAIRO Operations Research, pp. 145-

156, DOI: 10.1051/ro/2009009

2. Barahona F., Mahjoub A.R (1986): On the cut polytope,

Math. Prog. 36, pp. 157-173, DOI: 10.1007/BF02592023

3. Charon I., Hudry O. (2010): An updated survey on the

linear ordering problem for weighted or unweighted

tournaments, Annals of Operations Research, 175, pp.

107-158, DOI: 10.1007/010479-009-0648-7

4. Chung FRK. (1984): On optimal linear arrangement of

trees. Comp. & Maths/Appl., 11, pp. 43-60, DOI:

10.1145/73833.738333.73866

ALAIN QUILIOT, DJAMAL REBAINE: EXACT AND APPROXIMATION ALGORITHMS 499

5. Cohen J., Fomin F., Heggernes P., Kratsch D., Kucherov

G. (2006): Optimal linear arrangement of interval graphs,

Proc. MFCS’06, pp 267-279, Springer-Verlag, DOI:

10.1007/1182069_24
6. Corneil DG., Kim H., Natarajan S., Olarin S., Sprague AP.

(1995): A simple linear time algorithm of unit interval

graphs, Information Processing Letters 55, pp. 99-104,

DOI: 10.1016/0020-0190(95)00046-F
7. Chvatal V., Ebenegger C. (1990): A note on line digraphs

and the directed Max-Cut problem, Discrete Applied

Maths 29, pp 165-170, DOI: 10.1016/0166-

218X(90)90141-X

8. Even S., Shiloach Y. (1975): NP-Completeness of Several

Arrangement Problems, Technical Report #43, Computer

Science Department, The Technion, Haifa, Israel, DOI:

10.1007/11821069_24
9. Garey MR., Johnson DS. (1979): Computers and in-

tractability: a guide to the theory of NP-completeness,

Computer Press, ISBN-13: 978-0716710455.
10. Grotschel, M. (ed.) (2004): The Sharpest Cut, MPS-

SIAM Series on Optimization, ISBN-13: 978-0898715521
11. Horton SB. (1997): The optimal linear arrangement

problem: algorithms and approximation, Phd thesis,

Georgia Institute of Technology.

500 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

