
Abstract—We present here new results  and algorithms for
the Linear Arrangement Problem (LAP). We first propose a new
lower bound, which links LAP with the Max Cut Problem, and
derive a LIP model as well as a branch/bound algorithm for the
general case. Then we focus on the case of interval graphs: we
first  show  that  our  lower  bound  is  tight  for  unit  interval
graphs, and derive an efficient polynomial time approximation
algorithm for general interval graphs.

I. INTRODUCTION

ET G = (X, E) be a non oriented graph where X and E

respectively denote  the  vertices  and  edges  of  G.  The

Linear  Arrangement Problem (LAP) consists  of  finding  a

one-to-one mapping φ from X to {1, ... , |X|}that minimizes:

L

f (G ,φ )= ∑
( x , y )∈E

|φ( y )−φ( x )|

The  LAP  problem  has  applications  (see  [3,  11])  in

Information Retrieval and Industrial Storage, and may also

appear as a sub-problem of some Network Design models

(see  [4]).  It  is,  even  in  practice,  a  very  difficult

combinatorial  optimization  problem.  The  corresponding

decision  LAP  was  first  shown  to  be  NP-complete  for

arbitrary  graphs  (see  for  example  [8,  9])  and  next,  for

interval  graphs  [5]  and  bipartite  graphs  [9].  However,

polynomial time algorithms were designed for trees [4], unit

interval graphs [6], paths, cycles, complete bipartite graphs,

grid graphs [11] and restricted series-parallel graphs [1]. A

survey is available in [3]. 

Since LAP is NP-hard, even for graphs which usually turn

most  difficult  problems  into  time-polynomial  ones,  the

heuristic approach is therefore justified to deal with it. So

the goal of this theory oriented study is to provide tools for

the design of exact and approximation LAP algorithms with

some focus  on interval  graphs.  The paper  is  organized as

follows.  Section  2  introduces  an  linear  ordering  based

reformulation of LAP. In  Section 3,  we propose a general

lower bound,  which  links LAP with the well-known  Max

Cut Problem, and next derive,  in Section 4 and 5, an ILP

model together  with a branch/bound algorithm. Finally, in

section 6 we restrict our study to the case of interval graphs

and propose an approximation algorithm, whose efficiency

is briefly tested in Section 7.  

II.  NOTATIONS, DEFINITIONS, LAP REFORMULATION

A simple (non oriented) graph with no loop is denoted by

G = (X, E): X (E) is the node (edge) set of G. We denote by

(x, y) = (y, x) an edge with end-nodes x and y in X. If A ⊆

X, then GA is the sub-graph induced by A from G. If x ∈ X,

then ΓG(x) = {y ∈ X such that (x, y) ∈ E} is the neighbour

set  of  x.  The complementary graph Gc = (X,  Ec)  of  G is

defined by: Ec = {(x, y) such that (x, y) ¿ E and x ≠ y}. A

triangle of G is a clique with 3 nodes. An anti-edge is a pair

e = (x, y) = (y, x), x ≠ y, such that (x, y)  ∉ E.  A fork with

root x is any (non oriented) triple f = {x, y, z} = {x, z, y}

such that (x, y), (x, z) ∈ E, and (y, z) ∉ E. An anti-fork with

root z is any triple f = {x, y, z} = {y, x, z} such that (x, y) ∈

E and (x, z), (y, z) ∉ E.   

 

Figure 1: Triangles, Forks and Anti-Forks

LAP Reformulation:  A  linear ordering of a set X is a

binary order relation σ such that, for any pair x, y in X, x ≠

y, we have either x σ y or y σ x. Given a graph G = (X, E)

and a linear ordering σ of X. For any edge e = (x, y), we set

BE(e, z, σ) = (elementary break of e by z according to σ) =

1 if x σ z σ y or y σ z σ x, and 0 otherwise. We set BG(G, σ)

= (Global Break of G according to σ) = Σ e, z BE(e, z, σ). If

φ(σ)  is  the  one-to-one  mapping  from  X  into  {1,  ...,|X|}

which derives from σ, then:   f(G,  φ(σ)) =  Σ (x,y)  ∈ E |φ(y) –

φ(x)| = BG(G, σ) + |E| = Σ e, z BE(e, z, σ) + |E|.
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 So, solving LAP means seeking σ that minimizes the 

Global Break BG(G, σ): we denote by LAP(G) the related 

optimal value Inf σ BE(G, σ).   

 

III. LINKING  MAX CUT AND LAP: A GENERAL LOWER 

BOUND 

 

Computing a good linear ordering σ of the vertices of a graph 

G = (X, E) means efficiently deciding, for any x ∈X, which 

vertices of the neighbour set ΓG(x) are located before x 

according to σ. This local decision process may be linked to 

the well-known Max Cut Problem  [2,7,10]:    

 

Max Cut Problem: Let H = (Z, F) be a simple graph. We 

denote by Z = A ∪
Ex

 B any partition of Z into 2 disjoint 

subsets, and Cut(A, B) the number of edges of H with one 

extremity into A and the other into B.  Solving the Max Cut 

Problem means seeking a partition Z = A ∪
Ex

 B that 

maximizes Cut(A, B). We denote by Max-Cut(H) the 

related optimal value.  

 

Let us consider now some graph G = (X, E). We denote by 

Tr(G) the number of triangles of G. For any vertex x in X, we 

set: 

 

- H(x) = the complementary graph of the sub-graph of G 

which is induced by ΓG(x). Note that x is not a node of the 

graph H(x), since G has no loop; 

 

- m(x) = the number of edges of H(x); V(x) = m(x) – Max-

Cut(H(x)).  

 

Theorem 1: For any graph G = (X, E), we have: LAP(G) ≥ 

Tr(G) + Σ x V(x).  

 

Proof: Let us consider a linear ordering σ of G, and set: 

- Fk(G, σ) = number of forks f = {x, y, z}, f with root x, 

of G, such that ((x σ y) ∧ (x σ z)) ∨ ((y σ x ∧ z σ x)). 

- AFk(G, σ) = number of anti-forks f = {x, y, z} of G, f 

with root z, such that (x σ z σ y) ∨ (y σ z σ x). 

Let us first check that: BG(G, σ) = Tr(G) + Fk(G, σ) + 

AFk(G, σ).                   (E1)                           

In order to do so, we consider an edge e = (x, y), and a node 

z, different from x and y. While counting BE(e, z, σ), we 

consider three cases: 

 

Case 1: x, y and z define a triangle. Then BE(e, z, σ) = 1 if 

either x σ z σ y or y σ z σ x. In such a case no quantity 

BE((x, z), y, σ), BE((z, y), x, σ) is equal to 1. So, if x, y, z 

define a triangle, there exists exactly one node t in{x, y, z} 

such that BE(e(t), t, σ) = 1, where e(t) is the edge which is 

defined by {x, y, z} – t.  We get Σ  e = (x, y), z such that (x, y, z) is a 

triangle BE(e, z, σ) = Tr(G). 

 

Case 2: f = {x, y, z} is a fork with root x.  Then BE((x, y), z, 

σ)  = 1 if either x σ z σ y or y σ z σ x, and then BE((x, z), y, 

σ) = 0.  Conversely, BE((x, z), y, σ) = 1 if either x σ y σ z or 

z σ y σ x, and then BE((x, y), z, σ) = 0. So, (x, y, z) yields an 

elementary break iff y and z are located on the same side of x 

according to σ. Then: 

  Σ e = (x, y), z adjacent to exactly 1 extremity of e BE(e, z, σ)  = 

 Σ x  Σ y,z ∈ ΓG(x), (y, x) ∉ E, y , z located the same way with respect to x, σ 1 

    = Fk(G, σ). 

 

Case 3: f = {x, y, z} is an Anti-Fork with root z. Therefore, we 

have: 

Σ e = (x, y), z such that (x, z)  ∉ E and (y, z) ∉ E BE(e, z, σ)  = AFk(G, σ). 

We get (E1) from the relation:  Σ e, z BE(e, z, σ) = Σ  e = (x, y), z such 

that (x, y, z) is a triangle  + Σ e = (x, y), z adjacent to 1  extremity of e BE(e, z, σ)  + Σ 

e = (x, y), z adjacent to no extremity of e BE(e, z, σ). 

For any x ∈ X, a feasible solution A(x,σ) ∪
Ex

 B(x, σ) of Max 

Cut is defined on H(x), by setting: A(x,σ)  = {y ∈ ΓG(x), such 

that y σ x}; B(x, σ) = {y ∈ ΓG(x), such that x σ y}. Its value, 

in Max Cut sense, is:  m(x) - Σy,z ∈ ΓG(x), (y, x) ∉ E, y, z located the same 

way with respect to x , σ 1 ≤ Max-Cut(H(x)). It follows that, for any x 

∈ X, Σ y,z ∈ ΓG(x), (y, x) ∉ E, y and z, located the same way with respect to x, σ 1 ≥ 

V(x). Then we get: Fk(G, σ) = Σ x  Σ y,z ∈ ΓG(x), (y, x) ∉ E, y, z located 

the same way with respect to x ,σ 1 ≥ Σ x V(x). We conclude.  □  

 

 
  

                 Figure 2: Theorem 1 Counting Argument 

 

 

Remarks: Small experiments make appear that this bound is 

often tight, specifically in the case of chordal graphs. Still, the 

Max Cut Problem, which has been extensively studied, is NP-

Hard [9]. So, one may ask about the practical use of the above 

lower bound. The answer is two-sided:  
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1. Even though Max Cut is NP-Hard, it may be considered as 

easier to handle than LAP: it admits a natural quadratic 

{0,1} formulation ([4, 11]) and instances related to the 

H(x), x ∈ X, are smaller than for original LAP. 

2. We shall see in Section 6 that, in the case of interval 

graphs, our bounding scheme gives rise to an efficient 

polynomial time approximation scheme.   

 

 

IV. QUADRATIC AND LINEAR MODELS FOR LAP 

 

The counting argument of Theorem 1 may also be used in 

order to derive a quadratic model for LAP. For every pair of 

nodes (x, y), we need to decide whether y is located right or 

left in relation to x according to the linear ordering σ. We 

express this information through a {0, 1} valued W =  (Wx,y, 

x ≠ y) whose semantics is that:  Wx,y = 1 (0) �  y located  on 

the right (left) side of x according to linear ordering σ. 

Counting argument of Theorem 1 tells us that the number of 

elementary breaks induced by some linear ordering σ is a 

sum of: 

 

- the number of triangles, which does not depend on 

 linear ordering σ; 

- the number of fork {x, y, z}, which are such that y and z 

are located on the same side with respect to root x 

according to σ ;   (Q1) 

- the number of anti-fork {x, y, z}, which are such that x 

and y are located on different side with respect to root 

z  according to σ.  (Q2) 

 

In order to deal with quantity Q1, we introduce a {0, 1} 

valued vector U=  (Ux,y, (x, y) edge ∈  E)), whose semantics 

are: Ux,y = 1 (0) �  y located  on the right (left) side of x. In 

order to deal with quantity Q2, we introduce a {0, 1} valued 

vector V=  (Vx,y, (x, y) anti-edge ∉  E)), whose semantics 

are: Vx,y = 1 (0) �  y located  on the right (left) side of x. 

While it is easy to state the constraints which must be 

satisfied by U, V, W in order to make them define a 

consistent linear ordering σ, we see that Q1 becomes equal 

to: 

 (Number of forks with root x) –  

Σ x Σ z, y such that (y, z) ∈  E
c
 Ux,y. (1 – Ux,z).  

 Also Q2 becomes equal to:  

Σ z Σ x, y such that (x, y)∈  E Vz,x.(1 – Vz,y).  

 

We deduce the following quadratic LAP model:  

 

 

 

A Quadratic Linear Formulation of LAP. 

 

• Variables  

− Ux,y, x, y such that (x, y) edge ∈  E: Ux,y = 1 

(0) �  y located  to the right (left) of x  

− Vx,y, x, y such that (x, y) anti-edge ∈  E
c 
: Vx,y 

= 1 (0) �  y located  to the right (left) of x  

− Wx,y, x ≠ y:  Wx,y = 1 (0) �  y located  to the 

right (left) of x  

 

• Constraints    (Consistency)  

− For any x, y, Wx,y + Wy,x = 1  

− For any edge (x, y) ∈  E, Ux,y  =  Wx,y  

− For any anti-edge (x, y) ∈  E
c
, Vx,y  =  Wx,y  

− For any x, y, z, all distincts, Wx,y + Wy,z ≥ Wx,z  

− For any x, y, z, all distincts, (1 -Wx,y) + (1 - 

Wy,z) ≥ (1 - Wx,z)  

 

• Minimize  

Σ z Σ (x, y)∈  E Vz,y.(1 – Vz,x) –  

Σ x Σ (y, z)∈  E
c
 Ux,z. (1 – Ux,y)   

 

If we denote by Fork(G) the number of forks of the graph G, 

we easily get: 

 

Theorem 2 : The optimal value of this quadratic {0,1} 

program is equal to LAP(G) – Tr(G) – Fork(G).    

 

This quadratic {0, 1} model may be easily turned into a 

linear one by introducing additional vectors S and T as 

follows: 

 

− S = (Sf, f = (x, y, z), fork with root x) subject to: Sf  ≤  

(1- Ux,z) and Sf  ≤ Ux,y ; we consider here that forks 

are oriented, that means that (x, y, z) and (x, z, y) 

define 2 distinct forks with root x;  

 

− T = (Tf, g = (x, y, z), anti-fork with root z) Tg subject 

to: Tg  ≥  (1- Vz,x) and Tg  ≥ Vz,y ; we consider here 

that anti-forks are oriented, that means that (x, y, z) 

and (y, x, z) define 2 distinct anti-forks with root z.  

 

Then minimizing the quadratic  quantity  Σ z Σ (x, y)∈  E Vz,x.(1 

– Vz,x) - Σ x Σ (y, z)∈  E
c
 Ux,y. (1 - Ux,z) means minimizing the 

linear quantity Σg Tg - Σ f Sf.  
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V.  A BRANCH/BOUND ALGORITHM FOR LAP 

 

We may derive from previous section an exact Branch/Bound 

method for LAP: 

 

- Branching is performed by picking up some pair (x, y) 

of nodes and considering the two alternatives x σ y and 

y σ x according to linear ordering σ;  Any sequence of 

such decisions may be extended through transitivity 

into a partial ordering of the node set X;   

 

- Bounding is performed through integer linear 

programming, while extending Theorem 1 in a natural 

way: if σ is a partial ordering of the node set X 

obtained as above, we may set, for any node x: 

 

- Max-Cutσ(H(x)) = Optimal value of the Max-Cut 

instance which is defined on the graph H(x), 

augmented with the following constraints: 

� If y such that (x, y) ∈  E is also such that y σ x , 

then y must be on the subset A of the partition 

ΓG(x) = A ∪
Ex

  B;  

� If z such that (x, z) ∈  E is also such that x σ z , 

then z must be on the subset B of the partition 

ΓG(x) = A ∪
Ex

  B;  

 

- Vσ(x) =  m(x) - Max-Cutσ(H(x)); 

 

- Wσ(x) = Inf partitions A ∪Ex  B of X – {x} - ΓG(x)  Card({(x, y) 

∈  E, with x, y such that x ∈ A, y ∈ B})  

 

Then we see that the quantity Tr(G) + Σ x Vσ(x) + Σ x 

Wσ(x)  provides us with a lower bound for the best (in 

LAP sense) linear extension of σ.  

 

- Branching strategy comes in a natural way: we give 

priority to pairs (x, y) which define edges of the graph 

G, and choose them in such a way the difference 

between the best alternative and the worst one is the 

largest possible.   

 

 

VI.  THE CASE OF INTERVAL GRAPHS: A RESTRICTED VERSION 

OF  LAP 

 

We first introduce additional definitions related to interval 

graphs:   

 

- A simple graph with no loop G = (X, E) is an interval 

graph if it is the intersection graph of a set [o(x), d(x)], x  

∈ X, of closed intervals of the real line. Those intervals 

may be chosen such that points o(x), d(x), x ∈ X, are 

distinct. We assume this hypothesis to be always satisfied. 

We set:   

- x ⊂  y if o(x) <  o(y) and d(y) < d(x);   

- x << y if d(x) < o(y); 

- x Ov y if o(x) <  o(y) < d(x) < d(x).  

    
- In case X is an interval family with distinct endpoints, we 

say that a linear ordering σ of X is (Ov, <<)-consistent if 

it is consistent with both orderings Ov and <<. We denote 

by σ-can the canonical linear ordering, which is defined 

as follows: x σ-can y if, and only if, o(x) < o(y). 

 

- Then, we say that a fork f = {x, y, z} with root x of such an 

interval graph G = (X, E) is a strong fork if there exists t 

∈ {y, z} such that t ⊂ x, and that a triangle (x, y, z) is a 

strong triangle if at least some node is contained into 

another one (for instance z ⊂ x).      

 
 

 
 

Figure 3: Strong fork f = {x, y, z}       Figure 4: Strong  

               triangle = {x, y, z} 

 
- We say that G is a Unit Interval graph if intervals [o(x), 

d(x)], x ∈ X may be chosen in such way that no pair x, y 

exists such that x ⊂  y.     

      

- We finally say that a subset Y of X is a Left-(Ov, <<)-

Section (Right-(Ov, <<)-Section) if, for any x, y ∈ X such 

that x ∈ Y and (y Ov x) ∨ (y << x), then we also have y ∈ 

Y (x ∈ Y). 

  

 

A. A Direct Application of Theorem 1 to Unit Interval Graphs 

 

In the case of unit interval graphs, Theorem 1 allows us to state:   

 

Theorem 2: If G = (X, E) is a unit interval graph, then σ-can is 

an optimal solution of LAP. 

 

Proof: Let us suppose that an elementary break (e = (x,y), z, 

σ-can) exists, and that x Ov y, which implies that x σ-can y. 

If x << z then y σ-can z and z does not break e. Similarly, if z 

<< x then z << x and z does not break e. It comes that x ∩ z 

is not empty. By the same way, y ∩ z is not empty and{x, y, 

z} is a triangle. So, there is a one-to-one correspondence 

between triangles and elementary breaks. So, BG(G, σ-can) 

= Tr(G), and we conclude. □ 
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Figure 5: Theorem 2 Argument 

 

 

B. An Approximation Result. 

 

   In the case of general interval graphs, σ-can may not be 

optimal. As a matter of fact, optimal solution may even not be 

(Ov, <<)-consistent:   

 

 
Figure 6: non consistency of (Ov, <<) 

 

Still, what can be easily checked is that σ-can produces a 2-

approximation if we refer to the standard definition of LAP:   

 

Theorem 3: Given an interval graph G = (X, E) with m 

edges. Then the following inequality holds:  

   BG(G, σ-can) ≤  2LAP(G)+m. 

 

Proof: A Global Break oriented proof comes by induction on 

the cardinality of X. Let x0 be the first (smallest) element of X 

according to σ-can, and σ-opt some optimal solution of LAP. 

Induction tells us that:         (E2)  

 Σ e, z ≠ x0 BE(e, z, σ-can) ≤   

   m – |ΓG(x0)| + 2. Σ e, z ≠ x0 BE(e, z, σ-opt).           

Since all vertices of ΓG(x0) ∪ {x0} are consecutive according 

to σ-can, we get that:  

  Σ x∈ ΓG(x0), z ∈ X BE((x0, x), z, σ-can) = 

     Σ x, z ∈ ΓG(x0) BE((x0, x), z, σ-can)  

     = |ΓG(x0)|×(|ΓG(x0)| – 1)/2.  

On the other hand, if we refer to σ-opt, we get:  (E3) 

      Σ x∈ ΓG(x0), z ∈ X BE((x0,x), z, σ-opt) ≥  

     Σ x, z ∈ ΓG(x0) BE((x0,x), z, σ-opt) ≥  

   ( )    ( ) .2/12/)(2/)(2/1)(2/)( 0000 −ΓΓ+−ΓΓ xxxx GGGG

We derive the result by combining (E2) and (E3). □ 

 

 

C. A Restricted Version CLAP of LAP.  

 

However, experiments will show that best linear orderings are 

most often (Ov, <<)-consistent. So we are going to study the 

following restriction CLAP of LAP:   

(Ov, <<)-Consistent Linear Arrangement Problem 

(CLAP): {Compute a (Ov, <<)-consistent linear ordering 

σ which minimizes BG(G, σ)}. 

 

The following lemma bridges CLAP with Theorem 1.  

 

Lemma 1:  In the case the linear ordering σ is (Ov, <<)-

consistent, we have that: BG(G, σ) = Tr(G) + SFk(G, σ), 

where SFk(G, σ) is the number of strong forks f = (x, y, z), x 

= Root(f) such that ((x σ y) ∧ (x σ z)) ∨ (y σ x) ∧ ( z σ x)). 

  

Proof: left to the reader (same proof as for Theorem 1). □ 

 

Extending Theorem 1 to CLAP leads us to introduce a 

specific version of Max-Cut:   

 

(Ov, <<)-Consistent Unit Cost Max-Cut Problem (C-

Max-Cut): Given a graph H = (Z, F), which is the 

complementary graph of an interval graph H
c
 = (Z, F

c
), 

and two disjoint subsets A0 and B0 of Z, such that:  

- A0 (B0) is a Left-(Ov, <<)-Section (Right-(Ov, <<)-

Section) of H
c
;   

- Both A0 and B0 define complete sub-graphs of  H
c
 = (Z, 

F
c
). 

Compute a partition Z = A ∪
Ex

 B, such that: 

1. A contains A0 and is a Left-(Ov, <<)-Section of H
c
; 

2. B contains B0 and is a Right-(Ov, <<)-Section of H
c
; 

3. the number of edges of H which connect A and B = 

|{(x, y) ∈ E, x ∈ A, y ∈ B}| is the largest possible; 

4. A is maximal for the set inclusion order, provided 1, 

2, 3 are satisfied.  

  

We denote by C-Max-Cut(H, A0, B0) the related optimal 

value. Then we set, for the interval graph G = (X, E) and for 

any vertex x in X:  

- Γ
Ov,⊂

G(x) = (0v, ⊂)-neighbour set of x = {y ∈ ΓG(x), y ≠  

x, such that (y ⊂ x) or (y Ov x) or (x Ov y)};  

- H(x) = complementary graph of the sub-graph induced by  

Γ
Ov,⊂

G(x); 

- A0(x) = {y ∈ Z such that y Ov x}; B0(x) = {y ∈ Z such 

that x Ov y}; 
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- m(x) = number of edges of H(x); CV(x) = m(x) - C-Max-

Cut(H(x), A0(x), B0(x)). 

 

Then we get: 

 

Lemma 2: CLAP(G) ≥ Tr(G) + Σ x CV(x).   

 

Proof: For every x ∈ X, we set E*(x) = {non oriented pairs 

(y, z) such that: 

-  y ∈ Γ
Ov,⊂

G(x), z ∈ Γ
Ov,⊂

G(x); (y, z) ∉ E ;   

- at least one of both relations y ⊂ x or z  ⊂ x holds; 

-  relation ((x σ y) ∧ (x σ z)) ∨ ((y σ x) ∧ (z σ x)) holds} 

SFk(G, σ) may be written as Σ x ∈ X |E*(x)|. Since σ is (Ov, 

<<)-consistent, we may relax the “at least … y ⊂ x or z  ⊂ x 

holds” constraint which characterizes E*(x).  

So, for any x ∈ X:  

 |E*(x)| ≥  

 Σ y,z ∈ ΓG(x), (y, x) ∉ E, y,z are located the same way with respect to x, σ 1.  

For any x ∈ X, we get a feasible solution A(x,σ) ∪
Ex

 B(x, σ)  

of the C-Max-Cut instance defined by H(x), A0(x), B0(x), by 

setting: A(x,σ)  = {y ∈ Γ
Ov,⊂

G(x), such that y σ x}; B(x, σ) = 

{y ∈ Γ
Ov,⊂

G(x), such that x σ y}. Its value is: 

 m(x) –  

 Σ x,y ∈ ΓOv,⊂G(x), (y, x) ∉ E, y, z located the same way with respect to x, σ 1 

      ≤ C-Max-Cut(H(x), A0(x), B0(x)).  

It follows that, for any x ∈ X: 

 |E*(x)| ≥   

 Σ x,y ∈ ΓOv,⊂G(x), (y, x) ∉ E, y, z located the same way with respect to x, σ 1   

     ≥ CV(x).  

 Then, we get that SFk(G, σ) = Σ x  |E*(x)| ≥ Σ x CV(x). We 

conclude. □ 

 

 

D. Solving C-Max-Cut and Evaluating CV(x)   

 

The complexity of the Max Cut problem in the case of the 

complementary graph of an interval graph is still an open 

issue. However, things are easier with C-Max-Cut: 

 

Theorem 4: Given = (Z, F), A0 and B0 as in the definition of 

C-Max-Cut. Let us set, for every vertex z ∈ Z – (A0 ∪ B0):    

- dH
-
(A0, z) =  |{t ∈ Z – A0 such that t << z }| + |{t ∈ A0 

such that t <<  z}|; 

- dH
+
(B0,z) = |{t ∈ Z – B0 such that z << t }| + |{t ∈ B0 

such that z << t }|.  

Then we solve C-Max-Cut by setting:   

- A  = {z ∈ Z – (A0 ∪ B0) such that dH
-
(A0, z) ≥ dH

+
(B0, z)} 

∪ A0; 

- B = {z ∈ Z – (A0 ∪ B0) such that dH
-
(A0, z) < dH

+
(B0, z)} 

∪ B0. 

 

Proof: Left to the reader. □   

 

E. An Exact Solution σ-bal for CLAP.   

 

We construct this solution σ-bal, by setting, for any pair x, y 

in X, x σ-bal y if, and only if, one among the following 

options holds: 

- (x << y) or (x Ov y);  

- (x ⊂  y) and dH(y)
-
(A0(y), x) ≤ dH(y)

+
(B0(y), x); 

 (E5) 

- (y ⊂  x) and dH(x)
-
(B0(x), y) < dH(x)

+
(A0(x), y).   

(E6) 

    

 

Figure 7: A σσσσ-bal construction 

 

Lemma 3: The σ-bal relation is transitive.  

 

Proof: left to the reader. □ 

 

We are now ready to state the optimality of σ-bal.  

 

Theorem 5: The relation σ-bal is an optimal solution of 

CLAP, which satisfies:  

1. BG(G, σ-bal)  ≤ BG(G, σ-can).  

2. Tr(G) ≤ BG(G, σ-bal) = Tr(G) + Σ x CV(x)  ≤ Tr(G) + 

Strong-Fork/2, where Strong-Fork is the number of 

strong forks of the interval graph G.  

 

Sketch of the Proof: From Lemma 3, we have that σ-bal is a 

(<<, Ov)-consistent linear ordering. Then the optimality of σ-

bal (and so, the fact that BG(G, σ-bal) ≤ BG(G, σ-can)) 

derives, through a simple computation, from the fact that 

since it locally achieves, for any node x, the lower bound 

CV(x), then it also globally achieves the lower bound of 

Lemma 2. □ 

 

We easily deduce that this result has an algorithmic 

interpretation:  
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Corollary 3 (left to the reader): Computing σ-bal may be 

done in O(Arc-⊂) time, where Arc-⊂ is the number of arcs of 

the digraph induced on  X by the ⊂ ordering.  

  

    

VII. NUMERICAL EXPERIMENTS 

 

 We implemented both the Branch/Bound algorithm of 

Section 5 and the Approximation algorithm σ-bal. We did it 

on a LINUX server CentOS 5.4, Processor Intel Xeon 3.6 

GHZ, while using the CPLEX 12 library when dealing with 

integer linear programs. For interval graphs, our 

Branch/Bound scheme could solve, in no more than few 

minutes, instances with up to 40 nodes. This allowed us to 

perform a comparative analysis of the precision of the Lower 

Bound LB(G) = Tr(G) + Σ x V(x) provided by Theorem 1, 

and of both approximation algorithms σ-can and σ-bal.  

 

We use 10 instance groups related to Card(X) = 10, 20, 30 

and 40, and for every instance group, compute: 

 

- the mean gap LB-GAP =  

   (LAP(G) –LB(G))/LB(G)  

between the optimal LAP value and the  lower bound 

LB; 

- the mean gap CLAP-GAP =   

  (BG(G, σ-bal) -LAP(G))/LAP(G)  

between the optimal value of CLAP, computed by σ-

bal, and the optimal value;  

- the mean gap CAN-GAP =  

  (BG(G, σ-can) -LAP(G))/LAP(G)  

between the value defined by the canonical ordering σ-

can, and the optimal value.  

 

We get results which are described in the following Table 1. 

 

N 10 20 30 40 

LB-GAP 9.8% 12.5% 10.7% 14.5% 

CLAP-

GAP 

3.2% 4.5% 4.1% 5.0% 

CAN-GAP 9.6% 12.3% 11.5% 10.9% 

 

Table 1: Comparative precision of lower bound LB and 

approximation solutions σσσσ-can and σσσσ-bal. 

 

 

Table 2 provides now the specific results related to n = 10, 

which by the way, gives an estimation of the LAP(G) values 

which may derive from interval graph  of this size: 

 

  

INSTANCE 

NUMBER 

LB(G) LAP(G) CLAP(G) CAN(G) 

1 10 12 12 13 

2 8 8 8 8 

3 13 16 17 19 

4 12 13 14 15 

5 12 13 13 14 

6 10 11 11 11 

7 15 15 17 18 

8 13 15 15 17 

9 11 11 11 12 

10 9 10 10 10 

 

Table 2: Values LAP(G), LB(G), CLAP(G) and CAN(G) 

related with a 10 instances group with Card(X) = 10.  

 

 

VIII. CONCLUSION 

 

 

This paper, with theoretical focus, proposes approximation 

results for the Linear Arrangement problem, in the case of 

interval graphs. Further research should be about the 

extension of our approaches to chordal graphs and circular 

graphs, as well as about the design of efficient exact 

algorithms.   
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