
Abstract—We address here a large scale routing and
scheduling transportation problem, through introduction of a
flow model designed on a dynamic network. We deal with this
model while using a master/slave decomposition scheme, and
testing the behavior on this scheme of both a GRASP
algorithm and a Genetic algorithm.

I. INTRODUCTION

E ALREADY introduced (see [9]), in the context of

a partnership with an industrial player, a flow/multi-

commodity flow model FMS which aimed at optimizing

the management of a urban shuttle fleet. This model in-

volved a dynamic network (see [2, 10]), that is a network

with time indexed vertices, which made easy expressing

temporal constraints. At this time we designed a GRASP

algorithmic scheme, which allowed us handling a kind of

large scale pre-emptive Pick Up and Delivery problem (see

[10]), while using an ad hoc aggregation mechanism and

performing random negative circuit cancelling.

W

We consider here the same model FMS, close to CFA

(Capacitated Flow Assignment) models (see [1]) used in

telecommunications, but we deal with it in a simpler way,

while using an auxiliary cost vector as the master variable

of a master/slave decomposition scheme. This scheme

induces the design of resolution heuristics which mainly

rely on simple shortest path procedures instead of complex

negative circuit cancelling procedure, and whose generic

features makes implementation easier. While next section

II is devoted to a rough description of the FMS model, our

main contribution is about the description in Section III of

this master/slave decomposition scheme, from which we

derive (sections IV and V) both a GRASP (Greedy

Random Adaptive Search Procedure, see [5, 6]) algorithm,

and a genetic algorithm (see [6, 7, 8]). We detail the way

those algorithms are implemented, and test (Section VI)

their respective behaviors.

II. THE FMS MODEL

A. Main Notations and Definitions

A network G, with vertex set X and arc set E, is denoted

by G = (X, E). A flow vector is an arc indexed vector f with

rational or integral values such that, for every vertex x, we

have Σ e enter into x fe = Σ e comes out x fe (Kirchhoff Law). The arc

support of f is the arc subset Arc-Supp(f) ⊆ E, which

contains all arcs e ∈ E such that fe ≠ 0. A multi-commodity

flow vector f is a flow vector collection f = {f(k), k ∈ K}.

Sum(f) is the Aggregated Flow Sum(f) = Σ k ∈ K f(k).

B. The Shuttle Problem (see [16])

We consider a Urban Area network H = (Z, U): nodes of H
mean either production sites y1,…,ym (m = 7 in the original
application), or residential areas, and arcs mean elementary

connections. A demand Dk, k ∈ K, is a 4-uple (ok, dk:

origin/destination nodes, Lk: Load, tk: deadline): Lk users
have to be transported from ok and to dk (at least one of both
nodes being an industrial node) while starting (arriving)
after (before) time stk (atk). Quality of Service (QoS)
requires this trip not to last more than Tk time units. Users
alternatively walk and use a shuttle system; so, every arc e
of H is endowed with a walking length lp(e) and with a

vehicle length lυ(e). Vehicles start from and end into a

Depot node. Our goal is to route the shuttles while meeting
the demands and minimizing both the number of vehicles
(Fixed Investment Cost) and their running times (Running
Cost). Route preemption is allowed: several vehicles may
be involved in meeting a given demand.

C. The Dynamic Network H-Dyn.

We derive it from H by associating (see 2, 8, 10), with
any node x of Z, (NP+1) copies of x, indexed from 0 to NP,

which represent the states of x at the instants 0, δ,…, NP.δ;

Routing on Dynamic Networks: GRASP versus Genetic

Benoit Bernay
Université Blaise Pascal
LIMOS CNRS Laboratory,
LABEX IMOBS3
Clermont-Ferrand 63000, France
Email: bernay@isima.fr

Samuel Deleplanque Alain Quilliot
Université Blaise Pascal Université Blaise Pascal
 LIMOS CNRS Laboratory LIMOS CNRS Lab.
LABEX IMOBS3 LABEX IMOBS3
 Clermont-Ferrand 63000, France Clermont-Ferrand, France
Email: deleplanque@isima.fr Email : alain.quilliot@isima.fr

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 487–492

DOI: 10.15439/2014F52

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 487

δ is an elementary time unit, chosen between 3 mn and 6

mn in our application; NP is a parameter which fixes the

planning period (between 2 and 3 h). We add 2 fictitious

vertices DP, DP* and set X = {xr, x ∈ Z, r ∈ 0,…, NP} ∪

{DP, DP*}. As for the arc set E, we round modulo δ the

vehicle and walking lengths of any arc u in U by setting:

l*p(u) = lp(u)/δ, l*v(u) =  lv(u)/δ; then we define the

labeled arc family E as containing:

• wait arcs (xr, xr+1), x ∈ Z, r ∈ 0,…, NP-1 : such an arc is

considered twice, with walk and vehicle labels;

• arcs (DP, Depotr), (Depotr, DP*), r ∈ 0,…, NP, with

vehicle labels.

• arcs (xr, zr+l*v(u)), u = (x, z) ∈ U, r such that 0 ≤ r ≤ NP

- l*v(u), with vehicle label;

• walk arcs (xr, zr+l*p(u)), u = (x, z) ∈ U, r such that 0 ≤ r ≤

NP - l*p(u), with walk label;

• a backward arc (DP*, DP).

We denote by A the subset of E defined by the vehicle arcs.

We provide, in a natural way, any arc e with an Economical

Cost ce and a QoS Cost pe .

 Fig. 1: Urban Transit Network H = (Z, U)

 Fig. 2: Dynamic Network H-Dyn = (X, E).

Remark 1: Size of H-Dyn. We consider that (x, y) is an arc

of H if a vehicle may move from x to y during time unit δ. If

H contains 200 nodes, H-Dyn may contain up to 10
5
 arcs.

D. The Flow/Multi-commodity Shuttle Model

(FMS)

We want to route both vehicles and users. Aggregating

vehicle routes yields, on the dynamic network H-Dyn = (X,

E), some integral flow vector F, and that user’s routes may

be represented as a rational multi-commodity flow f =

{f(k), k ∈ K} ≥ 0. Measuring f in such a way the capacity of

any vehicle becomes equal to 1 yields the following FMS:

Flow/Multi-Commodity Flow Shuttle model:

FMS: Flow/Multi-Commodity Flow Shuttle Model.

Input: The Urban Area network H = (Z, U), and the

discrete time space {0,., Nδ};

Output: Compute, on the dynamic network H-Dyn

an integral flow vector F, and a rational multi-

commodity flow f = {f(k), k ∈ K} ≥ 0, such that:

- F is null on the walk arcs ;

- For any k ∈ K, f(k) routes Lk users from ok to dk

between time stk and time atk;

- g = Sum(f)e = Σk,e f(k)e ≤ Fe, for any arc of H-

Dyn with vehicle label;

- Cost(F) + QoS(f) = c.F + p.Sum(f) = Σe in A ce.Fe

+ Σe in E pe.Sum(f)e is minimal

Conversely, if F and f satisfy FMS constraints and if Route

Preemption is allowed, then they yield a feasible solution of

the Shuttle Problem. Our model casts temporal constraints

into the construction of the network H-Dyn. We denote by

FMSg the time-polynomial min cost integral flow problem

which derives from FMS by fixing g = Sum(f).

Remark 2: FMS Model Size. If the number of demands is

250, then the size of f may be up to 25 10
6
: the resulting

FMS model is a large scale NP-Hard MIP problem.

III. FUNDAMENTAL TOOLS

Before describing algorithm, we need to specify which

objects and procedures they will involve.

A. A Master/Slave Encoding of a FMS Solution

The quality of a FMS solution relies on its ability to make

users share vehicles. While the size H-Dyn may eventually

be very large, the number of arcs which are going to support

non null F and g = Sum(f) is comparatively small. So, a key

object in our model should be the arc support set A = Arc-

Supp(F) = {e ∈ E such that Fe ≠ 0} of F. The following

theoretical result, whose proof can be obtained through

standard mathematical programming techniques, will help

us in dealing with this arc support set:

Dualization Theorem: Let (F, f) an optimal solution of the

FMS model. Then there exists a price vector µ ≥ 0, with

indexation on the arc set of H-Dyn, such that:

- µe = 0 for any arc e which is a walk arc or a wait arc

and which is not in A;

- µe ≥ ce for any arc e in A; µe = + ∞ for any vehicle

arc e which is not in A;

- Every flow f(k) is an optimal solution of the min cost

flow problem defined by: (E1)

o for every k ∈ K, f(k) routes load Lk f(k) from ok to

dk between time stk and time atk;

o Σ e (µe+ pe).f(k)e is the smallest possible.

488 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

 So, the knowledge of both arc support set A and cost

vector µ allow us to derive, through shortest path

procedures, the aggregated flow g = Sum(f). Flow vector F

is computed as a solution of FMSg. We impose every vector

f(k), k ∈ K, to be routed along a single path. So, a well-

fitted representation of a FMS solution is given by:

- the set Arc-Supp(F) = {e ∈ E such that Fe ≠ 0};

- the related cost vector µ = µe, e ∈ A.

Those objects define the Master part of such a solution,

whose Slave part is defined by F and the collection Γ(k) of

the paths followed by the flow vectors f(k), k in K.

B. Dealing with the FMSg Problem

We deal with FMSg through column generation, while

using an arc/path formulation of FMSg:

FMSg:{Λ denotes the set of paths from DP to DP*;

Compute a vector G = (Gγ, γ ∈ Λ) ≥ 0, with rational

values, such that:

o for any arc e of H-Dyn with vehicle label, Σ γ

such that e ∈ γ Gγ ≥ ge ;
o Σ γ Cost(γ).Gγ is minimal}

If Λ0 is some active subset of Λ, and if λ = (λe, e in the arc

subset of H-Dyn with vehicle label) ≥ 0 is a dual solution of

the restriction of FMSg to Λ0, then the related Pricing

(search for the new entering column) sub-problem is as a

largest path problem, handled by Bellman algorithm. So,

when dealing with the FMSg problem, we do in such a way

that we are always provided with some current active path

subset Λ0 of Λ, which evolves in an incremental way.

C. Deriving the paths Γ(k) from A and µ.

Dualization Theorem tells us that support set A and cost

vector µ should identify the arcs along which users are

going to share a same vehicle. If A and µ were conveniently

chosen, paths Γ(k), k ∈ K, should be shortest paths for cost

vector (p + µ). So, all throughout the execution of our

processes, we derive paths Γ(k), k ∈ K, as shortest paths for

the following cost vector C
A,µ

:

- If e is a walk other wait arc which is not in A, then C
A

e

= pe;

- If e is in A, then C
A

e = µe + pe;

- Else C
A

e = pe + cµ*, where µ* = Max e ∈ A µe/ce. (E2)

As a matter of fact, for a given vehicle arc e ∉ A, we apply

(E2), which means that we want to keep paths Γ(k), k ∈ K

from using vehicle arcs which are not in A, only when no

path Γ(k), k ∈ K involves e. Else, we use µ* defined by:

µ* = Mean Value e ∈ A µe.

D. A Randomized Initialization

This initialization procedure FMS-INIT works through

successive insertions of demands Dk, k∈ K, into a current

aggregated flow vector g:

FMS-INIT Procedure:

- g: current aggregated flow vector; K0: set of inserted

demands;

- F and λ: primal and dual solutions of FMSg;

- Λ0 = set of active vehicle paths;

While K – K0 is not empty do

Randomly Pick up k ∈ K – K0 and Insert it into

K0: route demand k according to some path Γ(k)

in H-Dyn, in such a way that: (I1)

o Γ(k) connects ok to dk , while satisfying

related temporal constraints;

o the induced increase in the cost λ. g + p.g

is the smallest possible ;

Update F, λ and Λ0.

Set A = Arc Support of F; For every arc e in A, set:

 µe = λe. ge. (I2)

The above Insert instruction (I1) is handled by a shortest

path Bellman-like Algorithm.

E. Local Transformation and Mutation Operators

The FMS-INIT previous process gives rise in a generic

way to a local transformation operator TRANS, which acts

on a current solution A, µ, F, Γ = {Γ(k), k ∈ K} as follows:

 Local Operator TRANS(K0: K0 subset of K)

- Randomly select K0 ⊆ K and withdraws paths-flows

{f(k), k ∈ K0}from g; Update flow vector F;

- Reinsert demands Dk, k∈ K0, according to the III.D,

while starting from current partial solution (F, g);

- Consequently update A and µ.

Operator TRANS will be used here in both GRASP

scheme, according to a Descent strategy and in a genetic

meta-heuristic scheme, as a mutation operator.

F. Crossover Operator

Given two feasible FMS solutions A1, µ1, F1, Γ1 = {Γ1(k), k

∈ K} and A2, µ2, F2, Γ2 = {Γ2(k), k ∈ K}. SON-CREATE

derives children (A, µ) and (A’, µ’) as follows:

ALAIN QUILIOT, BENOIT BERNAY, DELEPLANQUE SAMUEL: ROUTING ON DYNAMIC NETWORKS 489

Crossover Operator SON-CREATE:

For every arc e in (A1 ∩ A2), insert e into both A and

A’ and randomly assign related value µe or µ’e with

one of both values (µ1,e + µ2,e)/2 and (3.µ1,e - µ2,e)/2;

For every arc e in (A1 - A2) ∪ (A2 – A1), randomly

insert e into either A or A’ and randomly assign related

value µe or µ’e with one of both values (µ1,e + µ2,e)/2

or (3.µ1,e - µ2,e)/2;

Compute path collections Γ = {Γ(k), k ∈ K} and Γ’ =

{Γ’(k), k ∈ K} as in III.C; Compute F and F’ flow

vectors as in III.B, together with dual vectors λ and λ’;

Update cost vectors µ and µ’ according to (I2).

IV. A GRASP ALGORITHM FMS-GRASP FOR FMS

A GRASP: Greedy Random Adaptive Search Procedure

(see [5, 6]) algorithmic scheme works by performing first a

greedy randomized initialization process, and next a descent

loop. It may be run according to several replications, either

in a sequential or in a parallel mode. Here, we get:

FMS-GRASP(R: Replication Number, Q: Subset

Size, Loop: Loop Length Bound);

For i = 1..R do

Initialize A, µ, F, Γ = {Γ(k), k ∈ K} through

FMS-INIT; Possible;

While Possible do (I3: Descent loop)

Modify A, µ, F, Γ = {Γ(k), k ∈ K} in such a

way cost c.F + p.g is improved;

If Failure(Modify) then Not Possible;

The result of FMS-GRASP is the best A, µ, F, Γ =

{Γ(k), k ∈ K} ever obtained.

(I3) involves the TRANS operator as follows:

Possible;

While Possible do

Trial-Number <- 1; Success <- False;

Do Until Success or Trial-Number > Loop

Generate K0 ⊆ K with cardinality Q; Save current

A, µ, F, Γ = {Γ(k), k ∈ K}; (I4)

Apply TRANS(K0) to A, µ, F, Γ; If c.F + p.g is

improved then Success Else

Restore A, µ, F, Γ;

Trial-Number <- Trial-Number + 1;

Possible <- Success;

Choosing K0 in the (I4) Instruction: it is defined by the

paths {Γ(k), k ∈ K} which contain the arcs e with the

highest (µe + pe) values.

A Random Walk Variant of FMS-GRASP: Because of the

computing costs induced by Instruction (I4), we also

implement a Random Walk strategy:

FMS-GRASP-1(R: Replication Number; RW: Loop

Length Bound; Q: Subset Size);

For i = 1..R do

Initialize A, µ, F, Γ = {Γ(k), k ∈ K} through

FMS-INIT;

For Counter = 1..RW do (I4.1: Random

Walk loop)

Generate K0 ⊆ K with cardinality Q;

Apply TRANS(K0) to A, µ, F, Γ;

The result is the best (A, µ, F, Γ) ever obtained.

V. A GENETIC ALGORITHM FMS-GEN FOR FMS

The main components of a Genetic algorithm are (see [6, 7,

8]): its Encoding scheme (Chromosome Representation);

the Initialization Procedure which yields the initial

population Σ; its Mutation operator; its Crossover operator.

Clearly, the Encoding scheme is the encoding scheme of

Section III.A whose master objects are:

- the arc support set Arc-Supp(F) = {e ∈ E such that Fe

≠ 0} of F;

- the related cost vector µ = µe, e ∈ A;

and the slave objects are the flow vector F and the path

collection Γ = { Γ(k), k ∈ K}.

Initialization is performed through Card(Σ) successive

applications of FMS-INIT.

Mutation results from application of the operator TRANS,

with parameter K0 generated with a given cardinality Q, Q

becoming a parameter of the global process:

FMS-Mutation(A, µ, F, Γ = {Γ(k), k ∈ K}, Q);

Generate some subset K0 of K with cardinality Q;

Apply TRANS(K0) to A, µ, F, Γ;

The FMS-Crossover crossover operator is the SON-

CREATE operator of Section III.F.

What remains to be discussed here is the Fitness Criterion,

and the way FMS-Crossover is applied:

- Given (A1, µ1, F1, Γ1 = {Γ1(k), k ∈ K}) and (A2, µ2, F2,

Γ2 = {Γ2(k), k ∈ K}) in current population Σ, Fitness

is related here to the cardinality of the difference set

(A1 - A2) ∪ (A2 - A1): the smallest is it, the largest is

the Fitness measurement;

- Best-fitted pairs are selected, in order to avoid cloning,

with the constraint that no solution σ belongs to

more than 2 pairs. It is done in a heuristic way.

The main parameters of the deriving Genetic Algorithm

FMS-GEN are the population size P, the number LG of

iterations of mutation/crossover process and the size Q.

490 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

VI. NUMERICAL EXPERIMENTS

Experiments are performed on a LINUX server CentOS

5.4, Processor Intel Xeon 3.6 GHZ, with help of the

CPLEX 12 library.

A. Instance Generation

An instance is defined by: the Urban Area network H = (Z,

U), with n vertices and m arcs; demands Dk, k ∈ K;

walking lengths lp(e), and vehicle lengths lυ(e), e ∈ U;

Vehicle cost vector c and User cost vector p; the size NP of

the time-space; the arc number NA of H-Dyn. We generate

our own small and large instances: nodes of H are points of

the 2D Euclidean space, with adjacency related to distance

thresholds; demands Dk, k ∈ K are randomly generated

through uniform distribution.

B. Evaluation of FMS-INIT.

We first consider small instances, for which we get an exact

optimal value through the CPLEX.12 Library, and next

consider larger size instances, with focus on the large scale

issue. In both cases:

- n, m are respectively the node and arc numbers of H,

NP is the period number, NOD is the number of

demands; L is the mean value of loads Lk, k ∈ K,

and α is the mean ration pe/ce, e ∈ E.

- R is the replication number of FMS-INIT.

Small instances: We focus on precision of FMS-INIT, and

test packages of 10 instances. GAP-MEAN is the mean error

GAP = (VAL – OPT)/OPT: VAL = cost value computed by

FMS-INIT, OPT = optimal value computed by CPLEX.12.

GAP-VAR is the variance of GAP. We get:

R GAP-MEAN GAP-VAR

1 22.5 25.8

5 17.3 20.7

10 13.4 17.9

20 11.9 15.4

50 10.5 13.6

Table 1: FMS-INIT Evaluation, Small Instances, 10

instances/packages; Group-Instance: n = 10, m = 30, NP =

10; NOD = 10; α = 0.5; L = 0.2; Impact of R.

Analysis: Parameter R plays a key role. GAP-VAR is

usually large: a single FMS-INIT run may yield poor

solutions.

Large instances: We focus here on CPU times and on the

sensitivity to parameter R: V(R) is the mean value (Max(R) -

Min(R))/Min(R), where Max(R) and Min(R) are respectively

the worse and best values obtained through FMS-INIT(R),

while Var-V(R) is the related variance. Mean-CPU is the

mean running time, while Var-CPU is the related variance.

R V(R) Var-V(R) Mean-CPU (in s) Var-CPU

1 0.0 0.0 24.8 12.5

5 0.08 0.05 98.5 67.2

10 0.14 0.04 177 101.0

20 0.18 0.04 329 151.4

50 0.22 0.03 745 256.1

Table 2: FMS-INIT Evaluation, Large Instances, 10

instances/packages; Group-Instance: NA = 66256; NOD =

100; α = 0.5; L = 0.2; Impact of R.

Analysis: The replication mechanism is crucial.

C. Evaluation of FMS-GRASP.

We focus on the respective ability of the standard Descent

loop with parameter TH and of the random walk with

parameter RW to improve the initial solution.

Small instances, 10 instances/packages with n = 10, m =

30, NP = 10, NOD = 10, L = 0.2; α = 0.5: GAP-MEAN is

the mean error GAP = (VAL – OPT)/OPT, where VAL is

computed by FMS-GRASP, and GAP-VAR is the variance

of GAP. We use R = 10, Q = 3.

TH GAP-MEAN GAP-VAR

1 13.1 17.8

4 11.3 11.0

8 9.4 9.5

15 7.2 8.3

Table 3: FMS-GRASP/Descent: Impact of TH

RW GAP-MEAN GAP-VAR

1 13.3 17.8

4 11.5 13.1

10 9.3 11.8

40 6.8 8.8

80 3.8 5.1

Table 4: FMS-GRASP/Random Walk:

Impact of RW

Analysis: Random Walk is more efficient than Descent.

Large instances, 10 instances/packages, with NA = 66256;

NOD = 100; α = 0.5; L = 0.2. IMPROVE = (Min(R) - Val(R,

RW))/Val(R,W), where Min(R) is computed by FMS-

INIT(R) and Val(R, W) is computed by FMS-GRASP(R,

RW). IMPROVE(R, RW) is the mean IMPROVE Value.

R RW IMPROVE(R, RW) Mean-CPU

1 5 2.3 39

1 100 9.8 249

5 5 1.7 151

5 100 9.1 1012

10 5 1.4 257

10 100 6.7 1618

Table 5: FMS-GRASP Evaluation, Large Instances:

Impact of R and RW.

ALAIN QUILIOT, BENOIT BERNAY, DELEPLANQUE SAMUEL: ROUTING ON DYNAMIC NETWORKS 491

Analysis: Computing times remain under control.

Improvement margin induced by the Random Walk loop are

close to the values obtained for small instances.

D. Evaluation of FMS-GEN.

We use the same tests as in Section VI.C. P is the size of

the population, LG is the length of the main loop of the

process. The population Σ is initialized by FMS-INIT(P).

Small instances: 10 instance packages with n = 10, m = 30,

NP = 10; NOD = 10; L = 0.2; α = 0.5; GAP-MEAN is the

mean error GAP = (VAL – OPT)/OPT, where VAL is the

cost value of the solution which is computed by FMS-GEN,

and OPT is the optimal result computed by CPLEX.12

GAP-VAR is the variance of GAP. We focus on difficult

instances, and deal with rather small populations (no more

than 30) and small LG values. We use P =10, Q = 3; Π = 1;

P GAP-MEAN GAP-VAR

4 10.3 14.7

10 6.2 8.0

20 4.2 5.4

30 3.8 4.5

Table 6: FMS-GEN Evaluation, Impact of P.

LG GAP-MEAN GAP-VAR

10 9.3 11.7

20 9.1 11.4

50 6.2 7.0

100 2.9 4.1

Table 7: FMS-GEN Evaluation,

Impact of LG.

Large instances: For any instance, we evaluate the

improvement ratio IMPROVE = (Min(P) - Val(P,

LG))/Val(P,LG), where Min(P) is the value obtained while

running FMS-INIT(P) and Val(P, LG) is the value

obtained while running FMS-GEN(P, LG). IMPROVE(P,

LG) is the mean IMPROVE value on 5 instance package

defined by parameter values: NA = 66256; NOD = 100; α =

0.5; L = 0.2. We use Q = 15 and Π = 1.

P LG IMPROVE(P, LG) Mean-CPU

4 10 4.6 451

4 20 7.2 828

4 50 9.6 1830

10 10 3.3 1296

10 20 5.8 2265

10 50 7.3 4520

Table 8: FMS-GEN Evaluation, Large Instances,

Impact of P and LG.

General comment: The GRASP scheme is less accurate the

the GA scheme, but it is more flexible and tackles more

easily large scale instances. When it comes to practical

applications, accuracy is not such an issue. So it comes that

we may consider here that, from this point of view, GRASP

performs better.

VII. CONCLUSION

Reformulating the FMS model through through implicit

representations allows us to design efficient GRASP and

genetic algorithms. Still, we notice that since those

algorithms rely on sophisticated LP techniques, we should

now study the way to efficiently involve recently emerging

generic framework, like ILP software SCIP/CPLEX, in such

a way development and maintenance costs be minimized.

REFERENCES

1. AHUJA. R.K, MAGNANTI. T.L, ORLIN. J.B, REDDY.

M.R: Applications of network optimization; Chap. 1

Network Models, Handbook O.R & Manag. Sci. 7, p 1-

83, ISBN 013617549X, (1995).

2. ARONSON. J.E: A survey on dynamic network flows ; Ann.

Op. Res. 20, p 1-66, DOI 10.1007/BF02216922, (1989).

3. CORDEAU. J.P, TOTH. P, VIGO. D: A survey of

optimization models for train routing and scheduling;

Transportation Science 32, p 380-404, DOI

10.1287/trsc.32.4.380, (1998).

4. CRAINIC. T, .GENDREAU. M, FARVOLDEN. M: A

simplex based Tabu search method for network design;

INFORMS Journal on Computing 12, p 223-236, DOI

10.1287/ijoc.12.3.223.12638, (2000).

5. RESENDE. M, RIBEIRO. C: Greedy Random Adaptive

Procedure, Handbook of Metaheuristics, Int. Series on O.R

and Manageent Sciences, 146, p 283-319, DOI

10.1007/978-1-4419-1665-5_10, (2002).

6. EL GHAZALI. T: Metaheuristics from Design to

Implementation, Wiley Interscience, ISBN 978-0-470-

49690-9 (2009).

7. REEVES C.R: Genetic algorithms for the operations

researcher; INFORMS Journal of Computing 9, 3, p 231-

250, DOI 10.1007/0-306-48056-5_3, (1997).

8. ANGELOVA. M, ATANASSOV. K, PENCHEVA. T:

Purposeful model parameter genesis in simple genetic

algorithms; Computer and Mathematics with

Applications 64, p 221-228, DOI

10.1016/j.camva.2012.01.047, (2012)

9. QUILLIOT. A, LIBERALINO. H, BERNAY.B:: Large

Scale Multi-Commodity Flow Handling on Dynamic

Networks, Proc. LSSC 2013, Szozopol, Bulgaria, to appear

in LNCS 8353, Springer, (2013).

10. BORNDORFER. R, GROTSCHEL. M, LOBEL. A:

Optimization of transportation systems, Konrad-Zuse-

Centrum Information Technik Berlin, Report 98-09,

(1998).

492 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

