

Routing on Dynamic Networks: GRASP versus Genetic

Benoit Bernay Université Blaise Pascal LIMOS CNRS Laboratory, LABEX IMOBS3 Clermont-Ferrand 63000, France Email: bernay@isima.fr Samuel Deleplanque Université Blaise Pascal LIMOS CNRS Laboratory LABEX IMOBS3 Clermont-Ferrand 63000, France Email: deleplanque@isima.fr

Alain Quilliot Université Blaise Pascal LIMOS CNRS Lab. LABEX IMOBS3 Clermont-Ferrand, France Email : alain.quilliot@isima.fr

Abstract—We address here a large scale routing and scheduling transportation problem, through introduction of a flow model designed on a dynamic network. We deal with this model while using a master/slave decomposition scheme, and testing the behavior on this scheme of both a GRASP algorithm and a Genetic algorithm.

I. INTRODUCTION

WE ALREADY introduced (see [9]), in the context of a partnership with an industrial player, a flow/multicommodity flow model **FMS** which aimed at optimizing the management of a urban shuttle fleet. This model involved a dynamic network (see [2, 10]), that is a network with time indexed vertices, which made easy expressing temporal constraints. At this time we designed a GRASP algorithmic scheme, which allowed us handling a kind of large scale pre-emptive *Pick Up and Delivery* problem (see [10]), while using an ad hoc aggregation mechanism and performing random negative circuit cancelling.

We consider here the same model FMS, close to CFA (Capacitated Flow Assignment) models (see [1]) used in telecommunications, but we deal with it in a simpler way, while using an auxiliary cost vector as the master variable of a master/slave decomposition scheme. This scheme induces the design of resolution heuristics which mainly rely on simple shortest path procedures instead of complex negative circuit cancelling procedure, and whose generic features makes implementation easier. While next section II is devoted to a rough description of the FMS model, our main contribution is about the description in Section III of this master/slave decomposition scheme, from which we derive (sections IV and V) both a GRASP (Greedy Random Adaptive Search Procedure, see [5, 6]) algorithm, and a genetic algorithm (see [6, 7, 8]). We detail the way those algorithms are implemented, and test (Section VI) their respective behaviors.

II. THE FMS MODEL

A. Main Notations and Definitions

A network *G*, with vertex set *X* and arc set *E*, is denoted by G = (X, E). A *flow* vector is an arc indexed vector *f* with rational or integral values such that, for every vertex *x*, we have $\Sigma_{e \text{ enter into } x} f_e = \Sigma_{e \text{ comes out } x} f_e$ (*Kirchhoff Law*). The *arc support* of *f* is the arc subset *Arc-Supp(f)* \subseteq *E*, which contains all arcs $e \in E$ such that $f_e \neq 0$. A *multi-commodity flow* vector *f* is a flow vector collection $f = \{f(k), k \in K\}$. *Sum(f)* is the *Aggregated Flow Sum(f)* = $\Sigma_{k \in K} f(k)$.

B. The Shuttle Problem (see [16])

We consider a Urban Area network H = (Z, U): nodes of H mean either production sites y_1, \ldots, y_m (m = 7 in the original application), or residential areas, and arcs mean elementary connections. A demand D_k , $k \in K$, is a 4-uple (o_k , d_k : origin/destination nodes, L_k : Load, t_k : deadline): L_k users have to be transported from o_k and to d_k (at least one of both nodes being an industrial node) while starting (arriving) after (before) time st_k (at_k). Quality of Service (QoS) requires this trip not to last more than T_k time units. Users alternatively walk and use a *shuttle* system; so, every arc *e* of H is endowed with a *walking* length $l_p(e)$ and with a vehicle length $l_{\nu}(e)$. Vehicles start from and end into a Depot node. Our goal is to route the shuttles while meeting the demands and minimizing both the number of vehicles (Fixed Investment Cost) and their running times (Running Cost). Route preemption is allowed: several vehicles may be involved in meeting a given demand.

C. The Dynamic Network H-Dyn.

We derive it from *H* by associating (see 2, 8, 10), with any node *x* of *Z*, (*NP*+1) copies of *x*, indexed from 0 to *NP*, which represent the states of *x* at the instants 0, δ ,..., *NP*. δ ;

δ is an elementary time unit, chosen between 3 mn and 6 mn in our application; *NP* is a parameter which fixes the planning period (between 2 and 3 h). We add 2 fictitious vertices *DP*, *DP** and set *X* = {*x_r*, *x* ∈ *Z*, *r* ∈ 0,..., *NP*} ∪ {*DP*, *DP**}. As for the arc set *E*, we round modulo δ the *vehicle* and *walking* lengths of any arc *u* in *U* by setting: $l^*_p(u) = \lceil l_p(u)/\delta \rceil$, $l^*_v(u) = \lceil l_v(u)/\delta \rceil$; then we define the labeled arc family *E* as containing:

- *wait* arcs (x_r, x_{r+1}), x ∈ Z, r ∈ 0,..., NP-1 : such an arc is considered twice, with *walk* and *vehicle* labels;
- arcs $(DP, Depot_r)$, $(Depot_r, DP^*)$, $r \in 0, ..., NP$, with *vehicle* labels.
- arcs $(x_r, z_{r+l^*v(u)}), u = (x, z) \in U, r$ such that $0 \le r \le NP l^*_v(u)$, with *vehicle* label;
- walk arcs $(x_r, z_{r+l^*p(u)}), u = (x, z) \in U, r$ such that $0 \le r \le NP l^*_p(u)$, with walk label;
- a *backward* arc (*DP**, *DP*).

We denote by A the subset of E defined by the vehicle arcs. We provide, in a natural way, any arc e with an Economical Cost c_e and a QoS Cost p_e .

Fig. 1: Urban Transit Network H = (Z, U)

Fig. 2: Dynamic Network H-Dyn = (X, E).

Remark 1: *Size of H-Dyn.* We consider that (x, y) is an arc of *H* if a vehicle may move from *x* to *y* during time unit δ . If *H* contains 200 nodes, *H-Dyn* may contain up to 10⁵ arcs.

D. The Flow/Multi-commodity Shuttle Model (FMS)

We want to route both vehicles and users. Aggregating vehicle routes yields, on the dynamic network H-Dyn = (X, E), some **integral flow vector** F, and that user's routes may be represented as a **rational multi-commodity flow** $f = \{f(k), k \in K\} \ge 0$. Measuring f in such a way the capacity of any vehicle becomes equal to 1 yields the following **FMS**: *Flow/Multi-Commodity Flow Shuttle* model:

FMS: *Flow/Multi-Commodity Flow Shuttle* Model. **Input**: The *Urban Area* network H = (Z, U), and the discrete time space $\{0, .., N\delta\}$;

Output: Compute, on the dynamic network *H-Dyn* an integral flow vector *F*, and a **rational multi-commodity flow** $f = \{f(k), k \in K\} \ge 0$, such that:

- *F* is null on the *walk* arcs ;
- For any $k \in K$, f(k) routes L_k users from o_k to d_k between time st_k and time at_k ;
- $g = Sum(f)_e = \sum_{k,e} f(k)_e \leq F_e$, for any arc of *H*-Dyn with vehicle label;
- $Cost(F) + QoS(f) = c.F + p.Sum(f) = \sum_{e \text{ in } A} c_e.F_e$ + $\sum_{e \text{ in } E} p_e.Sum(f)_e$ is minimal

Conversely, if *F* and *f* satisfy **FMS** constraints and if *Route Preemption* is allowed, then they yield a feasible solution of the *Shuttle* Problem. Our model casts *temporal constraints* into the construction of the network *H-Dyn*. We denote by **FMS**_{*g*} the time-polynomial min cost integral flow problem which derives from **FMS** by fixing g = Sum(f).

Remark 2: *FMS Model Size*. If the number of demands is 250, then the size of f may be up to 25 10^6 : the resulting **FMS** model is a large scale NP-Hard MIP problem.

III. FUNDAMENTAL TOOLS

Before describing algorithm, we need to specify which objects and procedures they will involve.

A.A Master/Slave Encoding of a FMS Solution

The quality of a **FMS** solution relies on its ability to make users share vehicles. While the size *H-Dyn* may eventually be very large, the number of arcs which are going to support non null *F* and g = Sum(f) is comparatively small. So, a key object in our model should be the *arc support set* A = Arc- $Supp(F) = \{e \in E \text{ such that } F_e \neq 0\}$ of *F*. The following theoretical result, whose proof can be obtained through standard mathematical programming techniques, will help us in dealing with this *arc support set*:

Dualization Theorem: Let (F, f) an optimal solution of the **FMS** model. Then there exists a price vector $\mu \ge 0$, with indexation on the arc set of H-Dyn, such that:

- $\mu_e = 0$ for any arc e which is a walk arc or a wait arc and which is not in A;
- $\mu_e \ge c_e$ for any arc e in A; $\mu_e = +\infty$ for any vehicle arc e which is not in A;
- Every flow f(k) is an optimal solution of the min cost flow problem defined by: (E1)
 - for every $k \in K$, f(k) routes load L_k f(k) from o_k to d_k between time st_k and time at_k ;
 - $\Sigma_e (\mu_e + p_e) \cdot f(k)_e$ is the smallest possible.

So, the knowledge of both *arc support set A* and cost vector μ allow us to derive, through shortest path procedures, the aggregated flow g = Sum(f). Flow vector F is computed as a solution of \mathbf{FMS}_g . We impose every vector f(k), $k \in K$, to be routed along a single path. So, a well-fitted representation of a **FMS** solution is given by:

- the set Arc-Supp $(F) = \{e \in E \text{ such that } F_e \neq 0\};$

- the related cost vector $\mu = \mu_e, e \in A$.

Those objects define the *Master* part of such a solution, whose *Slave* part is defined by *F* and the collection $\Gamma(k)$ of the paths followed by the flow vectors f(k), k in *K*.

B. Dealing with the FMS_g Problem

We deal with FMS_g through *column generation*, while using an arc/path formulation of FMS_g :

FMS_g:{ Λ denotes the set of paths from *DP* to *DP**; Compute a vector $G = (G_{\gamma}, \gamma \in \Lambda) \ge 0$, with rational values, such that:

 o for any arc *e* of *H*-Dyn with vehicle label, Σ_γ such that *e* ∈ γ G_γ ≥ $\lceil g_e \rceil$;
 o Σ_γ Cost(γ).G_γ is minimal}

If Λ_0 is some *active* subset of Λ , and if $\lambda = (\lambda_e, e$ in the arc subset of *H-Dyn* with *vehicle* label) ≥ 0 is a dual solution of the restriction of **FMS**_g to Λ_0 , then the related *Pricing* (search for the new entering column) sub-problem is as a largest path problem, handled by Bellman algorithm. So, when dealing with the **FMS**_g problem, we do in such a way that we are always provided with some current *active* path subset Λ_0 of Λ , which evolves in an incremental way.

C. Deriving the paths $\Gamma(k)$ from A and μ .

Dualization Theorem tells us that support set A and cost vector μ should identify the arcs along which users are going to share a same vehicle. If A and μ were conveniently chosen, paths $\Gamma(k)$, $k \in K$, should be shortest paths for cost vector $(p + \mu)$. So, all throughout the execution of our processes, we derive paths $\Gamma(k)$, $k \in K$, as shortest paths for the following cost vector $C^{A,\mu}$:

- If *e* is a *walk* other *wait* arc which is not in *A*, then C_e^A = p_e ;
- If e is in A, then $C_e^A = \mu_e + p_e$;
- Else $C_{e}^{A} = p_{e} + c\mu^{*}$, where $\mu^{*} = \text{Max}_{e \in A} \mu_{e}/c_{e}$. (E2)

As a matter of fact, for a given *vehicle* arc $e \notin A$, we apply (E2), which means that we want to keep paths $\Gamma(k)$, $k \in K$ from using vehicle arcs which are not in A, only when no path $\Gamma(k)$, $k \in K$ involves e. Else, we use μ^* defined by:

 $\mu^* = \text{Mean Value}_{e \in A} \mu_e.$

D. A Randomized Initialization

This initialization procedure **FMS-INIT** works through successive insertions of demands D_k , $k \in K$, into a current aggregated flow vector g:

FMS-INIT Procedure:

```
- g: current aggregated flow vector; K_0: set of inserted
      demands;
 - F and \lambda: primal and dual solutions of FMS<sub>g</sub>;
- \Lambda_0 = set of active vehicle paths;
While K - K_0 is not empty do
      Randomly Pick up k \in K - K_0 and Insert it into
      K_0: route demand k according to some path \Gamma(k)
      in H-Dyn, in such a way that:
                                                      (I1)
         \circ \Gamma(k) connects o_k to d_k, while satisfying
               related temporal constraints;
         o the induced increase in the cost \lambda. \lceil g \rceil + p.g
              is the smallest possible ;
      Update F, \lambda and \Lambda_0.
Set A = Arc Support of F; For every arc e in A, set:
      \mu_e = \lambda_e \cdot \lceil g_e \rceil.
                             (I2)
```

The above *Insert* instruction (I1) is handled by a *shortest path* Bellman-like Algorithm.

E.Local Transformation and Mutation Operators

The **FMS-INIT** previous process gives rise in a generic way to a local transformation operator *TRANS*, which acts on a current solution A, μ , F, $\Gamma = \{\Gamma(k), k \in K\}$ as follows:

Local Operator *TRANS*(*K*₀: *K*₀ subset of *K*)

- Randomly select $K_0 \subseteq K$ and withdraws paths-flows $\{f(k), k \in K_0\}$ from g; Update flow vector F;
- Reinsert demands D_k , $k \in K_0$, according to the III.D, while starting from current partial solution (F, g);
- Consequently update A and μ .

Operator **TRANS** will be used here in both GRASP scheme, according to a *Descent* strategy and in a genetic meta-heuristic scheme, as a *mutation* operator.

F.Crossover Operator

Given two feasible **FMS** solutions A_1 , μ_1 , F_1 , $\Gamma_1 = {\Gamma_1(k), k \in K}$ and A_2 , μ_2 , F_2 , $\Gamma_2 = {\Gamma_2(k), k \in K}$. SON-CREATE derives children (A, μ) and (A', μ') as follows:

Crossover Operator SON-CREATE:

For every arc *e* in $(A_1 \cap A_2)$, insert *e* into both *A* and *A*' and randomly assign related value μ_e or μ'_e with one of both values $(\mu_{1,e} + \mu_{2,e})/2$ and $(3.\mu_{1,e} - \mu_{2,e})/2$; For every arc *e* in $(A_1 - A_2) \cup (A_2 - A_1)$, randomly insert *e* into either *A* or *A*' and randomly assign related value μ_e or μ'_e with one of both values $(\mu_{1,e} + \mu_{2,e})/2$ or $(3.\mu_{1,e} - \mu_{2,e})/2$;

Compute path collections $\Gamma = \{\Gamma(k), k \in K\}$ and $\Gamma' = \{\Gamma'(k), k \in K\}$ as in III.C; Compute *F* and *F'* flow vectors as in III.B, together with dual vectors λ and λ' ; Update cost vectors μ and μ' according to (I2).

IV. A GRASP ALGORITHM FMS-GRASP FOR FMS

A GRASP: *Greedy Random Adaptive Search Procedure* (see [5, 6]) algorithmic scheme works by performing first a greedy randomized initialization process, and next a descent loop. It may be run according to several replications, either in a sequential or in a parallel mode. Here, we get:

FMS-GRASP(*R*: Replication Number, *Q*: Subset Size, Loop: Loop Length Bound); For i = 1..*R* do Initialize *A*, μ , *F*, $\Gamma = {\Gamma(k), k \in K}$ through **FMS-INIT**; Possible; While Possible do (I3: Descent loop) Modify *A*, μ , *F*, $\Gamma = {\Gamma(k), k \in K}$ in such a way cost *c*.*F* + *p*.*g* is improved; If Failure(Modify) then Not Possible; The result of **FMS-GRASP** is the best *A*, μ , *F*, $\Gamma = {\Gamma(k), k \in K}$ ever obtained.

(I3) involves the TRANS operator as follows:

Possible; While Possible do Trial-Number <- 1; Success <- False; Do Until Success or Trial-Number > Loop Generate $K_0 \subseteq K$ with cardinality Q; Save current $A, \mu, F, \Gamma = \{\Gamma(k), k \in K\}; (I4)$ Apply TRANS(K_0) to A, μ, F, Γ ; If c.F + p.g is improved then Success Else Restore A, μ, F, Γ ; Trial-Number <- Trial-Number + 1; Possible <- Success;

Choosing K_0 in the (I4) Instruction: it is defined by the paths { $\Gamma(k)$, $k \in K$ } which contain the arcs *e* with the highest ($\mu_e + p_e$) values.

A *Random Walk* Variant of FMS-GRASP: Because of the computing costs induced by Instruction (I4), we also implement a *Random Walk* strategy:

FMS-GRASP-1(*R*: *Replication Number*; *RW*: *Loop Length Bound*; *Q*: *Subset Size*); For i = 1..*R* do Initialize *A*, μ , *F*, $\Gamma = {\Gamma(k), k \in K}$ through **FMS-INIT**; For *Counter* = 1..*RW* do (I4.1: *Random Walk* loop) Generate $K_0 \subseteq K$ with cardinality *Q*; Apply *TRANS*(K_0) to *A*, μ , *F*, Γ ; The result is the best (*A*, μ , *F*, Γ) ever obtained.

V. A GENETIC ALGORITHM FMS-GEN FOR FMS

The main components of a *Genetic* algorithm are (see [6, 7, 8]): its *Encoding* scheme (*Chromosome* Representation); the *Initialization* Procedure which yields the initial *population* Σ ; its *Mutation* operator; its *Crossover* operator.

Clearly, the *Encoding* scheme is the encoding scheme of Section III.A whose *master* objects are:

- the arc support set Arc-Supp $(F) = \{e \in E \text{ such that } F_e \neq 0\}$ of F;

- the related cost vector $\mu = \mu_e$, $e \in A$;

and the *slave* objects are the flow vector *F* and the path collection $\Gamma = \{ \Gamma(k), k \in K \}.$

Initialization is performed through $Card(\Sigma)$ successive applications of **FMS-INIT**.

Mutation results from application of the operator *TRANS*, with parameter K_0 generated with a given cardinality Q, Q becoming a parameter of the global process:

FMS-Mutation(A, μ , F, $\Gamma = \{\Gamma(k), k \in K\}$, Q); Generate some subset K_0 of K with cardinality Q; Apply *TRANS*(K_0) to A, μ , F, Γ ;

The *FMS-Crossover crossover* operator is the **SON-CREATE** operator of Section III.F.

What remains to be discussed here is the *Fitness* Criterion, and the way *FMS-Crossover* is applied:

- Given (A₁, μ₁, F₁, Γ₁ = {Γ₁(k), k ∈ K}) and (A₂, μ₂, F₂, Γ₂ = {Γ₂(k), k ∈ K}) in current population Σ, *Fitness* is related here to the cardinality of the difference set (A₁ - A₂) ∪ (A₂ - A₁): the smallest is it, the largest is the *Fitness* measurement;
- Best-fitted pairs are selected, in order to avoid *cloning*, with the constraint that no solution σ belongs to more than 2 pairs. It is done in a heuristic way.

The main parameters of the deriving Genetic Algorithm **FMS-GEN** are the *population* size P, the number LG of iterations of *mutation/crossover* process and the *size* Q.

VI. NUMERICAL EXPERIMENTS

Experiments are performed on a LINUX server CentOS 5.4, Processor Intel Xeon 3.6 GHZ, with help of the CPLEX 12 library.

A.Instance Generation

An instance is defined by: the *Urban Area* network H = (Z, U), with *n* vertices and *m* arcs; *demands* D_k , $k \in K$; *walking* lengths $l_p(e)$, and *vehicle* lengths $l_v(e)$, $e \in U$; *Vehicle* cost vector *c* and *User* cost vector *p*; the size *NP* of the time-space; the arc number *NA* of *H*-Dyn. We generate our own small and large instances: nodes of *H* are points of the 2D Euclidean space, with adjacency related to distance thresholds; *demands* D_k , $k \in K$ are randomly generated through uniform distribution.

B. Evaluation of FMS-INIT.

We first consider small instances, for which we get an exact optimal value through the CPLEX.12 Library, and next consider larger size instances, with focus on the large scale issue. In both cases:

- *n*, *m* are respectively the node and arc numbers of *H*, *NP* is the period number, *NOD* is the number of demands; *L* is the mean value of loads *L_k*, *k* ∈ *K*, and α is the mean ration *p_e/c_e*, *e* ∈ *E*.
- *R* is the replication number of **FMS-INIT**.

Small instances: We focus on precision of **FMS-INIT**, and test packages of 10 instances. *GAP-MEAN* is the mean error GAP = (VAL - OPT)/OPT: VAL = cost value computed by **FMS-INIT**, OPT = optimal value computed by CPLEX.12. *GAP-VAR* is the variance of *GAP*. We get:

R	GAP-MEAN	GAP-VAR
1	22.5	25.8
5	17.3	20.7
10	13.4	17.9
20	11.9	15.4
50	10.5	13.6

Table 1: FMS-INIT Evaluation, Small Instances, 10 instances/packages; **Group-Instance**: n = 10, m = 30, NP = 10; NOD = 10; $\alpha = 0.5$; L = 0.2; Impact of *R*.

Analysis: Parameter R plays a key role. *GAP-VAR* is usually large: a single **FMS-INIT** run may yield poor solutions.

Large instances: We focus here on CPU times and on the sensitivity to parameter R: V(R) is the mean value (Max(R) - Min(R))/Min(R), where Max(R) and Min(R) are respectively the worse and best values obtained through **FMS-INIT**(R), while Var-V(R) is the related variance. *Mean-CPU* is the mean running time, while Var-CPU is the related variance.

R	V(R)	Var-V(R)	Mean-CPU (in s)	Var-CPU
1	0.0	0.0	24.8	12.5
5	0.08	0.05	98.5	67.2
10	0.14	0.04	177	101.0
20	0.18	0.04	329	151.4
50	0.22	0.03	745	256.1

Table 2: FMS-INIT Evaluation, Large Instances, 10 instances/packages; **Group-Instance**: NA = 66256; NOD = 100; $\alpha = 0.5$; L = 0.2; Impact of *R*.

Analysis: The replication mechanism is crucial.

C. Evaluation of FMS-GRASP.

We focus on the respective ability of the standard Descent loop with parameter TH and of the random walk with parameter RW to improve the initial solution.

Small instances, 10 instances/packages with n = 10, m = 30, NP = 10, NOD = 10, L = 0.2; $\alpha = 0.5$: *GAP-MEAN* is the mean error *GAP* = (*VAL* – *OPT*)/*OPT*, where *VAL* is computed by **FMS-GRASP**, and *GAP-VAR* is the variance of *GAP*. We use R = 10, Q = 3.

TH	GAP-MEAN	GAP-VAR
1	13.1	17.8
4	11.3	11.0
8	9.4	9.5
15	7.2	8.3

Table 3: FMS-GRASP/Descent: Impact of TH

RW	GAP-MEAN	GAP-VAR
1	13.3	17.8
4	11.5	13.1
10	9.3	11.8
40	6.8	8.8
80	3.8	5.1

 Table 4: FMS-GRASP/Random Walk:

 Impact of RW

Analysis: Random Walk is more efficient than Descent.

Large instances, 10 instances/packages, with NA = 66256; NOD = 100; $\alpha = 0.5$; L = 0.2. *IMPROVE* = (*Min*(*R*) - *Val*(*R*, *RW*))/*Val*(*R*, *W*), where *Min*(*R*) is computed by **FMS-INIT**(*R*) and *Val*(*R*, *W*) is computed by **FMS-GRASP**(*R*, *RW*). *IMPROVE*(*R*, *RW*) is the mean *IMPROVE* Value.

R	RW	IMPROVE(R, RW)	Mean-CPU
1	5	2.3	39
1	100	9.8	249
5	5	1.7	151
5	100	9.1	1012
10	5	1.4	257
10	100	6.7	1618

 Table 5: FMS-GRASP Evaluation, Large Instances:

 Impact of *R* and *RW*.

D. Evaluation of FMS-GEN.

We use the same tests as in Section VI.C. *P* is the size of the population, *LG* is the length of the main loop of the process. The population Σ is initialized by **FMS-INIT**(*P*).

Small instances: 10 instance packages with n = 10, m = 30, NP = 10; NOD = 10; L = 0.2; $\alpha = 0.5$; GAP-MEAN is the mean error GAP = (VAL - OPT)/OPT, where VAL is the cost value of the solution which is computed by **FMS-GEN**, and *OPT* is the optimal result computed by CPLEX.12 *GAP-VAR* is the variance of *GAP*. We focus on difficult instances, and deal with rather small populations (no more than 30) and small LG values. We use P = 10, Q = 3; $\Pi = 1$;

Р	GAP-MEAN	GAP-VAR
4	10.3	14.7
10	6.2	8.0
20	4.2	5.4
30	3.8	4.5

Table 6: FMS-GEN Evaluation, Impact of P.

LG	GAP-MEAN	GAP-VAR
10	9.3	11.7
20	9.1	11.4
50	6.2	7.0
100	2.9	4.1

Table 7: FMS-GEN Evaluation,Impact of LG.

Large instances: For any instance, we evaluate the improvement ratio IMPROVE = (Min(P) - Val(P, LG))/Val(P,LG), where Min(P) is the value obtained while running **FMS-INIT**(P) and Val(P, LG) is the value obtained while running **FMS-GEN**(P, LG). IMPROVE(P, LG) is the mean IMPROVE value on 5 instance package defined by parameter values: NA = 66256; NOD = 100; $\alpha = 0.5$; L = 0.2. We use Q = 15 and $\Pi = 1$.

Р	LG	IMPROVE(P, LG)	Mean-CPU
4	10	4.6	451
4	20	7.2	828
4	50	9.6	1830
10	10	3.3	1296
10	20	5.8	2265
10	50	7.3	4520

Table 8: FMS-GEN Evaluation, Large Instances,Impact of P and LG.

General comment: The GRASP scheme is less accurate the the GA scheme, but it is more flexible and tackles more

easily large scale instances. When it comes to practical applications, accuracy is not such an issue. So it comes that we may consider here that, from this point of view, GRASP performs better.

VII. CONCLUSION

Reformulating the **FMS** model through through implicit representations allows us to design efficient GRASP and genetic algorithms. Still, we notice that since those algorithms rely on sophisticated LP techniques, we should now study the way to efficiently involve recently emerging generic framework, like ILP software SCIP/CPLEX, in such a way development and maintenance costs be minimized.

REFERENCES

- AHUJA. R.K, MAGNANTI. T.L, ORLIN. J.B, REDDY. M.R: Applications of network optimization; Chap. 1 Network Models, Handbook O.R & Manag. Sci. 7, p 1-83, ISBN 013617549X, (1995).
- ARONSON. J.E: A survey on dynamic network flows; Ann. Op. Res. 20, p 1-66, DOI 10.1007/BF02216922, (1989).
- CORDEAU. J.P., TOTH. P., VIGO. D: A survey of optimization models for train routing and scheduling; Transportation Science 32, p 380-404, DOI 10.1287/trsc.32.4.380, (1998).
- CRAINIC. T, .GENDREAU. M, FARVOLDEN. M: A simplex based Tabu search method for network design; INFORMS Journal on Computing 12, p 223-236, DOI 10.1287/ijoc.12.3.223.12638, (2000).
- RESENDE. M, RIBEIRO. C: Greedy Random Adaptive Procedure, Handbook of Metaheuristics, Int. Series on O.R and Manageent Sciences, 146, p 283-319, DOI 10.1007/978-1-4419-1665-5_10, (2002).
- EL GHAZALI. T: Metaheuristics from Design to Implementation, Wiley Interscience, ISBN 978-0-470-49690-9 (2009).
- REEVES C.R: Genetic algorithms for the operations researcher; INFORMS Journal of Computing 9, 3, p 231-250, DOI 10.1007/0-306-48056-5_3, (1997).
- ANGELOVA. M, ATANASSOV. K, PENCHEVA. T: *Purposeful model parameter genesis in simple genetic algorithms*; Computer and Mathematics with Applications 64, p 221-228, DOI 10.1016/j.camva.2012.01.047, (2012)
- QUILLIOT. A, LIBERALINO. H, BERNAY.B:: Large Scale Multi-Commodity Flow Handling on Dynamic Networks, Proc. LSSC 2013, Szozopol, Bulgaria, to appear in LNCS 8353, Springer, (2013).
- BORNDORFER. R, GROTSCHEL. M, LOBEL. A: Optimization of transportation systems, Konrad-Zuse-Centrum Information Technik Berlin, Report 98-09, (1998).