
Abstract—We  address  here  a  large  scale  routing  and
scheduling transportation problem, through introduction of a
flow model designed on a dynamic network. We deal with this
model while using a master/slave decomposition scheme, and
testing  the  behavior  on  this  scheme  of  both  a  GRASP
algorithm and a Genetic algorithm. 

I. INTRODUCTION

E ALREADY introduced (see [9]), in the context of

a partnership with an industrial player, a flow/multi-

commodity flow model  FMS which aimed at  optimizing

the management  of  a  urban shuttle fleet.  This model in-

volved a dynamic network (see [2, 10]), that is a network

with time indexed vertices,  which  made easy expressing

temporal constraints.  At this time we designed a GRASP

algorithmic scheme, which allowed us handling a kind of

large scale pre-emptive Pick Up and Delivery problem (see

[10]), while using an ad hoc aggregation mechanism and

performing random negative circuit cancelling.     

W

We consider here the same model  FMS, close to  CFA

(Capacitated Flow Assignment)  models (see [1]) used in

telecommunications, but we deal with it in a simpler way,

while using an auxiliary cost vector as the master variable

of  a  master/slave  decomposition  scheme.  This  scheme

induces  the design  of  resolution  heuristics which mainly

rely on simple shortest path procedures instead of complex

negative circuit  cancelling procedure,  and whose generic

features makes implementation easier. While next section

II is devoted to a rough description of the FMS model, our

main contribution is about the description in Section III of

this  master/slave  decomposition  scheme,  from which  we

derive  (sections  IV  and  V)  both  a  GRASP  (Greedy

Random Adaptive Search Procedure, see [5, 6]) algorithm,

and a  genetic algorithm (see [6, 7, 8]). We detail the way

those  algorithms are  implemented,  and  test  (Section  VI)

their respective behaviors.

II. THE FMS MODEL

A. Main Notations and Definitions

A network G, with vertex set X and arc set E, is denoted

by G = (X, E). A flow vector is an arc indexed vector f with

rational or integral values such that, for every vertex x, we

have Σ e enter into  x fe = Σ e comes out  x fe (Kirchhoff Law). The arc

support of  f is  the  arc  subset  Arc-Supp(f)  ⊆ E,  which

contains all arcs e ∈ E such that fe ≠ 0. A multi-commodity

flow vector  f is a flow vector collection f  = {f(k),  k ∈ K}.

Sum(f) is the Aggregated Flow Sum(f) = Σ k ∈ K f(k).  

B. The Shuttle Problem (see [16])

We consider a Urban Area network H = (Z, U): nodes of H
mean either production sites y1,…,ym  (m = 7 in the original
application), or residential areas, and arcs mean elementary

connections.   A demand  Dk,  k  ∈ K,  is  a  4-uple (ok,  dk:

origin/destination  nodes,  Lk:  Load,  tk:  deadline):  Lk users
have to be transported from ok and to dk (at least one of both
nodes  being  an  industrial  node)  while  starting  (arriving)
after  (before)  time  stk (atk).   Quality  of  Service (QoS)
requires this trip not to last more than Tk time units. Users
alternatively walk and use a shuttle system; so, every arc e
of  H is endowed with a  walking length  lp(e) and with  a

vehicle length  lυ(e).  Vehicles  start  from  and  end  into  a

Depot node. Our goal is to route the shuttles while meeting
the demands and minimizing both the number of vehicles
(Fixed Investment Cost) and their running times (Running
Cost).  Route preemption is allowed: several vehicles may
be involved in meeting a given demand. 

C. The Dynamic Network H-Dyn.    

We derive it from H by associating (see 2, 8, 10), with
any node x of Z, (NP+1) copies of x, indexed from 0 to NP,

which represent the states of x at the instants 0, δ,…, NP.δ;
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δ  is an elementary time unit, chosen between 3 mn and 6 

mn in our application; NP is a parameter which fixes the 

planning period (between 2 and 3 h). We add 2 fictitious 

vertices DP, DP* and set X = {xr, x ∈ Z, r ∈ 0,…, NP} ∪ 

{DP, DP*}. As for the arc set E, we round modulo δ the 

vehicle and walking lengths of any arc u in U by setting: 

l*p(u) =   lp(u)/δ,  l*v(u) =   lv(u)/δ; then we define the 

labeled arc family E as containing:    

• wait arcs (xr, xr+1),  x ∈ Z, r ∈ 0,…, NP-1 : such an arc is 

considered twice, with walk and vehicle  labels;    

• arcs (DP, Depotr),  (Depotr, DP*), r ∈ 0,…, NP, with 

vehicle labels.     

• arcs (xr, zr+l*v(u)), u = (x, z) ∈ U,  r  such that 0 ≤ r ≤  NP 

- l*v(u), with vehicle label; 

• walk arcs (xr, zr+l*p(u)), u = (x, z) ∈ U,  r such that 0 ≤ r ≤  

NP - l*p(u), with walk label; 

• a backward arc (DP*, DP). 

We denote by A the subset of E defined by the vehicle arcs. 

We provide, in a natural way, any arc e with an Economical 

Cost ce and a QoS Cost pe . 

 

 

 Fig. 1: Urban Transit Network H = (Z, U) 

 

 

 Fig. 2: Dynamic Network H-Dyn = (X, E). 

 

Remark 1: Size of H-Dyn. We consider that (x, y) is an arc 

of H if a vehicle may move from x to y during time unit δ. If 

H contains 200 nodes,  H-Dyn may contain up to 10
5
 arcs.  

 

 

D. The Flow/Multi-commodity  Shuttle Model 

(FMS) 

 

We want to route both vehicles and users. Aggregating 

vehicle routes yields, on the dynamic network H-Dyn = (X, 

E), some integral flow vector F, and that user’s routes may 

be represented as a rational multi-commodity flow f = 

{f(k), k ∈ K} ≥ 0. Measuring f in such a way the capacity of 

any vehicle becomes equal to 1 yields the following FMS: 

Flow/Multi-Commodity Flow Shuttle model: 

 

 

FMS: Flow/Multi-Commodity Flow Shuttle Model. 

Input: The Urban Area network H = (Z, U), and the 

discrete time space {0,., Nδ};  

Output: Compute, on the dynamic network H-Dyn 

an integral flow vector F, and a rational multi-

commodity flow f = {f(k), k ∈ K} ≥ 0, such that: 

- F is null on the walk arcs ; 

-  For any k ∈ K, f(k) routes Lk  users from ok to dk 

between time stk and time atk; 

- g = Sum(f)e  = Σk,e f(k)e  ≤  Fe, for any arc of H-

Dyn with vehicle label;     

- Cost(F) + QoS(f)  = c.F +  p.Sum(f) = Σe in A ce.Fe 

+  Σe in E pe.Sum(f)e is minimal 

 

Conversely, if F and f satisfy FMS constraints and if Route 

Preemption is allowed, then they yield a feasible solution of 

the Shuttle Problem. Our model casts temporal constraints 

into the construction of the network H-Dyn. We denote by 

FMSg the time-polynomial min cost integral flow problem 

which derives from FMS by fixing g = Sum(f).   

 

Remark 2: FMS Model Size. If the number of demands is 

250, then the size of  f may be up to 25 10
6
: the resulting 

FMS model is a large scale NP-Hard MIP problem.   

 

  

III. FUNDAMENTAL TOOLS 

 

Before describing algorithm, we need to specify which 

objects and procedures they will involve.   

 

A. A Master/Slave Encoding of a FMS Solution 

 

The quality of a FMS solution relies on its ability to make 

users share vehicles. While the size H-Dyn may eventually 

be very large, the number of arcs which are going to support 

non null F and g = Sum(f) is comparatively small. So, a key 

object in our model should be the arc support set A = Arc-

Supp(F) = {e ∈ E such that Fe ≠  0} of F. The following 

theoretical result, whose proof can be obtained through 

standard mathematical programming techniques, will help 

us in dealing with this arc support set: 

 

Dualization Theorem: Let (F, f) an optimal solution of the 

FMS model. Then there exists a price vector µ ≥ 0, with 

indexation on the arc set of  H-Dyn, such that: 

- µe = 0 for any arc e which is a walk arc or a wait arc 

and which is not in A;  

- µe  ≥  ce for any arc e in A; µe = + ∞ for any vehicle 

arc e which is not in A; 

- Every flow f(k) is an optimal  solution of the min cost 

flow problem defined by:  (E1) 

o for every k ∈ K, f(k) routes load Lk  f(k) from ok to 

dk between time stk and time atk; 

o Σ e (µe+ pe).f(k)e is the smallest possible.  
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 So, the knowledge of both arc support set A and cost 

vector µ allow us to derive, through shortest path 

procedures, the aggregated flow g = Sum(f). Flow vector F 

is computed as a solution of FMSg. We impose every vector 

f(k), k ∈ K, to be routed along a single path. So, a well-

fitted representation of a FMS solution is given by: 

- the set Arc-Supp(F) = {e ∈ E such that Fe ≠  0};  

- the related cost vector µ = µe, e ∈ A.   

Those objects define the Master part of such a solution, 

whose Slave part is defined by  F and the collection Γ(k) of 

the paths followed  by the flow vectors f(k), k in K. 

 

B.  Dealing with the FMSg Problem 

 

We deal with FMSg through column generation, while 

using an arc/path formulation of FMSg: 

 

FMSg:{Λ denotes the set of paths from DP to DP*;  

Compute a vector G = (Gγ, γ ∈ Λ) ≥ 0, with rational 

values, such that: 

o for any arc e of H-Dyn with vehicle label, Σ γ 

such that e ∈ γ  Gγ  ≥   ge ;      
o Σ γ Cost(γ).Gγ is minimal}  

  

If Λ0 is some active subset of Λ, and if λ = (λe, e in the arc 

subset of H-Dyn with vehicle label) ≥ 0 is a dual solution of 

the restriction of FMSg to Λ0, then the related Pricing 

(search for the new entering column) sub-problem is as a 

largest path problem, handled by Bellman algorithm.  So, 

when dealing with the FMSg problem, we do in such a way 

that we are always provided with some current active path 

subset Λ0 of Λ, which evolves in an incremental way.   

 

C. Deriving the paths Γ(k)  from A and µ. 

 

Dualization Theorem tells us that support set A and cost 

vector µ should identify the arcs along which users are 

going to share a same vehicle. If A and µ were conveniently 

chosen, paths Γ(k), k ∈ K, should be shortest paths for cost 

vector (p + µ). So, all throughout the execution of our 

processes, we derive paths Γ(k), k ∈ K, as shortest paths for 

the following cost vector C
A,µ

:  

- If e is  a walk other wait arc which is not in A, then C
A

e 

=  pe; 

- If e is in A, then C
A

e =  µe + pe; 

- Else C
A

e =  pe + cµ*, where µ* = Max e ∈ A µe/ce. (E2) 

 

As a matter of fact, for a given vehicle arc e ∉ A, we apply 

(E2), which means that we want to keep paths Γ(k), k ∈ K 

from using vehicle arcs which are not in A, only when no 

path Γ(k), k ∈ K involves e. Else, we use µ* defined by: 

µ*  = Mean Value e ∈ A µe.   

 

D. A Randomized Initialization   

 

This initialization procedure FMS-INIT works through 

successive insertions of demands Dk, k∈ K, into a current 

aggregated flow vector g:  

 

FMS-INIT Procedure: 

- g: current aggregated flow vector; K0: set of inserted 

demands; 

- F and λ: primal and dual solutions of FMSg;  

- Λ0 = set of active vehicle paths; 

While K – K0 is not empty do 

Randomly Pick up k ∈ K – K0 and Insert it into 

K0:  route demand k according to some path Γ(k) 

in H-Dyn, in such a way that:     (I1) 

o Γ(k) connects ok to dk , while satisfying 

related temporal constraints;  

o the induced increase in the cost λ. g + p.g  

is the smallest possible ; 

Update F, λ and Λ0. 

Set A = Arc Support of F; For every arc e in A, set: 

 µe = λe. ge.   (I2) 

 

The above Insert instruction (I1) is handled by a shortest 

path Bellman-like Algorithm. 

E. Local Transformation and Mutation Operators 

 

The FMS-INIT previous process gives rise in a generic 

way to a local transformation operator TRANS, which acts 

on a current solution A, µ, F, Γ = {Γ(k), k ∈ K} as follows: 

 

 Local Operator TRANS(K0: K0 subset of K) 

- Randomly select K0 ⊆ K and withdraws paths-flows 

{f(k), k ∈ K0}from g; Update flow vector F; 

- Reinsert demands Dk, k∈ K0, according to the III.D, 

while starting from current partial solution (F, g); 

- Consequently update A and µ. 

 

Operator TRANS will be used here in both GRASP 

scheme, according to a Descent strategy and in a genetic 

meta-heuristic scheme, as a mutation operator. 

 

F. Crossover Operator 

 

Given two feasible FMS solutions A1, µ1, F1, Γ1 = {Γ1(k), k 

∈ K} and A2, µ2, F2, Γ2 = {Γ2(k), k ∈ K}. SON-CREATE 

derives children (A, µ) and (A’, µ’) as follows:   
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Crossover Operator SON-CREATE: 

For every arc e in (A1 ∩ A2), insert e into both A and 

A’ and randomly assign related value µe or µ’e with 

one of both values (µ1,e  +  µ2,e )/2 and (3.µ1,e  -  µ2,e )/2;    

For every arc e in (A1 - A2) ∪ (A2 – A1), randomly 

insert e into either A or A’ and randomly assign related 

value µe  or µ’e with one of both values (µ1,e  +  µ2,e )/2 

or (3.µ1,e  -  µ2,e )/2; 

Compute path collections Γ = {Γ(k), k ∈ K} and Γ’ = 

{Γ’(k), k ∈ K} as in III.C; Compute F and F’ flow 

vectors as in III.B, together with dual vectors λ and λ’;  

Update cost vectors µ and µ’ according to (I2).   

IV. A GRASP ALGORITHM FMS-GRASP FOR FMS 

 

A GRASP: Greedy Random Adaptive Search Procedure 

(see [5, 6]) algorithmic scheme works by performing first a 

greedy randomized initialization process, and next a descent 

loop. It may be run according to several replications, either 

in a sequential or in a parallel mode. Here, we get:  

 

FMS-GRASP(R: Replication Number, Q: Subset 

Size, Loop: Loop Length Bound); 

For i = 1..R do 

Initialize A, µ, F, Γ = {Γ(k), k ∈ K} through 

FMS-INIT; Possible;  

While Possible do      (I3: Descent loop) 

Modify A, µ, F, Γ = {Γ(k), k ∈ K} in such a 

way cost c.F + p.g is improved; 

If Failure(Modify) then Not Possible; 

The result of FMS-GRASP is the best A, µ, F, Γ = 

{Γ(k), k ∈ K} ever obtained. 

 

(I3) involves the TRANS operator as follows: 

 

Possible;  

While Possible do 

Trial-Number <- 1; Success <- False;  

Do Until Success or Trial-Number > Loop  

Generate K0 ⊆ K with cardinality Q; Save current 

A, µ, F, Γ = {Γ(k), k ∈ K}; (I4) 

Apply TRANS(K0) to A, µ, F, Γ; If c.F + p.g is 

improved then Success Else  

Restore A, µ, F, Γ; 

Trial-Number <- Trial-Number + 1;  

Possible <- Success;  

 

Choosing K0 in the (I4) Instruction:  it is defined by the 

paths {Γ(k), k ∈ K} which contain the arcs e with the 

highest (µe + pe ) values. 

 

A Random Walk Variant of FMS-GRASP: Because of the 

computing costs induced by Instruction (I4), we also 

implement a Random Walk strategy:   

 

FMS-GRASP-1(R: Replication Number; RW: Loop 

Length Bound; Q: Subset Size); 

For i = 1..R do 

Initialize A, µ, F, Γ = {Γ(k), k ∈ K} through 

FMS-INIT; 

For Counter = 1..RW do     (I4.1: Random 

Walk loop) 

Generate K0 ⊆ K with cardinality Q;  

Apply TRANS(K0) to A, µ, F, Γ; 

The result is the best (A, µ, F, Γ) ever obtained. 

 

V. A  GENETIC ALGORITHM FMS-GEN FOR FMS 

 

The main components of a Genetic algorithm are (see [6, 7, 

8]): its Encoding scheme (Chromosome Representation); 

the Initialization Procedure which yields the initial 

population Σ; its Mutation operator; its Crossover operator. 

 

Clearly, the Encoding scheme is the encoding scheme of 

Section III.A whose master objects are: 

- the arc support set Arc-Supp(F) = {e ∈ E such that Fe 

≠  0} of F;  

- the related cost vector µ = µe, e ∈ A;   

and the slave objects are the flow vector F and the path 

collection Γ = { Γ(k), k ∈ K}. 

Initialization is performed through Card(Σ) successive 

applications of FMS-INIT.   

Mutation results from application of the operator TRANS, 

with parameter K0 generated with a given cardinality Q, Q 

becoming a parameter of the global process: 

FMS-Mutation(A, µ, F, Γ = {Γ(k), k ∈ K}, Q);  

Generate some subset K0 of K with cardinality Q; 

Apply TRANS(K0) to A, µ, F, Γ; 

 

The FMS-Crossover crossover operator is the SON-

CREATE operator of Section III.F.  

 

What remains to be discussed here is the Fitness Criterion, 

and the way FMS-Crossover is applied:  

- Given (A1, µ1, F1, Γ1 = {Γ1(k), k ∈ K}) and (A2, µ2, F2, 

Γ2 = {Γ2(k), k ∈ K}) in current population Σ, Fitness 

is related here to the cardinality of the difference set 

(A1 -  A2) ∪  (A2 - A1): the smallest is it, the largest is 

the Fitness measurement; 

- Best-fitted pairs are selected, in order to avoid cloning, 

with the constraint that no solution σ belongs to 

more than 2 pairs.  It is done in a heuristic way. 

 

The main parameters of the deriving Genetic Algorithm 

FMS-GEN are the population size P, the number LG of 

iterations of mutation/crossover process and the  size Q. 
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VI. NUMERICAL EXPERIMENTS 

 

Experiments are performed on a LINUX server CentOS 

5.4, Processor Intel Xeon 3.6 GHZ, with help of the 

CPLEX 12 library.   

 

A. Instance Generation 

 

An instance is defined by: the Urban Area network H = (Z, 

U), with n vertices and m arcs;  demands Dk, k  ∈ K; 

walking lengths lp(e), and vehicle lengths lυ(e), e ∈ U;  

Vehicle cost vector c and User cost vector p; the size NP of 

the time-space; the arc number NA of H-Dyn. We generate 

our own small and large instances: nodes of H are points of 

the 2D Euclidean space, with adjacency related to distance 

thresholds; demands Dk, k  ∈ K are randomly generated 

through uniform distribution. 

 

B. Evaluation of FMS-INIT.  

  

We first consider small instances, for which we get an exact 

optimal value through the CPLEX.12 Library, and next 

consider larger size instances, with focus on the large scale 

issue. In both cases: 

-  n, m are respectively the node and arc numbers of H, 

NP is the period number, NOD is the number of 

demands; L is the mean value of loads Lk, k  ∈ K, 

and α is the mean ration pe/ce, e ∈ E. 

- R is the replication number of FMS-INIT.  

  

Small instances: We focus on precision of FMS-INIT, and 

test packages of 10 instances. GAP-MEAN is the mean error 

GAP = (VAL – OPT)/OPT: VAL = cost value computed by 

FMS-INIT, OPT = optimal value computed by CPLEX.12. 

GAP-VAR is the variance of GAP. We get: 

   

R GAP-MEAN GAP-VAR 

1 22.5 25.8 

5 17.3 20.7 

10 13.4 17.9 

20 11.9 15.4 

50 10.5 13.6 

Table 1: FMS-INIT Evaluation, Small Instances, 10 

instances/packages; Group-Instance: n = 10, m = 30, NP = 

10; NOD = 10; α = 0.5; L = 0.2;   Impact of R. 

 

Analysis: Parameter R plays a key role. GAP-VAR is 

usually large: a single FMS-INIT run may yield poor 

solutions. 

 

Large instances: We focus here on CPU times and on the 

sensitivity to parameter R: V(R) is the mean value (Max(R) - 

Min(R))/Min(R), where Max(R) and Min(R) are respectively 

the worse and best values obtained through FMS-INIT(R), 

while Var-V(R) is the related variance. Mean-CPU is the 

mean running time, while Var-CPU is the related variance.  

  
R V(R) Var-V(R) Mean-CPU (in s) Var-CPU 

1 0.0 0.0 24.8 12.5 

5 0.08 0.05 98.5 67.2 

10 0.14 0.04 177 101.0 

20 0.18 0.04 329 151.4 

50 0.22 0.03 745 256.1 

Table 2: FMS-INIT Evaluation, Large Instances, 10 

instances/packages; Group-Instance: NA = 66256; NOD = 

100; α = 0.5; L = 0.2; Impact of R. 

 

Analysis: The replication mechanism is crucial.    

 

C. Evaluation of FMS-GRASP.  

  

We focus on the respective ability of the standard Descent 

loop with parameter TH and of the random walk with 

parameter RW to improve the initial solution.   

 

Small instances, 10 instances/packages with n = 10, m = 

30, NP = 10, NOD = 10, L = 0.2; α = 0.5: GAP-MEAN is 

the mean error GAP = (VAL – OPT)/OPT, where VAL is 

computed by FMS-GRASP, and GAP-VAR is the variance 

of GAP. We use R = 10, Q = 3.   

 

TH GAP-MEAN GAP-VAR 

1 13.1 17.8 

4 11.3 11.0 

8 9.4 9.5 

15 7.2 8.3 

Table 3: FMS-GRASP/Descent: Impact of TH 

   

RW GAP-MEAN GAP-VAR 

1 13.3 17.8 

4 11.5 13.1 

10 9.3 11.8 

40 6.8 8.8 

80 3.8 5.1 

Table 4: FMS-GRASP/Random Walk:  

Impact of RW 

  

Analysis: Random Walk is more efficient than Descent.    

 

Large instances, 10 instances/packages, with NA = 66256; 

NOD = 100; α = 0.5; L = 0.2. IMPROVE = (Min(R) - Val(R, 

RW))/Val(R,W ), where Min(R) is computed by FMS-

INIT(R) and Val(R, W) is computed by FMS-GRASP(R, 

RW). IMPROVE(R, RW) is the mean IMPROVE Value.   

 

R RW IMPROVE(R, RW) Mean-CPU 

1 5 2.3 39 

1 100 9.8 249 

5 5 1.7 151 

5 100 9.1 1012 

10 5 1.4 257 

10 100 6.7 1618 

Table 5: FMS-GRASP Evaluation, Large Instances: 

Impact of R and RW. 
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Analysis: Computing times remain under control. 

Improvement margin induced by the Random Walk loop are 

close to the values obtained for small instances.  

 

D. Evaluation of FMS-GEN.  

  

We use the same tests as in Section VI.C. P is the size of 

the population, LG is the length of the main loop of the 

process.  The population Σ is initialized by FMS-INIT(P). 

 

Small instances: 10 instance packages with n = 10, m = 30, 

NP = 10; NOD = 10; L = 0.2; α = 0.5; GAP-MEAN is the 

mean error GAP = (VAL – OPT)/OPT, where VAL is the 

cost value of the solution which is computed by FMS-GEN, 

and OPT is the optimal result computed by CPLEX.12 

GAP-VAR is the variance of GAP. We focus on difficult 

instances, and deal with rather small populations (no more 

than 30) and small LG values. We use P =10, Q = 3; Π = 1;    

  

P GAP-MEAN GAP-VAR 

4 10.3 14.7 

10 6.2 8.0 

20 4.2 5.4 

30 3.8 4.5 

Table 6: FMS-GEN Evaluation, Impact of P.   

 

LG GAP-MEAN GAP-VAR 

10 9.3 11.7 

20 9.1 11.4 

50 6.2 7.0 

100 2.9 4.1 

Table 7: FMS-GEN Evaluation, 

Impact of LG. 

  

Large instances: For any instance, we evaluate the 

improvement ratio IMPROVE = (Min(P) - Val(P, 

LG))/Val(P,LG ), where Min(P) is the value obtained while 

running FMS-INIT(P) and Val(P, LG)  is the value 

obtained while running FMS-GEN(P, LG). IMPROVE(P, 

LG) is the mean IMPROVE value on 5 instance package 

defined by  parameter values: NA = 66256; NOD = 100; α = 

0.5; L = 0.2. We use Q = 15 and Π = 1. 

  

P LG IMPROVE(P, LG)   Mean-CPU 

4 10 4.6 451 

4 20 7.2 828 

4 50 9.6 1830 

10 10 3.3 1296 

10 20 5.8 2265 

10 50 7.3 4520 

Table 8: FMS-GEN Evaluation, Large Instances,  

Impact of P and LG. 

 

General comment: The GRASP scheme is less accurate the 

the GA scheme, but it is more flexible and tackles more 

easily large scale instances. When it comes to practical 

applications, accuracy is not such an issue. So it comes that 

we may consider here that, from this point of view, GRASP 

performs better.     

 

VII. CONCLUSION 

  

Reformulating the FMS model through through implicit 

representations allows us to design efficient GRASP and 

genetic algorithms. Still, we notice that since those 

algorithms rely on sophisticated LP techniques,  we should 

now study the way to efficiently involve recently emerging 

generic framework, like ILP software SCIP/CPLEX, in such 

a way development and maintenance costs be minimized.     
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