
Handwritten Signature Verification with 2D Color
Barcodes

Marco Querini, Marco Gattelli, Valerio M. Gentile, and Giuseppe F. Italiano
University of Rome “Tor Vergata”,

viale del Politecnico 1, 00133, Rome, Italy

marco.querini@uniroma2.it

marco.gattelli@gmail.com

valeriomaria.gentile@gmail.com

italiano@disp.uniroma2.it

Abstract—Handwritten Signature Verification (HSV) systems
have been introduced to automatically verify the authenticity of
a user signature. In offline systems, the handwritten signature
(represented as an image) is taken from a scanned document,
while in online systems, pen tablets are used to register signature
dynamics (e.g., its position, pressure and velocity). In online HSV
systems, signatures (including the signature dynamics) may be
embedded into digital documents. Unfortunately, during their
lifetime documents may be repeatedly printed and scanned (or
faxed), and digital to paper conversions may result in loosing the
signature dynamics. The main contribution of this work is a new
HSV system for document signing and authentication. First, we
illustrate how to verify handwritten signatures so that signature
dynamics can be processed during verification of every type of
document (both paper and digital documents). Secondly, we show
how to embed features extracted from handwritten signatures
within the documents themselves (by means of 2D barcodes),
so that no remote signature database is needed. Thirdly, we
propose a method for the verification of signature dynamics
which is compatible to a wide range of mobile devices (in terms
of computational overhead and verification accuracy) so that no
special hardware is needed. We address the trade-off between
discrimination capabilities of the system and the storage size of
the signature model. Towards this end, we report the results of an
experimental evaluation of our system on different handwritten
signature datasets.

I. INTRODUCTION

B IOMETRIC recognition refers to the automatic identi-

fication of a person based on his/her anatomical (e.g.,

fingerprint, iris) or behavioral (e.g., signature) characteristics

or traits. This method of authentication offers several advan-

tages over traditional methods involving authentication tokens

(including ID cards) or passwords: it ensures that the person

is physically present at the point-of-identification; it makes

unnecessary to remember a password or to carry a token. The

most popular biometric traits used for authentication are face,

voice, fingerprint, iris and handwritten signature.

In this paper, we focus on handwritten signature verification

(HSV). Since people are used to signing documents in their

everyday life, HSV is a natural and trusted method for user

identity verification. HSV can be classified into two main

categories, depending on the hardware used and on the method

used to acquire data related to the signature: online and

offline signature verification. Offline systems take handwritten

signatures (represented as an image) from scanned documents.

This means that offline HSV systems only process the 2D

spatial representation (i.e., the shape) of the signature. On

the contrary, online systems use specific hardware (e.g., pen

tablets) to register pen movements during the act of signing.

As a result, online HSV systems are able to process dynamic

features, such as the time series of the pen’s position, pressure,

velocity, acceleration, azimuth and elevation. Online signature

verification has been shown to achieve higher verification rate

than offline signature verification [1], [2], [3], but unfortu-

nately it suffers from several limitations.

First, the online approach works only for digital documents

and it is currently unavailable for paper documents. In par-

ticular, during a document’s life cycle, when a document

is being printed, scanned or faxed, the signature dynamics

are unavoidably lost. To overcome this limitation, there is

an emerging need of designing new methods capable of

embedding the signature dynamics within paper documents,

along with the signature shape (the 2D spatial representation)

which is the only feature usually preserved after printing.

This will enable one to verify the authenticity of a document,

regardless of its current (paper or digital) format, which is

particularly important when the same document is repeatedly

printed and scanned (or faxed) in a typical workflow.

Secondly, current online approaches raise privacy and secu-

rity concerns since they store the genuine signatures of each

user on a remote database server. Indeed, both commercial [4],

[5], [6] and HSV systems proposed in the scientific litera-

ture [1], [7], [8] store genuine signatures of the users in a

central database: during verification, specific signature data

is retrieved from the database and compared to the actual

signature. From the security viewpoint, an intruder who gains

unauthorized access to the database containing dynamics of

users’ signatures can use this information to produce accurate

forgeries. From the viewpoint of privacy, the recent news

about the NSA surveillance program (see e.g., [9]) have

definitely reduced our trust in providing sensitive data (such

as signature features) to third parties. In order to address these

privacy and security concerns, we need to design novel HSV
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systems capable of supporting the online approach without

using signature databases.

Thirdly, the online approach is often feasible only if special

purpose hardware is available. Indeed, handwritten signatures

are usually acquired by means of digitizing tablets connected

to a computer, because smartphones and mobile tablets (that

have worse sensitivity) may be not able to support the verifica-

tion algorithms. As a result, the range of possible usages of the

verification process is strongly limited by the hardware needed.

To overcome this limitation, one needs techniques capable of

verifying signatures acquired by smartphones and tablets in

mobile scenarios.

To the best of our knowledge, there is no existing solution

which is able to address all of those critical points simultane-

ously. The approach described in [1] addresses only the first

point: by performing offline verification using online handwrit-

ing registration, the online approach is (partially) applicable

for verifying signatures taken from paper documents, but this

framework is not supported by mobile devices and requires an

online signature database. Offline HSV solutions (such as [2],

[10], [11]) address only the second point: they do not use

remote signature databases, but unfortunately they are not

able to take into account signature dynamics. Online HSV

systems (such as [4], [5], [6], [7], [8]) address only the third

point: they are supported by mobile devices, but cannot verify

signatures taken from paper documents and are inherently

based on remote database servers.

The goal of this paper is to address all of the above

challenges by considering new mobile scenarios in which HSV

can play a significant role. The novelties of our approach lie

mainly in the following three aspects.

First, we present a new system to sign and verify documents

so that the online approach is applicable for all kind of doc-

uments (including paper documents). It performs verification

in a way that the signature dynamics can be used also when

the signed documents are printed and scanned, thus allowing

the online approach to operate in those cases where only the

offline approach was available.

Secondly, we show how to embed features extracted from

handwritten signatures within the documents themselves, so

that no remote signature database is needed. To accomplish

the embedding task, we make use of 2D barcodes. The main

challenge here is to be able to store the signature dynamics

(into documents), within the limited capacity of barcodes:

on the one hand, we need to use a signature model whose

size is small, while, on the other hand, we need to increase

the capacity of state-of-art-barcodes. For this reason, we

designed a color barcode denoted as High Capacity Colored

2-Dimensional (HCC2D) code [12], [13], which is well-suited

for this framework because of its high data capacity (if

compared with state of art barcodes). Specifically, it is capable

of encoding about 4KB/inch2 (effective data density) with

a success rate of 90% (reliability) [14], [15]. We designed

a new barcode decoding algorithm based on graph drawing

methods [16], which is able to run in few seconds even on

mobile devices and to achieve nonetheless high accuracy in

the recognition phase. The main idea of our algorithm is to

perform color classification using force-directed graph drawing

methods: barcode elements which are very close in color will

attract each other, while elements that are very far will repulse

each other. Figure 1 illustrates samples of HCC2D codes with

4 and 8 colors.

Fig. 1. Samples of the High Capacity Colored 2-Dimensional (HCC2D)
code: (a) 4 colors and (b) 8 colors. Figure taken from [12]. (Viewed better
in color).

Thirdly, we propose a method for the extraction and verifica-

tion of signature dynamics which is compatible to a wide range

of mobile devices (in terms of computational overhead and

verification accuracy) so that no special hardware is needed.

The main challenge here is to achieve a high verification per-

formance, despite constrains due to the limited computational

resources and pressure accuracy of mobile phones. For this

reason, we designed a verification algorithm that can be run

on mobile phones in fractions of a second and that weights the

signature features based on the accuracy of the given device.

In order to assess the precision and recall of our HSV

system, we conduct an experimental study whose results are

reported for different data sets of signatures.

II. A LOGICAL VIEW OF THE HSV SYSTEM

Our HSV system consists of three main modules, corre-

sponding to three main phases. We next describe (from a

logical point of view) the registration phase, the document

signing phase and the document verification phase with our

system.

A. The Registration Phase

The objective of the registration phase is to compute a

compact representation of the signature dynamics of a given

person. The process starts with the user writing his/her sig-

nature on the device’s screen and ends with the generation

of a biometric template representative of the user signatures.

Figure 2 shows a high level, logical view of the registration

procedure.

The registration phase consists of the following tasks. First,

in order to take into account the variability among signatures

produced by the same user, signature dynamics for at least

three signatures are captured. Then, the features extracted

from the various signatures are combined to form a template
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Fig. 2. Registration procedure for the proposed HSV system. (Viewed better
in color).

Fig. 3. Document signing procedure for our HSV system. (Viewed better in
color).

representative of the given user. Finally, the template is dig-

itally signed and securely stored in a barcode. The barcode

is embedded within a card which is released only to the

user to whom the template belongs, in order to address any

privacy concern. We remark that in order to make this scenario

possible, it is necessary that the barcode is capable of storing

the whole template and the digital signature associated with it.

We will describe in detail how to perform identity registration

in Section III.

B. The Document Signing Phase

The objective of this phase is to sign documents on mobile

devices so that: the signature dynamics are embedded within

the documents themselves, (along with the spatial represen-

tation of the signature); the signature dynamics survive the

document’s life cycle, when a document is being printed,

scanned or faxed.

Figure 3 shows a logical view of the document signing

phase, which consists of the following steps.

1) Template Generation of the User to Be Verified (S1-S4):

We need to generate a compact feature synthesis of the person

to verify. In order to accomplish this task, we proceed through

steps S1 to S4, which are equivalent to steps R1-R4 of the

Registration phase, except for the fact that there is no need to

capture three or more writings of the handwritten signature to

be verified.

2) Retrieval of the Secure Template (S5): We retrieve the

secure template (generated at the end of the registration phase)

of the user corresponding to the claimed identity of the user

to be verified.

3) Template Matching (S6): We compare the signature

dynamics related to the identity to verify with the secure

template retrieved at the previous step. This is a crucial

step, because we do not allow unrecognized signatures to be

embedded within documents. Note that in order to enhance

security, we use strong authentication based on something

the user has (i.e., a card storing the registered template) with

something the user is (features of his/her handwritten signature

captured at the moment).

4) Signature Embedding (S7): If the matching is success-

fully, we embed the spatial representation of the signature

within the document.

5) Barcode Embedding (S8): If the matching is success-

fully, we embed the signature dynamics of the signature within

the document by means of a high capacity barcode such as the

HCC2D code.

The elements that need to be embedded by means of

barcodes include the following:

• The template representing the signature dynamics.

• The timestamp of the signature.

• Information about the document the user is going to sign.

• The digital signature of all the above data.

The last three elements ensure that the barcode storing the

signature dynamics cannot be copied and pasted on a new

document for producing a forgery.

6) Document Securization (S9): The secure document is

generated (with the signature image and the barcode). Because

of the binding [signature features, document], no other docu-

ment can be signed with features that are used for the given

document.

C. The Document Verification Phase

The aim of the verification phase is to verify the authenticity

of a handwritten signature. This phase ends with the authen-

ticity of the document signature being accepted or rejected.

Figure 4 shows a high level view of the document verification

procedure, consisting of the following tasks.

1) Barcode Reading (V1): The objective of this step is

to decode the HCC2D code which has been encoded in the

document signing phase. This allows us to retrieve the secure

template which has been stored within the barcode, along

with the document metadata, the timestamp and the digital

signature.

2) Template Retrieval (V2): The signature features used to

sign the given document are retrieved from the barcode.
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Fig. 4. Document verification procedure for our HSV system. (Viewed better
in color).

3) Digital Signature Check (V3): The digital signature is

checked before the retrieved data are processed, in order to

ensure that they are not tampered with.

4) Binding Check (V4): The binding [signature features,

document] is retrieved and showed to the user, in order to

verify that those features were previously associated with the

given document.

5) Visual Inspection and Final Decision (V5-V6): The

signature matching is graphically showed to the user so that

he/she is able to sense the similarity and the likelihood of a

forgery. This is a crucial step because it ensures that the final

decision is taken by the user.

In this stage, the shape of the signature is reconstructed

from the signature dynamics stored in the barcode. We cannot

completely trust the signature shape that is pasted on the

document because it may be a forgery, but we can trust the

reconstructed shape because data stored in the barcode are

digitally signed.

III. THE SIGNATURE VERIFICATION ALGORITHM

In this Section, we describe (from a technical point of view)

our signature registration and verification methods.

A. Signature Registration Phase

The registration phase with our system starts with the user

writing his/her signature on the device screen and ends with

the generation of his/her biometric template (representative

of his/her signature dynamics), which is embedded within a

document (issued to the user) by means of a high capacity

barcode. The procedure is as follows:

• First, the user is requested to make genuine signature 3

times.

• Once signatures are acquired, the system performs an

analysis of the intra-person variability of the signature

features. This allows the system to determine whether

to accept or reject the 3 signatures upon which the user

model has to be built: if variability is too high, the user

is requested to repeat the acquisition step.

• If the intra-person variability is acceptable, for each

signature, for each sampled point, the following elements

(signature dynamics) are captured:

– Event Type. The event which led to the generation

of a sample can be of three different types: Pen-

down, i.e., a pressed gesture has started (the motion

contains the initial starting location); Pen-up, i.e.,

a pressed gesture has finished (the motion contains

the final release location as well as any intermediate

points since the last down or move event); Pen-Move,

i.e., a change has happened during a press gesture

(between a Pen-down and a Pen-up).

– Time. The instant in which the pressed gesture has

occurred (expressed as milliseconds since the first

gesture event of the signature).

– X-Y coordinates. The X and Y coordinates of the

sampled point (expressed in pixels).

– Pressure. The pressure with which the screen is

pressed (expressed with a value ranging from 0, i.e.,

no pressure, to 1, i.e., maximum pressure).

• The signature dynamics of the three signatures are stored

in a high capacity barcode which is embedded within a

document.

Note that derivatives such as velocity or higher-order deriva-

tives such as acceleration are not stored in this stage, as they

can be computed at run-time during the verification phase.

This is because we aim at minimizing the storage size of the

signature model to be embedded by means of barcodes.

B. Signature Verification Phase

The verification phase determines the acceptance or the

refusal of the claimed identity based on the similarity be-

tween the registered signature and the signature to verify.

Our system can compute the similarity score in different

ways depending on whether signatures are segmented or not

(see below) before applying the verification algorithm, where

signature segmentation refers to the process of partitioning the

signatures into multiple strokes (i.e., segments). In our case,

strokes are separated by discontinuities represented by pen-up

events.
In the reminder of this section, we first describe the modes

in which the system operates; then, we illustrate the verifica-

tion algorithm. The same algorithm is used by the two modes:

the main change is the way in which the algorithm is applied.

We distinguish a segmented and an unsegmented mode.

• Segmented Mode. The matching is done by comparing

each segment (or sub-sequence) of the signature to verify

with the corresponding segment of the registered signa-

ture. This means that the verification algorithm is applied

several times (for each pair of segments) and the final

decision (acceptance or refusal) is taken according to the

result of each segment pairing.

• Unsegmented Mode. The matching is done by comparing

the whole sequence representing the signature to be

verified with the corresponding registered signature. The

verification algorithm is applied just once and the output

is the final decision.

Now we turn to describe our verification algorithm, which

is a scheme based on the Dynamic Time Warping (DTW)
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algorithm. DTW is a popular and robust technique for com-

paring time series, capable of handling time shifting and

scaling, which has been successfully used in literature for HSV

(prevalently for online approaches like the methods proposed

in [17], [18], but also for offline approaches such as the

method described in [19]). We describe our verification stage

for the segmented mode only, being the unsegmented mode

a sub-case of the segmented mode in which the number of

segments is exactly one.

The algorithm is as follows. First, for each feature f
(such as X-Y coordinates, Pressure, X-Y Velocity, X-Y
Acceleration) the following n-dimensional vector is computed,

where n is the number of segments in which each of the

three signatures is divided. Si
j represents the ith segment

(related to feature f ) of the jth signature as a 1D time

series, while DTW (Si
j , S

i
k) denotes the 1D Dynamic Time

Warping method applied to the ith segments of the jth and

kth signatures.
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Finally, we combine the metrics with the following weighted

sums, by giving a weight to each of the kinds of signature

features.
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The weights wx, wy , wp, ... , way
must be experimentally

determined as they are dependent on the device. For instance,

even if the pressure change is generally a very discriminating

feature (often leading to a high wp coefficient), the influence of

the capability of sensing pressure change (which is specific for

each device) is significant and the weight should be lowered

accordingly on low end devices.

The output distance vector
∥

∥d
∥

∥ represents the “distance”

among the three signatures. The whole process is repeated

twice; the first time using genuine registered signatures (
∥

∥dg
∥

∥

as output), the second time using signatures to be verified

(
∥

∥dv
∥

∥ as output).

Finally, we compare the two distance vectors with each

other. The similarity function is defined as follows.
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where n is the number of segments and the F () function is

defined as follows (c is a tolerance coefficient).

f(div, d
i
g) =

{

1 if div ≤ c · dig
0 otherwise

The higher the value of the similarity function, the more

likely the claimed identity is correct. The final decision

(accept or reject the claimed identity) depends on whether the

similarity score is above or below of a given threshold.

Note that all the computation happens at verification time

(including the tasks which process genuine signatures). We

cannot move any computation at registration time, because

the priority is to minimize the storage size of the output of

the registration phase (to be embedded by means of barcodes).

IV. EXPERIMENTATION

In this section we present experimental results concerning

identity verification with our system. The accuracy of a

recognition algorithm is generally measured in terms of two

potential types of errors: false negatives (fn) and false positives

(fp). False positives are cases where a claimed identity is ac-

cepted, but should not be, while false negatives are cases where

a claimed identity is not accepted, while it should be. Two

metrics building on true/false positives/negatives (tp,fp,tn,fn)

are widely adopted: precision and recall. Recall (tp/(tp+fn))
is the probability that a valid identity is accepted by the

system (i.e., true positive rate) while precision (tp/(tp+ fp))
is the probability that a claimed identity which is accepted by

the system is valid. F-measure (which is the harmonic mean

of precision and recall) combines both metrics into a global

measure (f -measure = (2×prec×recall)/(prec+recall)).
A more general f-measure is generally defined as function of

a β parameter, which is used to weight f-measure in favor of

precision (β < 1) or recall (β > 1).

A threshold on the similarity score must be identified for

determining whether two signatures are similar (accept the

identity) or significantly different (reject the identity). The

higher the threshold, the higher the precision (i.e., the lower

the risk of accepting invalid identities). However, a high

threshold also decreases the recall of the system (i.e., the

higher the risk to reject valid identities).

The performance of the proposed scheme has been assessed

in terms of false positives, false negatives, precision, recall and

f-measure on two kinds of dataset: first, on a standard dataset

(i.e., the SVC database [20]), involving WACOM digitizing

tablets, 100 sets of signature data, with 20 genuine signatures

and 20 skilled forgeries for each set; secondly, on a custom

dataset, built for this purpose using different smartphones

(mainly from the Google Nexus family), involving 250 signa-

tures partitioned into 5 sets of signature data, with 10 genuine

signatures and 40 skilled forgeries for each set.
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We start by describing the experimental set-up:

• For each user, 3 genuine signatures out of 20 (first

dataset) or out of 10 (second dataset) were selected in

rotation to form the template of the user.

• Every time a user template (building on 3 signatures)

is selected, the remainder 7 genuine signatures were

matched to the template itself in order to compute the

false rejection rate (i.e., the false negatives rate) by means

of the matching error. This process is repeated for every

user.

• Given a user, the skilled forgeries (provided by users

other than the one named) were matched to his/her

template in order to compute the false acceptance rate

(i.e., the false positives rate). This process is repeated for

every user involved in the experiment.

• As for the first dataset, the SVC 2004 competition [20]

consisted of two separate signature verification tasks,

each of which was based on a different signature

database. Each database of the SVC 2004 has 100 sets of

signature data. Each set contains 20 genuine signatures

from one signature contributor and 20 skilled forgeries

from five other contributors. Contributors were asked

to write on a digitizing tablet (specifically, a WACOM

Intuos tablet).

• As for the second dataset, we used a custom dataset, built

on data acquired by smartphones (i.e., no special purpose

devices). We collected 250 handwritten signatures. Each

user was requested to make genuine signature 10 times

and to provide 10 (skilled) forgeries of any other user.

The signatures were partitioned into 5 sets of signature

data, where each set contains 10 genuine signatures of

a specific user and 40 skilled forgeries of the signature

of that user, produced by the other users involved in the

experiment.

The experimental results in terms of precision, recall and

f-measure (that vary according to the chosen thresholds) have

been used for tuning the thresholds in order to get better

performance (see Section IV-A). Then, once we fixed the

threshold on the similarity score, we evaluated how subsam-

pling the sequences (forming each signature) affected the

overall precision and recall. This allowed us to identify the best

trade-off between discrimination capabilities of the system and

the storage size of the handwritten signature model, in order

to ensure that the signature model fit into 2D barcodes (see

Section IV-B).

The remainder of this section illustrates our results, which

are in line with other work in the area, despite storage con-

strains due to barcode capacity and limitations in sensing and

processing related to common devices such as smartphones

and tablets.

A. Tuning the Thresholds to Enhance Precision and Recall

In this section we tune system thresholds by analyzing the

curves of precision, recall and f-measure in order to get better

performance (thresholds determine whether to accept or reject

the claimed identity).
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Fig. 8. 2
nd dataset; unsegmented mode. Precision, recall and f-measure as

functions of threshold on similarity score. (Viewed better in color).

The four graphs of Figures 5, 6, 7 and 8 show the curves

of precision, recall and f-measure as functions of threshold on

the similarity score for each of the two working modes and

for each of the two datasets. Claimed identities are accepted

whenever the score is above the threshold, rejected otherwise.

The higher the threshold, the higher the precision, but the

lower the recall. The threshold which maximizes the f-measure

is identified for each working mode and highlighted with an

arrow in each graph. The best results (plotted in Figures 5

and 7) were achieved using the segmented mode. This is in

agreement with the intuition that working at low granularity

(i.e., comparing the subsequences segmented by pen-up events

of a first signature with the corresponding subsequences of

a second signature) leads to a more accurate comparison

than just making a single comparison of the two signatures

(considered in their entirety).

Precision and recall jointly reach a maximum of 89.50%

in the graph of Figure 5 (SVC dataset). For this reason, at

this operating point, where the curves of precision and recall

cross each other, the false positive rate (also called the false

acceptance rate - FAR) and the false negative rates (also

called the false rejection rate - FRR) are both 10.50% as

complementary values. This value is denoted as the equal

error rate (EER), that is, the point where FAR equals FFR.

We got good results, considering the EERs reported at the

SVC competition: for instance, the EERs related to the SVC

training set (with skilled, not random forgeries) range from

a low of 5.50% to a high of 31.32% in the first verification

task [21] and from 6.90% to 21.89% in the second verification

task [22].

B. Trade-off between Precision/Recall and the Model Size

In this section we address the trade-off between precision

and recall of the system and the space used for storing models

of signatures. This allow us to show how to embed features

extracted from handwritten signatures within the documents

themselves by means of barcodes.

Consider that the size of a model depends on the number of

samples with which we represent each handwritten signature.

We expect that the more the space available for storing models

of signatures, the more the precision and recall of the system

are; at least, until a specific threshold value is reached, after

which precision and recall remain almost constant. This is

consistent with the intuition that getting more samples than

needed (the limit is due to the precision of the acquiring

devices) does not improve the overall performance.

Signatures data were subsampled as follows: 1:1 (all the

samples captured by the device are kept), subsampled 2:1 (1

sample out of 2 is filtered out), subsampled 3:1 (2 samples

out of 3 are filtered out), ..., subsampled 20:1 (19 samples out

of 20 are discarded). For instance, from a signature which is

600 samples length we produce subsampled signatures whose

length is 300 (subsampled 2:1), 200 (subsampled 3:1), ...,

30 (subsampled 20:1) samples. However, the actual signature

length (expressed as number of samples) depends not only on

the sampling rate of the device but also on the path length of

the handwritten signature (expressed as length unit such as the

millimeter).

In order to isolate the impact of the path lengths so that

results do not depend on the length of the words forming the

signature, we introduce the concept of samples density as the

number of samples per unit length. In order to compute the

samples density, the number of samples of a given signature

is divided by the total path length of the signature itself. This

is computed in pixels and is then converted from pixels to

millimeters by referring to the number of points per inch

(ppi) characterizing the device screen and to the (inches to

millimeters) conversion factor. As a result, samples density is

expressed here as number of samples per millimeter, which

is a measure free from the signature word lengths and from

device-dependent features such as the screen size.
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Fig. 9. Precision, recall and f-measure as functions of density (expressed as
samples per millimeter) shown in log scale (Viewed better in color).

Figure 9 shows the precision, recall and f-measure of our

system as functions of samples density. We used the f0.5-

measure (with β equal to 0.5), which weights precision higher

than recall. For our framework, increases in precision (that

decrease the number of false positives) may be considered

more important than increases in recall (that reduce the number

of false negatives), since if a false instance is misclassified as
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true (i.e., a false positive), a forgery is accepted as genuine,

while, if a true instance is misclassified as false (i.e., a false

negative), the user has only to re-enter the signature. The X-

axis is on a log scale for visual clarity. On the far right side

of the curves data are not subsampled (all the samples are

kept), while the further we go towards the left side of the

curves the more the data are subsampled (up to a maximum

of 20:1). In absolute terms, the average path length of the

signatures of our dataset was around 232 millimeters and

the average number of samples (captured by the device for

a single signature) was 581. Samples density ranges from

around 2.5 to 0.125 samples per millimeter. This plot shows

an interesting trend of decreasing precision and recall with

decreasing samples density. The curves are almost constant

initially (until a subsampling rate of 10:1 and a density of

around 0.25), while at lower densities (or higher subsampling

rates) the curves decrease sharply. This means that we are

able to reduce the size of models of signatures by a factor

of 10 (with respect to the sequence of samples acquired by

the mobile device) without significant impacts on the overall

precision and recall of the system. This, in turn, allows us to

store models of signatures by means of barcodes, making our

framework applicable to practical scenarios.

V. CONCLUSIONS

Our work presented a new HSV system for document

signing and authentication, whose novelties lie mainly in the

following aspects. First, we showed how to verify handwritten

signatures so that signature dynamics can be processed dur-

ing verification of every type of document (including paper

documents). Secondly, we illustrated how to embed features

extracted from handwritten signatures within the documents

themselves, so that no remote signature database is needed.

Thirdly, we proposed a method which is supported by a wide

range of mobile devices so that no special hardware is needed.

Finally, we showed how to reduce the size of models of signa-

tures without significant impacts on the overall precision and

recall of the system. In our experiments, Precision and recall

cross at 89.50 (first dataset) and at 85.15% (second dataset).

This is an interesting result, if noting that we used mobile

devices (that is, no special-purpose hardware) to capture the

signature dynamics needed by our experiments.
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