
Handling Conflicts to Test Transport Protocol’s
Parallel Routing on a Vehicle Gateway System

Hassan Mohammad
MBtech Group GmbH & Co. KGaA

Sindelfingen 71063, Germany

Email:hassan.mohammad@mbtech-group.com

Muhammad Shamoon Saleem
Ingolstadt University of Applied Sciences

Ingolstadt 85049, Germany

Email:ia2632@thi.de

Abstract—This paper addresses the issue of verifying transport
protocol’s parallel routing functionality on a vehicle gateway
system. The focus of the paper is to construct a conflict-free
input parameter model for testing this functionality. The input
parameter model shall support the reduction of combinations
to be tested and serves as a basis for automatic test case
generation from a large space of input parameters. In the
proposed approach, defined similarity criteria are used to clus-
ter system input parameters represented as transport protocol
routing instances into groups which stimulate similar behavior
in the gateway when transport protocol routing is established.
Subsequently, the two conflict-handling methods sub-models and
avoid are utilized to prohibit invalid combinations of transport
protocol routing instances. The proposed approach is applied on
a complex example of real gateway with five buses, 390 transport
protocol routing instances and diverse conflicts to illustrate its
applicability.

Index Terms—Transport Protocol’s Parallel Routing, Input
Parameter Model (IPM), Conflict Handling

I. INTRODUCTION

T
ODAY’S vehicles Electric/Electronic (E/E) systems are

designed as distributed systems in order to overcome the

increasing complexity and to meet the diversity of require-

ments such as performance, comfort, safety and costs. In a

vehicle distributed system, gateways are indispensable. They

enable Electric Control Units (ECUs) within connected net-

works to interchange information necessary for accomplishing

specified functionalities. During information interchange, the

gateway routes data between its connected networks although

they work on different communication protocols.

In a vehicle gateway system, routing data packets which are

larger than a single frame of the corresponding network com-

munication protocol is carried out with the help of transport

protocol implementations and such type of routing is called

TP routing. Since TP data packets are mostly large in size

(flash data for example) and routing of such large data packets

requires longer duration, modern gateways support TP parallel

routing where multiple TP routing instances are established in

parallel over the gateway in order to save time and resources,

e.g., flashing multiple ECUs in parallel.

Verifying TP parallel routing of a gateway system is not a

trivial problem, since a large number of possible combinations

of communicating ECUs can be built for test case selection

This work was supported by MBtech Group GmbH & Co. KGaA

(the combinatorial explosion problem). Furthermore, in case

of established TP parallel routing, different types of conflicts

between ECUs need to be handled.

Combination strategies [1] are test case selection methods

that focus on solving the combinatorial explosion problem

raised while testing the interactions between system input

parameter values by defining coverage criteria to satisfy.

However, the problem in the case of verifying TP parallel

routing on a vehicle gateway system is different than described

problem of combination test strategies (see II-B). Hence, new

techniques need to be defined.

In combination strategies, Input Parameter Models (IPMs)

[2] [3] [4] [5] are essential. They represent the System Under

Test (SUT) on an abstract level. Mostly, IPMs contain conflicts

which must be resolved. A conflict in an IPM is due to an

invalid combination of input parameter values and hence this

combination must be omitted or avoided while generating test

cases. Diverse conflict handling strategies such as sub-models

and avoid have been suggested in literature [6] to overcome

conflicts in IPMs.

This paper suggests an approach to build a conflict-free

IPM used to test TP parallel routing on a vehicle gateway

system. The IPM is utilized in a recursive way for test case

selection, generation and execution in order to overcome the

combinatorial explosion problem.

The remainder of this paper is organized as follows. Section

II gives background information on terminology and the com-

binatorial explosion problem of testing TP parallel routing. An

IPM along with conflict handling mechanisms are presented in

details in section III. In section IV, the suggested IPM along

with described conflict handling mechanisms are utilized in a

method to reduce test suite size. The complete methodology

is applied on a complex example of real gateway in section V.

Section VI discusses the approach and section VII concludes

the paper.

II. BACKGROUND

A. Vehicle Bus Communication Systems

Generally, different bus communication systems are utilized

in E/E system. In this subsection, two common types of

automotive buses are briefly explained.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1559–1568

DOI: 10.15439/2014F73

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1559

1) CAN Communication Bus: Controller Area Network

(CAN) bus system was originally invented to reduce the wiring

harness in automotive E/E systems by developing a serial

communication protocol. CAN has the capability to connect

multiple ECUs directly to one medium, which leads to better

management of the system complexity and the reduction of

manufacturing costs. CAN protocol is an asynchronous serial

protocol that enables real time communication. In CAN, the

medium access is based on the concept of Carrier Sense

Multiple Access/Collision Detection (CSMA/CD).

2) FlexRay Communication Bus: FlexRay was developed

to deliver deterministic, fault-tolerant and high-speed com-

munication bus required for x-by-wire applications such as

steer-by-wire and break-by-wire. These applications demand

more safety, performance and reliability than provided by

CAN. FlexRay unifies time- and dynamic event-triggering

mechanisms in one protocol. The communication in FlexRay

is based on the Time Devision Multiple Access (TDMA) and

Flexible Time Division Multiple Access (FTDMA) schemes

of networking.

B. Terminology

The vehicle gateway is part of a distributed network system.

It is a special ECU that has multiple communication channels

used to communicate with other ECUs in the network in

order to route data between them. Communication channels

of the gateway are mostly heterogeneous in respect of charac-

teristics and behavior. Generally, a number of ECUs (u) can

exchange data over the gateway in predefined fashions. Each

fashion is characterized through a set of gateway configuration

parameters. These are required by the gateway to establish

routing between communicating ECUs connected to different

communication channels. For TP routing over the gateway,

following definitions are considered:

A TP_Routing_Fashion describes a possible routing be-

havior of TP data and is characterized through a particular

set of gateway configuration parameters. An example of a

TP_Routing_FashionF with P parameters shall be described

(1) (see [7] for configuration parameters of CAN TP).

TP_Routing_FashionF = {PF1
, PF2

, ..., PFP
} (1)

A TP_Connection_Channel is an instance of a

TP_Routing_Fashion. It has the same set of gateway

configuration parameters and is utilized to route TP data

between respective ECUs. A TP_Connection_Channelx in the

TP_Routing_FashionF shall be described (2).

TP_Connection_Channelx = {PF1x
, PF2x

, ..., PFP x} (2)

The gateway has a number of configured

TP_Connection_Channels for connected ECUs utilized

to establish TP routing in different scenarios. Examples of

TP scenarios are flashing and Onboard Diagnostic (OBD).

TP_Routing_Scenarios shall be described as a group of s

scenarios (3).

TP_Routing_Scenarios = {S1, S2, ..., Ss} (3)

A TP_Routing_Instance is a relationship be-

tween a specific TP_Connection_Channel and a

possible TP_Routing_Scenario. An example of a

TP_Routing_Instancex shall be described (4).

TP_Routing_Instancex = {PF1x
, PF2x

, ..., PFPx
, Sx} (4)

The gateway can be configured to serve y

TP_Routing_Instances in parallel. The number of parallel

TP_Routing_Instances "y" is a configuration parameter which

needs to be verified. In the case of errors, the next determined

"y" should be verified.

C. The Combinatorial Explosion Problem of Testing TP Par-

allel Routing

The combinatorial explosion problem mentioned in litera-

ture [8] [9] [10] shall be explained as in the following example:

Assume a distributed system consisting of a central unit

interacting over communication channels with u units of the

network U1, U2, ..., Uu. Each unit Ui uses a defined parameter

pi for communication. The parameter pi shall have vi possible

configuration values. By assuming that configuration values

of parameters are independent from each other, the number

of possibilities in which the system can be configured would

be v1*v2*...*vu. If each possible configuration requires c test

cases to verify it, the number of test cases for exhaustive test

would be c*v1*v2*...*vu. In a nontrivial software system, the

values of u and vi are large which leads to a huge number of

possible combinations of parameter values.

Related to testing TP parallel routing, the goal of test

is to measure the performance of the gateway to handle

parallel TP_Routing_Instances. The problem is more complex

because:

• System input parameters are TP_Routing_Instances

where each consists of a set of configuration parameters.

• The number of system input parameters is not fixed. It

can be different for every new release of the system.

• System input parameters include also timing parameters

where the interactions are difficult to resolve.

• The number of parallel TP_Routing_Instances "y", which

is also a configuration parameter, is used to build possi-

ble combinations to be tested. Combinations are any y

elements from the system input parameter set. In case of

errors, one of the goals is to determine the next "y" and

verify it (performance measurement).

• In TP parallel routing, each additional instance will

consume resources of the system and may lead to er-

rors. Hence, it is not only a specific combination of

TP_Routing_Instances which can affect the behavior and

may reveal errors, but also the number of included

TP_Routing_Instances and their values.

To verify "y" parallel routing of TP_Routing_Instances

and determine the next "y" in case of errors, all possible

combinations from 1 to y of TP_Routing_Instances should be

included at least once in test cases. This results in a number

1560 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

of combinations to be tested which can be calculated using

equation(5).

X =
u!

y!(u− y)!
.ys +

u!

(y − 1)!(u− (y − 1))!
.(y − 1)s

+ ...+
u!

1!(u− 1)!
.1

(5)

The equation (5) calculates the sum of all possible com-

binations for a number of ECUs (u) communicating in

TP_Routing_Scenarios (s), where the selected number of

ECUs in each term varies from y to 1.

Even for a simple system, the duration of testing for all

these combinations is too high and therefore not acceptable.

III. INPUT PARAMETER MODEL AND CONFLICT

HANDLING

A combination test strategy consists generally of two steps:

1) Building a suitable IPM

2) Selecting combinations of parameter values from IPM

to satisfy defined coverage criteria.

In this paper, the proposed IPM shall be used to test TP

parallel routing in a recursive approach, i.e., one combination

is constructed at a time. Subsequently, a test case is generated

for that combination and executed. This procedure is then

repeated until satisfying the defined coverage criterion. The

decision on using a recursive selection and execution approach

has two reasons:

1) Information from executed test cases is collected and

can be used to reduce the number of combinations for

the successive test cases.

2) Gained information from executed test cases is utilized

to determine the worst case combinations.

In order to build a suitable conflict-free IPM, conflicts need

to be defined. In a TP parallel routing, three types of conflicts

are stated:

1) TypeA-Conflicts: Conflicts between

TP_Routing_Scenarios. These are constraints describing

TP_Routing_Scenarios not practiced in parallel.

2) TypeB-Conflicts: Conflicts between

TP_Connection_Channels. These are constraints

describing TP_Connection_Channels not allowed to be

combined in parallel.

3) TypeC-Conflicts: Conflicts because of configuration pa-

rameters. These are constraints describing known or

desired capabilities of the SUT.

The following example explains raised conflicts in testing

TP parallel routing on a vehicle gateway system:

Assume a gateway having six TP_Routing_Instances in

TP_Routing_Fashions (Fx and Fy) used to route TP data

between connected ECUs as following:

TP_Routing_Instance1 = (PFx11
, PFx21

, PFx31
, PFx41

, S1)
TP_Routing_Instance2 = (PFx12

, PFx22
, PFx32

, PFx42
, S2)

TP_Routing_Instance3 = (PFx13
, PFx23

, PFx33
, PFx43

, S1)
TP_Routing_Instance4 = (PFx14

, PFx24
, PFx34

, PFx44
, S2)

TP_Routing_Instance5 = (PFy15
, PFy25

, PFy35
, S1)

TP_Routing_Instance6 = (PFy16
, PFy26

, PFy36
, S2)

Assume also that the gateway supports two

TP_Routing_Instances in parallel. Then, following examples

explain the three types of conflicts:

• TypeA-Conflicts: TP_Routing_Scenario S1 and

TP_Routing_Scenario S2 are non-combinable. That

is, a combination of TP_Routing_Instance1 and

TP_Routing_Instance2 is for example an invalid

combination.

• TypeB-Conflicts: TP_Connection_Channel2 and

TP_Connection_Channel4 are non-combinable,

i.e., a combination of TP_Routing_Instance2 and

TP_Routing_Instance4 is an invalid combination.

• TypeC-Conflicts: Maximum of two

TP_Routing_Instances are combinable, i.e., all

combinations of more than two TP_Routing_Instances

are invalid.

As discussed in the previous section, a

TP_Routing_Instance of gateway is a relationship between

TP_Connection_Channel and possible TP_Routing_Scenario.

TP_Routing_Instances are input parameter values required

to build a conflict-free IPM for testing. To achieve building

a conflict-free IPM which supports the reduction of

combinations in a recursive approach, following steps are

required:

1) Collecting and extending TP_Routing_Instances based

on similarity criteria.

2) Handling conflicts.

A. Collecting and Extending TP_Routing_Instances based on

Similarity Criteria

In collecting TP_Routing_Instances, instances that stimulate

similar behavior in the gateway are clustered into groups.

Two TP_Routing_Instances are said to be similar if and

only if they have the same values for all related parameters

such as routing parameters, network relationship parameters

and mapped TP_Routing_Instance. Creating groups of similar

TP_Routing_Instances helps in reducing the number of com-

binations required for testing. The resulting combination from

formulating groups are defined as "reduced combinations".

Following example explains reduction achieved after groups

are constructed.

Assume that the SUT has 4 TP_Routing_Instances A, B,

C and D (see Fig. 1) and it is configured to support 2

TP_Routing_Instances in parallel. The number of possible

combinations of 2 instances out of 4 would be 6 (the order

has no effect). If TP_Routing_Instances A,B and C,D are

similar to each other, then groups can be constructed based

on similarity criteria such that Group1 consists of instances A

and B, whereas Group2 consists of instances C and D. After

grouping, the number of combinations could be rather reduced

from 6 to 3, because all other possible combinations would

resemble a similar behavior, i.e., combinations of instances

HASSAN MOHAMMAD, MUHAMMAD SHAMOON SALEEM: HANDLING CONFLICTS TO TEST 1561

(A, B)

(C, D)

(A, C)

(A, D)

(B, C)

(B, D)

Group1 Group2

(A, B)

(C, D)

(A, C)

Routing Instance A Routing Instance B Routing Instance C Routing Instance D

(A, B)

(C, D)

(A, C)

(A, D)

(B, C)

(B, D)

Group1 Group2

(A, B)

(C, D)

(A, C)

Routing Instance A Routing Instance B Routing Instance C Routing Instance D

Fig. 1. Advantages of Building Similar Groups

(A, C), (A, D), (B, C) and (B, D) are all similar and can be

replaced by only one substitute (A, C). Therefore (A,B), (C,D)

and (A,C) are the "reduced combinations".

In extending TP_Routing_Instances, Similarity Numbers

and Stress Factors are assigned to constructed groups. The

same Similarity Number will be assigned to groups with

TP_Routing_Instances having the same routing parameters,

the same TP_Routing_Scenario and the same characteristics

for network relationship. Concerned network characteristics

are the protocol type and channel bandwidth. The Stress

Factor is calculated based on aspects such as processing

time, memory usage, channel bandwidth and other chan-

nel specific aspects. Stress Factors shall be assigned during

test case execution. Similarity Numbers and Stress Factors

are required for reducing combinations during testing. This

will be discussed later in details. The basic idea to resolve

the combinatorial explosion problem is by using "reduced

combinations" formulated from constructed groups based on

similarity criteria.

B. Conflict Handling

In [2], four different methods for handling conflicts in

IPMs were investigated. The result of the study was that

the avoid method is best suited with respect to size of test

suite if it can be utilized. To handle conflicts with the avoid

method; a procedure is integrated in the test case selection

algorithm to prohibit choosing of conflicting combinations.

Another method mentioned in the study is the sub-models

method, in which conflicts are removed by splitting the IPM

into multiple smaller conflict-free IPMs used separately to

generate test cases. In this paper, a combination of these two

conflict handling methods is utilized to handle the defined

conflicts for testing TP parallel routing.

1) TypeA-Conflict Handling: Since constructed groups pos-

sess TP_Routing_Instances similar to each other in all

assigned parameters, TP_Routing_Instances of each group

will have the same attached TP_Routing_Scenario. To han-

dle conflicts existing between TP_Routing_Scenarios, the

sub-models method is utilized. The TP_Routing_Scenario

is used to split IPM into sub-IPMs which are TypeA-

Conflict-free. The resulted sub-IPMs shall have no combinable

TP_Routing_Instances among each other. This step can be

completely achieved before executing any test case, i.e., it is

not part of the recursive mechanism. Subsequently, resulted

sub-IPMs are processed successively in a recursive methodol-

ogy.

2) TypeB-Conflict Handling: As described before,

a TP_Routing_Instance is a relationship between a

TP_Connection_Channel and a TP_Routing_Scenario. In

order to handle conflicts between TP_Connection_Channels,

the avoid method is utilized. To implement the avoid method,

two reserved parameters, i.e., "Token" and "Include Times",

are attached to individual TP_Routing_Instances. The value

of the first parameter "Token" is used to decide whether a

TP_Routing_Instance is allowed to be included in the next

combination or not. The Token parameter can have one of the

following values:

• 0: Related TP_Routing_Instance having no TypeB-

conflicts and is allowed to be included in a combination.

• 1: Related TP_Routing_Instance having TypeB-conflicts

and is allowed to be included in the next combination.

• 2: Related TP_Routing_Instance having TypeB-conflicts

and is not allowed to be included in the next combination.

The second parameter "Include Times" is used to hold

the number of times a TP_Routing_Instance is included

in constructed combinations. It is utilized to choose

TP_Routing_Instances from the same group that have not yet

been included or less included than other instances. Every

TP_Routing_Instance having TypeB-conflict is assigned an

"Include Times" value "0" that gets incremeted whenever that

particular TP_Routing_Instance becomes part of a generated

combination.

In order to avoid combinations having TypeB-conflict,

the Rotate () function is called. Each time the function

is called, it assigns a suitable value for parameter Token

based on TypeB-conflicts and the value of parameter Include

Times. After calling the Rotate () function, TypeB-conflicting

TP_Routing_Instances with the minimum value of parameter

Include Times will be assigned the value 1 for Token and

all other TypeB-conflicting TP_Routing_Instances will get the

value 2. TypeB-conflict-free TP_Routing_Instances will be

assigned the value 0. The algorithm for generating the final

reduced combinations will avoid TP_Routing_Instances with

the value 2 for Token parameter.

3) TypeC-Conflict Handling: Conflicts based on configu-

ration parameters are constraints considered in the test case

selection and generation procedure. These constraints shall be

corrected if error arises, e.g., correcting the maximum number

of parallel routing instances of CAN transport protocol.

IV. REDUCTION OF TEST SUITE

In order to reduce the size of test suite, a new recursive

test mechanism consisting of the following two test phases is

proposed:

1) Testing TP parallel routing of Single Network Relation-

ships (SNRs). An individual SNR comprises groups of

TP_Routing_Instances responsible for routing TP data

between two specific networks of the gateway.

1562 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

2) Testing TP parallel routing of Mixed Network Relation-

ships (MNRs). An individual MNR comprises groups of

TP_Routing_Instances from all SNRs belonging to the

same sub-IPM.

In the first test phase, testing of TP parallel routing for

individual pairs of connected networks is carried out by means

of groups belonging to individual SNRs. The goal of this test is

to cover simple interactions (routing) between network pairs.

After completing the first test phase, the second test phase

is conducted. The goal of the second test phase is to cover

complex interactions between multiple interacting networks

by means of groups belonging to individual MNRs. Testing

SNRs and MNRs separately is very useful for managing the

test complexity and reducing the number of combinations.

Furthermore, it provides information about possible reason for

the occurrence of errors and their relationship with certain

pairs of networks or parameter.

A. Coverage Criterion

Coverage criterion is an essential element of combination

test strategies. It affects the complexity and the thoroughness

of the test. In the proposed approach for testing TP parallel

routing, coverage criteria is determined with respect to combi-

nations of TP_Routing_Instances from constructed groups. For

example, 1-wise coverage requires that at least one possible

combination with maximum allowed TP_Routing_Instances

from every input group is included at least once in a test case.

Since all TP_Routing_Instances of a group stimulate a similar

behavior in the gateway, any one of such a combination from

each group is sufficient enough to satisfy 1-wise coverage cri-

terion. N-wise coverage criterion (exhaustive testing) requires

that all possible combinations of TP_Routing_Instances from

N input groups are included in some test cases, where N is

the number of input groups.

For an arbitrary number of input groups, the algorithm

generates all possible combinations satisfying the N-wise inter-

actions between the groups. The maximum number of resulting

combinations is calculated as in (6):

X =
(n+ y − 1)!

y!(n− 1)!
(6)

Where n is the number of groups and y is the maximum num-

ber of allowed parallel TP_Routing_Instances. Table I explains

the algorithm for generating combinations with the help of an

example of 4 input groups (G1,G2,G3,G4) and a maximum

of 3 allowed parallel TP_Routing_Instances. Resulting rows

in Table. I represent the combinations and the numbers in

columns represent the number of TP_Routing_Instances se-

lected from each corresponding group for test case generation.

The maximum number of resulting combinations (rows) in this

example can be calculated according to (6) and is equal to 20.

While generating test cases, following aspects are consid-

ered:

• To guarantee that each TP_Routing_Instance is included

at least once in some combinations, the Rotate () function

is used. Upon calling this function, it generates new Token

TABLE I
COMBINATIONS FROM 4 GROUPS WITH MAXIMUM OF 3

TP_Routing_InstanceS

G1 G2 G3 G4

3 0 0 0

2 1 0 0

2 0 1 0

2 0 0 1

1 2 0 0

1 1 1 0

1 1 0 1

1 0 2 0

1 0 1 1

1 0 0 2

0 3 0 0

0 2 1 0

0 2 0 1

0 1 2 0

0 1 1 1

0 1 0 2

0 0 3 0

0 0 2 1

0 0 1 2

0 0 0 3

values for TP_Routing_Instances based on the last values

of Include Times variables and TypeB-Conflicts.

• The sum of column elements must be greater than

or equal to the number of elements in the cor-

responding group in order to guarantee that each

TP_Routing_Instance has been included at least once. If

this is not the case, the remaining TP_Routing_Instances

from that group shall be tested individually.

• The number in each column must be lesser than or

equal to the total number of TP_Routing_Instances in

the corresponding group. Otherwise, the combination in

the related row is invalid and must be omitted.

B. TP Parallel Routing of SNRs

The procedure for testing TP parallel routing of SNRs is

depicted in Fig. 2. The procedure accepts constructed TypeA-

Conflict-free sub-IPMs as input and processes them succes-

sively. For each TypeA-Conflict-free sub-IPM, the Selector ()

function extracts groups for the first SNR. In the next step,

a combination is built for the current processed SNR with

the help of the mechanism explained previously satisfying

N-wise coverage criterion. After that, a test case will be

generated and executed for the build combination. During test

case generation, TypeB- and TypeC-conflicts are handled as

explained previously. Result of the test case is analyzed in

the following step in which Stress Factor is determined and

configuration parameters are corrected if a variance has been

observed. This procedure is repeated for all combinations until

the N-wise coverage criteria is satisfied for each SNR. This

HASSAN MOHAMMAD, MUHAMMAD SHAMOON SALEEM: HANDLING CONFLICTS TO TEST 1563

Next TypeA-Conflict-Free Sub-

IPM (G1, G2 … Gn)

Selector ()

Groups of next SNR

Build and Execute Test

Case for the Combination

(TypeB- and Type
C

-

Conflict-free)

Analyze Result

Determine Stress Factor

and Correct Configuration

Parameters

All Combinations

Tested?

N Y All (SNRs)

covered?

N

Y

Build Combinations to

Satisfy N-wise Coverage

Criterion

All TypeA-Conflict-

free Sub-IPM covered?

N

Y

To the next Phase

Next TypeA-Conflict-Free Sub-

IPM (G1, G2 … Gn)

Selector ()

Groups of next SNR

Build and Execute Test

Case for the Combination

(TypeB- and Type
C

-

Conflict-free)

Analyze Result

Determine Stress Factor

and Correct Configuration

Parameters

All Combinations

Tested?

N Y All (SNRs)

covered?

N

Y

Build Combinations to

Satisfy N-wise Coverage

Criterion

All TypeA-Conflict-

free Sub-IPM covered?

N

Y

To the next Phase

Fig. 2. TP Parallel Routing for SNRs

process is then repeated until all TypeA-conflict-free sub-IPM

are covered. Processing combinations successively has the

advantage to reduce further invalid combinations depending

on the corrected configuration parameters. After finishing this

phase, each group will be assigned a calculated Stress Factor,

which will be used by the next phase.

C. TP Parallel Routing of MNRs

The procedure for testing TP parallel routing of MNRs

is depicted in Fig. 3. In this procedure, TypeA-Conflict-free

sub-IPMs are processed successively. Each TypeA-conflict-

free sub-IPM consists of an arbitrary number of SNRs. A

representative group with the best calculated Stress Factor for

each of these SNR is selected. These representative groups are

called MNR and they are the base for testing in this phase.

That is, for each processed TypeA-Conflict-free sub-IPM, a

MNR with selected groups is constructed. After selecting

groups of a MNR, groups having the same Similarity Numbers

will be omitted in oder to reduce repititions in combinations.

Then, the same procedure as that in previous phase is utilized

to build combinations and execute test cases until N-wise

coverage criterion is satisfied. The procedure will stop once all

TypeA-Conflict-free sub-IPMs are processed. During recursive

testing, constraints are corrected if an error is observed. This

helps in further reduction of remaining combinations required

to satisfy defined coverage criteria.

Representatives of SNRs

(G1, G2 … Gm) = MNR

Next TypeA-Conflict-Free

Sub-IPM

Build and Execute Test

Case for the Combination

(TypeB- and TypeC-

Conflict-free)

Analyze Result

Correct Configuration

Parameters

All Combinations

Tested?

N Y

Build Combinations to

Satisfy N-wise Coverage

Criterion

All TypeA-Conflict-

free Sub-IPM covered?

Y

End

N

Representatives of SNRs

(G1, G2 … Gm) = MNR

Next TypeA-Conflict-Free

Sub-IPM

Build and Execute Test

Case for the Combination

(TypeB- and TypeC-

Conflict-free)

Analyze Result

Correct Configuration

Parameters

All Combinations

Tested?

N Y

Build Combinations to

Satisfy N-wise Coverage

Criterion

All TypeA-Conflict-

free Sub-IPM covered?

Y

End

N

Fig. 3. TP Parallel Routing for MNRs

V. EXPERIMENT

The central gateway used in this experiment is a special

electronic control unit which connects five different networks

representing five functional domains of a modern vehicle. Bus

systems of the five networks are listed as follows:

• A CAN network for diagnostic functional domain with

500 kilo baud, denoted as bus 1.

• A CAN network for periphery and power train functional

domain with 500 kilo baud, denoted as bus 2.

• A CAN network for body functional domain with 250

kilo baud, denoted as bus 3.

• A CAN network for telematics functional domain with

500 kilo baud, denoted as bus 4.

• A FlexRay network for chassis functional domain with

10 MB, denoted as bus 5.

The gateway has 390 TP_Connection_Channels which are

separated in:

• 190 TP_Connection_Channels used to transfer data from

external device to available ECUs over the gateway.

• 190 TP_Connection_Channels used to transfer data from

available ECUs to external device over the gateway.

• 4 TP_Connection_Channels used to transfer data between

4 couples of ECUs in the one direction.

• 4 TP_Connection_Channels used to transfer data between

4 couples of ECUs in the another direction.

• 2 functional TP_Connection_Channels.

Similarity criteria used to form groups are:

1564 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

• Network relationship of TP_Connection_Channels

(source and destination networks).

• Addressing format (normal or mixed).

• Block Size (BS) and separation minimum time (STmin)

if they are available.

• Cycle Repetition if it is available.

• ID Type (normal or extended).

• Address Type (physical or functional or extended).

• TP_Routing_Scenario

TP_Routing_Scenarios determined are:

• Flashing (S1).

• Uploading (S2).

• OBD in the one direction (S3).

• OBD in the other direction (S4).

• Functional routing (S5).

Table II, table III, table IV and table V represent the resulting

sub-IPMs with their corresponding groups.

Determined conflicts are listed below:

• TypeA-Conflicts

– Flashing and Upload are non-combinable

– Flashing and OBD in both directions are non-

combinable

– Upload and OBD in both directions are non-

combinable

– OBD in both directions are non-combinable

• TypeB-Conflicts

– TP_Connection_Channels with the same ID but dif-

ferent value for Node Address for Diagnose (NAD)

are non-combinable

– TP_Connection_Channels with the same Slot-ID,

Base-Cycle and Cycle-Repetition but different source

address are non-combinable

• TypeC-Conflicts

– The maximum configured parallel routing instances

for CAN-CAN routing <= 30

– The maximum configured parallel routing instances

for CAN-FlexRay routing <= 8

Transport protocols implemented are based on the ISO stan-

dards, ISO 10681 for FlexRay TP [11], and ISO 15765 for

CAN TP [7]. Handling TypeB- and TypeC-Conflicts during

test lead to following maximum number of combinations in

the first test phase:

• First sub-IPM

– First SNR: 10 combinations

– Second SNR: 152 combinations

– Third SNR: 1 combination

– Fourth SNR: 31 combinations

• Second sub-IPM

– First SNR: 10 combinations

– Second SNR: 78 combinations

– Third SNR: 1 combination

– Fourth SNR: 31 combinations

• Third sub-IPM

– First SNR: 1 combination

– Second SNR: 1 combination

– Third SNR: 1 combination

– Fourth SNR: 1 combination

• Fourth sub-IPM

– First SNR: 1 combination

– Second SNR: 1 combination

– Third SNR: 1 combination

– Fourth SNR: 1 combination

Table VI represents an example of a resulting combi-

nation from the first SNR of the first Sub-IPM. The first

SNR of the first Sub-IPM consists of the groups G1, G2,

G3, G4, G18 and G19 from table II. Following numbers of

TP_Routing_Instances have been selected to generate the first

combination:

• 5 TP_Routing_Instances from group G1

• 8 TP_Routing_Instances from group G2

• 14 TP_Routing_Instances from group G3

• 3 TP_Routing_Instances from group G4

VI. DISCUSSION

Depending on the grade of diversity in parameters for

TP_Connection_Channels and in connected networks; the

number of formulated groups can increase. The idea is to cover

the interactions between formulated groups instead of interac-

tions between TP_Routing_Instances. This helps in avoiding

similar combinations and contribute to reduce the size of the

test suit. If the number N of groups is high, either a 2-Wise or

3-wise coverage criteria can be used. A drawback of proposed

approach is the need of system functionality expertise to define

similarity criterion and calculate the Stress Factors of the

groups. However this needs to be performed only once. Later

on, for each new release of the system, combinations can be

generated automatically.

VII. CONCLUSION AND FUTURE WORK

In this paper, an approach for building a conflict-free IPM

to test TP parallel routing on a vehicle gateway system has

been proposed. Firstly, the approach utilizes defined simi-

larity criteria to cluster system input parameters represented

as TP_Routing_Instances into groups stimulating similar be-

havior. Secondly, the two conflict handling methods sub-

models and avoid are used to prohibit invalid combinations

of TP_Routing_Instances. In order to reduce the size of the

test suite, two phases of testing have been suggested, testing

TP parallel routing for SNRs in order to cover simple inter-

actions between network pairs, and testing TP parallel routing

for MNRs to cover complex interactions between multiple

interacting networks. The proposed approach has been applied

on a complex example of a gateway with five buses, 390

TP_Routing_Instances and diverse conflicts. Generating test

cases for resulting combinations from the first test phase and

conducting the second test phase will be achieved in the future.

Furthermore, a restbus simulation is under development to

execute the generated test cases for build combinations.

HASSAN MOHAMMAD, MUHAMMAD SHAMOON SALEEM: HANDLING CONFLICTS TO TEST 1565

TABLE II
FIRST SUB-IPM’S GROUPS

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (19 elements) 1,2 Mixed (32,0) (32,0) - Normal Physical S1

G2 (8 elements) 1,2 Normal (32,0) (8,10) - Norma Physicall S1

G3 (14 elements) 1,2 Normal (32,0) (32,0) - Normal Physical S1

G4 (8 elements) 1,2 Normal (8,10) (8,10) - Extended Physical S1

G5 (58 elements) 1,3 Mixed (32,0) (32,0) - Normal Physical S1

G6 (29 elements) 1,3 Normal (32,0) (8,10) - Normal Physical S1

G7 (5 elements) 1,3 Mixed (32,0) (32,20) - Normal Physical S1

G8 (3 elements) 1,3 Normal (32,0) (32,0) - Normal Physical S1

G9 (8 elements) 1,4 Normal (32,0) (32,0) - Normal Physical S1

G10 (2 elements) 1,4 Normal (4,10) (4,10) - Normal Physical S1

G11 (13 elements) 1,4 Normal (32,0) (8,10) - Normal Physical S1

G12 (5 elements) 1,4 Mixed (32,0) (32,0) - Normal Physical S1

G13 (8 elements) 1,5 Normal (32,0) (-,-) 2 Normal Physical S1

G14 (1 elements) 1,5 Normal (32,0) (-,-) 1 Normal Physical S1

G15 (1 elements) 1,5 Mixed (32,0) (-,-) 4 Normal Physical S1

G16 (1 elements) 1,5 Normal (8,10) (-,-) 1 Extended Physical S1

G17 (7 elements) 1,5 Normal (32,0) (-,-) 4 Normal Physical S1

G18 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G19 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

TABLE III
SECOND SUB-IPM’S GROUPS

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (15 elements) 2,1 Normal (8,0) (8,0) - Normal Physical S2

G2 (7 elements) 2,1 Normal (8,10) (8,0) - Normal Physical S2

G3 (19 elements) 2,1 Mixed (8,0) (8,0) - Normal Physical S2

G4 (8 elements) 2,1 Normal (8,0) (8,0) - Extended Physical S2

G5 (63 elements) 3,1 Mixed (8,0) (8,0) - Normal Physical S2

G6 (29 elements) 3,1 Normal (8,10) (8,0) - Normal Physical S2

G7 (3 elements) 3,1 Normal (8,0) (8,0) - Normal Physical S2

G8 (8 elements) 4,1 Normal (8,0) (8,0) - Normal Physical S2

G9 (13 elements) 4,1 Normal (8,10) (8,0) - Normal Physical S2

G10 (5 elements) 4,1 Mixed (8,0) (8,0) - Normal Physical S2

G11 (2 elements) 4,1 Normal (4,10) (4,10) - Normal Physical S2

G12 (8 elements) 5,1 Normal (-,-) (8,0) 2 Normal Physical S2

G13 (1 elements) 5,1 Normal (-,-) (8,0) 1 Normal Physical S2

G14 (7 elements) 5,1 Normal (-,-) (8,0) 4 Normal Physical S2

G15 (1 elements) 5,1 Mixed (-,-) (8,0) 4 Normal Physical S2

G16 (1 elements) 5,1 Normal (-,-) (8,0) 1 Extended Physical S2

G17 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G18 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

1566 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

TABLE IV
THIRD SUB-IPM’S GROUPS

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (3 elements) 3,4 Normal (4,10) (4,10) - Normal Physical S3

G2 (1 elements) 4,5 Normal (4,20) (-,-) 16 Normal Physical S3

G3 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G4 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

TABLE V
FORTH SUB-IPM’S GROUPS

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (3 elements) 4,3 Normal (4,10) (4,10) - Normal Physical S4

G2 (1 elements) 5,4 Normal (-,-) (8,20) 16 Normal Physical S4

G3 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G4 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

TABLE VI
AN EXAMPLE OF A RESULTING COMBINATION

Request ID Response ID Network
Relationship

BS and STmin Message
DLC

NAD Addressing
Format

ID Type TP Routing
Scenario

0x4e9 0x499 1,2 (32,0) (32,0) 8 14 Mixed Normal S1

0x4e8 0x498 1,2 (32,0) (32,0) 8 32 Mixed Normal S1

0x4c4 0x494 1,2 (32,0) (32,0) 8 5 Mixed Normal S1

0x4d0 0x490 1,2 (32,0) (32,0) 8 8 Mixed Normal S1

0x4e7 0x497 1,2 (32,0) (32,0) 8 13 Mixed Normal S1

0x450 0x5d9 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x456 0x5d5 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x7e4 0x7ec 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x625 0x5a5 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x654 0x5d4 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x652 0x5d2 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x624 0x5a4 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x653 0x5d3 1,2 (32,0) (8,10) 8 - Normal Normal S1

0x64e 0x5ce 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7e5 0x7ed 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7e1 0x7ea 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x665 0x5e5 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x778 0x788 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x64d 0x5cd 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x656 0x5d6 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x650 0x5d0 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7e2 0x7e8 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7e6 0x7ee 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7d9 0x7e7 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x7e3 0x7eb 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x662 0x5e2 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x65b 0x6db 1,2 (32,0) (32,0) 8 - Normal Normal S1

0x18da69f1 0x18daf169 1,2 (8,10) (8,10) 8 - Normal Extended S1

0x18da66f1 0x18daf166 1,2 (8,10) (8,10) 8 - Normal Extended S1

0x18da43f1 0x18daf143 1,2 (8,10) (8,10) 8 - Normal Extended S1

HASSAN MOHAMMAD, MUHAMMAD SHAMOON SALEEM: HANDLING CONFLICTS TO TEST 1567

REFERENCES

[1] M. Grindal, J. Offutt, and S. F. Andler, "Combination Testing Strategies:
A survey," GMU Technical Report ISE-TR-04-05, July 2004.

[2] M.N. Borazjany, L. S. Ghandehari, Y. Lei, R.N. Kacker, and D.R. Kuhn,
"An Input Space Modeling Methodology for Combinatorial Testing,"
Software Testing, Verification and Validation Workshops (ICSTW), 2013
IEEE Sixth International Conference, pp. 372-381, Luxembourg 2013.

[3] M. Grindal and J. Offutt, "Input Parameter Modeling for Combination
Strategies," In Proceeding SE’07 Proceedings of the 25th conference
on IASTED International Multi-Conference: Software Engineering, pp.
255-260, USA 2007.

[4] M. Grindal, J. Offutt, and J. Mellin, "Handling Constraints in the Input
Space when Using Combination Strategies for Software Testing," Tech-
nical Report HS-IKI-TR-06-001. School of Humanities and Informatics,
University of Skövde 2006.

[5] S. A. Vilkomir, W. T. Swain, and J. H. Poore, "Software Input Space
Modeling with Constraints among Parameters," Computer Software and
Applications Conference, COMPSAC ’09. 33rd Annual IEEE Interna-
tional, pp. 136-141, Seattle. WA. 2009.

[6] M. Grindal, J. Offutt, and J. Mellin, "Managing Conflicts when Using
Combination Strategies to Test Software," Software Engineering Con-
ference, ASWEC 2007. 18th Australian, pp. 255-264. Melbourne, Vic.
2007.

[7] "Road vehicles-Diagnostics on Controller Area Networks (CAN)-," ISO
15765:2004(E), Switzerland : ISO.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG
System: An Approach to Testing Based on Combinatorial Design," IEEE
Transaction on Software Engineering, vol. 23 ,pp. 437-444, July 1997.

[9] R. Mandl, "Orthogonal Latin Squares: An application of experiment
design to compiler testing," Communications of the ACM, 28(10):1054
-1058, October 1985.

[10] C. J. Colbourn, M. B. Cohen, and R. C. Turban, "A Deterministic
Density Algorithm for Pairwise Interaction Coverage," In: Proc. of the
IASTED Intl. Conference on Software Engineering, pp. 345-352, Austria
2004.

[11] "Road vehicles-Communication on FlexRay-," ISO 10681:2010(E),
Switzerland : ISO.

1568 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

