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Abstract—A deoxyribonucleic acid (DNA) sequence can be
represented as a sequence with 4 characters. If a particular
property of the DNA is studied, for example, GC content, then
it is possible to consider a binary sequence. In many cases,
if the probabilistic properties of a segment differ from the
neighbouring ones, this means that the segment can play a
structural role. Therefore, DNA segmentation is given a special
attention, and it is one of the most significant applications of
change-point detection. Problems of this type also arise in a wide
variety of areas, for example, seismology, industry (e.g., fault
detection), biomedical signal processing, financial mathematics,
speech and image processing. In this study, we have developed a
Cross-Entropy algorithm for identifying change-points in binary
sequences with first-order Markov dependence. We propose a
statistical model for this problem and show effectiveness of our
algorithm for synthetic and real datasets.

I. INTRODUCTION

T
HE eukaryotic genomes are packaged into nucleosomes,

composed of approximately 147 base pairs. There are

4 different bases: adenine (A), cytosine (C), guanine(G) and

thymine (T). We can consider different approaches to base

partition that depend on chemical and physical structure. One

type of separation is pyrimidines (T and C) and purine (A

and G). The second type of separation is keto (T and G) and

amino (A and C) groups. In this paper, we consider groups of

complemental bases: GC and AT pairs.
In this study, we are interested in finding regions that differ

from neighbouring ones in GC level. It is well-known that

genomic sequences are nonhomogeneous with respect to GC

level, differences in GC proportion may be over scale of

100 kb to megabases. These long segments are called GC-

content domains or isochores [1], [2]. Many studies propose

that the differences of GC proportion appear as an outcome

from a selection process [3]. It is well-known that an average

GC proportion in chromatin organization and, hence, gene

regulation is significant [4]. So GC proportion has been

revealed to correlate with genomic properties such as DNA

bendability and regulated replication.
In the last years, this topic has been investigated by many

researchers [5], [6], [7]. This stimulates the elaboration of
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Fig. 1. The DNA structure. http://www.niherst.gov.tt/scipop/sci-bits/genetics-
and-epigentics.htm

computational techniques that are applied to large-scale bi-

ological experimental data. Positive relationships have been

discovered between GC level and recombination in humans,

birds, and plants [8], [9], [10], [11]. Spencer et al. [5]

have discovered that recombination proportions are too fast-

evolving to have permanent meanings on base composition.

Positions in a DNA sequence at which nucleotides C or G

are situated can be represented by a 1, and locations with T

or A are situated can be represented by a 0. More formally,

a sequence a = {a1, . . . , aL} of length L is given, where

am ∈ {A,C,G, T}. The sequence may be transformed to a

binary sequence b = {b1, . . . , bL} in which

bm =

{
1 if am ∈ {C,G},
0 if am ∈ {A, T}.
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From mathematical point of view we can designate a bound

of segments with different GC ratio as a break-point or

a change-point. Biological applications of the change-point

problem, in particular, to DNA sequences, have been exten-

sively considered in literature (see, for example, [12], [13],

[14], [15], [16]). Note that the multiple change-point problem

is a flexible model, which can be applied in many areas such

as economics, finance, environmental control [17], [18], [19],

signal detection, quality control [20], health and surveillance

[21], [22]. Various techniques to the change-point problem

with independent observations have been developed [16], [23],

[24], [25], including stochastic optimization methods [13],

[26], [27], [28], [29], [30], [31] and Markov chain Monte Carlo

(MCMC) algorithms [14], [32], [33], [34], [35]. The Cross-

Entropy (CE) method for independent case was developed

in [13].

We can formulate a more general change-point problem for

a sequence of dependent observations. The case of the Markov

dependence in biological sequences was investigated in dif-

ferent articles. Polansky [36] considered cases with known

and unknown number of change-points. The author applied

the likelihood ratio, the bootstrap for estimation p-values for

these cases, the Bayesian information criterion (BIC) and the

Akaike information criterion (AIC) with unknown number

of change-points. Zhang and Siegmund [37] proposed a new

penalty component in the modified BIC. Avery and Herderson

[12] investigated a problem of prediction of the occurrence

of the definite sequence in DNA. For this purpose they

considered the first-order, the second-order and the higher-

order Markov chain models. Then the authors [38] developed

a nonparametric method based on the approach of Pettitt [39].

Krauth [15], [40] used the exact Fisher test and the finite

conditional tests for the multiple change-point problem in

binary first-order Markov sequences. In this paper, we develop

the CE method for identifying change-points in the first-order

Markov dependence in binary sequences for artificial and real

data.

We use the genome of the Bacteriophage lambda, a virus

of the intestinal bacterium Escherichia coli, and a part of the

Human Major Histocompatibility Region. Consideration of in-

dividual chromosomes is one of the most common approaches

in the literature [41], [42]. Particularly it is very important for

the analysis of the cancer genome [43].

The paper is structured as follows. Section 2 provides a

statement of the multiple change-point problem in mathemat-

ical terms. In Section, 3 we describe a general framework

of Cross-Entropy method. Section 4 contains developing the

Cross-Entropy algorithm for the multiple change-point prob-

lem in dependent case. In Section 5, we discuss the results of

numerical experiments.

II. THE MULTIPLE CHANGE-POINT PROBLEM IN BINARY

MARKOV SEQUENCES

In mathematical terms we can describe the general mul-

tiple change-point problem as follows. A binary sequence

b = (b1, . . . , bL) of length L is given. A segmentation of the

sequence is specified by giving the positions of the change-

points c = (c1, . . . , cN ) and the number of change-points N ,

where 1 = c0 < c1 < · · · < cN < cN+1 = L. This means

that a change-point is a boundary between two neighbouring

regions, and the value cn is the sequence position of the

rightmost character of the segment to the left of the n-th

change-point.

In this model we assume that characters within each region

are generated by Bernoulli trials with first-order Markov

dependence. The probability distribution, which depends on

the segment, can be represented by a transition matrix
(

θ0 1− θ0
θ1 1− θ1

)
,

where θ0 = P (Xm+1 = 0 | Xm = 0), 1 − θ0 = P (Xm+1 =
1 | Xm = 0), θ1 = P (Xm+1 = 0 | Xm = 1), 1 − θ1 =
P (Xm+1 = 1 | Xm = 1).

Thus, the likelihood function of N , c = (c1, . . . , cN ), and

θ = (θ00, θ10, . . . , θ0n, θ1n, . . . , θ0N , θ1N ),

is given by

f(N, c, θ) = P (X1 = b1)

×
N∏

n=0

θ
I00(cn,cn+1)
0n (1− θ0n)

I01(cn,cn+1)

×θ
I10(cn,cn+1)
1n (1− θ1n)

I11(cn,cn+1),

where Iij(cn, cn+1) is the number of times i (i = 0, 1), is

followed by j (j = 0, 1) in the segment bounded by sequence

positions cn + 1 and cn+1.

In order to simplify optimization, we consider the log-

likelihood function at point x = (N, c, θ), having observed

b1, . . . , bL,

π(x) = lnP (X1 = b1) (1)

+
N∑

n=0

(
I00(cn, cn+1) ln θ0n

+ I01(cn, cn+1) ln(1− θ0n)

+ I10(cn, cn+1) ln θ1n + I11(cn, cn+1) ln(1− θ1n)
)
.

III. THE CROSS-ENTROPY METHOD

From mathematical point of view the multiple change-

point detection problem can be interpreted as a maximization

problem of the log-likelihood function defined in (1).

Let F be a real valued performance function on X , where

X is a finite set of states. We want to find the optimum of

F over X , and the state corresponding to this value (which

is a vector of positions of change-points). We can apply

stochastic optimization methods for this optimization problem,

in particular, the CE method.

The CE method is a technique for the estimation of rare

event probabilities [44], [45], [46]. This estimation problem

can be reformulated as an optimization problem. Thus we
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define a set of indicator functions {I{S(x)≥γ}} on X for

different levels γ ∈ R. Let {f(·, u)} be a family of probability

density functions (pdfs) on X with a real-valued parameter u.

Following [45], we associate the optimization problem with

the problem of estimating

l(γ) = Pu(S(X) ≥ γ) =∑

x

I{S(x)≥γ}f(x, u) = EuI{S(X)≥γ},

where γ is a known or unknown parameter and Pu is the

probability measure under which the random state X has the

pdf f(·, u).
The problem of estimating l is not trivial. Adaptive

changes to the pdf are based on the Kullback-Leibler (or

the CE) distance. Thus it allows to create a sequence

f(·, u0), f(·, u1), . . . , f(·, u
∗). The final pdf f(·, u∗) corre-

sponds to the density at an optimal point. This means that

the CE method creates a sequence of pairs {(γt, ut)}, which

converges quickly to a close neighbourhood of the optimal

tuple (γ∗, u∗). More specifically, we should set up u0 and

simulation parameters, and then we carry out the following

procedure [45]:

1) Adaptive updating of γt. For a fixed ut−1, let γt be a

(1−ρ)-quantile of Ŝ(X) under ut−1. A simple estimator

γ̂t of γt is

γ̂t = Ŝ(⌈(1−ρ)N2⌉),

where, for a random sample X1, . . . , XN2
from

f(·, ut−1), Ŝ(i) is the i-th order statistic of the perfor-

mances Ŝ(X1), . . . , Ŝ(XN2
).

2) Adaptive updating of ut. For fixed γt and ut−1, derive

ut from the solution of the CE program

max
u

D(u) = max
u

Eut−1
I
{Ŝ(X)≥γt}

ln f(X,u).

IV. THE CROSS-ENTROPY METHOD FOR THE MULTIPLE

CHANGE-POINT PROBLEM

Let N be the number of change-points and c be a set of

the change-points, which is a nondecreasing N -dimensional

vector.

We apply the CE algorithm that uses normal distributions to

simulate the change-point positions. The CE method updates

the parameters in each step and updating is continued until

a convergence state is achieved. A variance-based stopping

criterion is used to estimate the fit of the combinations of

change-points in each step.

Our study differs from previous [13] in the following

aspects. Firstly, we consider a change-point problem for a

sequence of dependent observations. Secondly, we apply the

BIC (Bayesian information criterion) [47], [48] in order to esti-

mate the number of change-points, which is usually unknown.

The combination that minimizes F (our performance function)

under the corresponding N is considered as the optimal

solution. Therefore, we replace the problem of maximization

of log-likelihood function with minimization problem of the

BIC.

TABLE I
PARAMETERS θ IN EXAMPLE 1

positions θ1 θ2

1–2000 0.9 0.5

2001–4000 0.4 0.15

4001–6000 0.1 0.6

6001–8000 0.6 0.9

8001–10000 0.2 0.4

10001–12000 0.4 0.2

12001–14000 0.2 0.7

14001–16000 0.6 0.5

16001–18000 0.4 0.9

18001–20000 0.2 0.2

20001–22000 0.7 0.5

For each change-point vector c in the sample, we obtain the

maximum likelihood estimate of parameters with respect to the

each of the segments and evaluate the performance function

F . The performance function, the BIC, which we minimize is

F = −2π(x) + k ln(L), (2)

where π(x) is the log-likelihood as in (1) of the sequence. We

use the standard penalty

k ln(L) = (3N + 2) ln(L).

In each iteration an elite sample is defined as the best

performing combinations of change-points with respect to the

performance function score. The process is carried out until a

specific stopping criterion is achieved.

In each step, the simulation parameters are updated ac-

cordingly. The main steps of our algorithm are described in

Algorithm 1.

We should specify N1, ρ, ε , the parameters of the algorithm

as well as the initial values for the simulation parameters µ and

σ2. Note that we choose the parameters under the conditions

which guarantee convergence of the algorithm [49].

V. NUMERICAL RESULTS

In this section, we include results of numerical experiments

that illustrate the performance of the CE method. In the first

example, we consider a synthetic sequence with a known

distribution, which allows us to provide direct comparison of

estimated and true profiles in terms of the Root Mean Squared

Error (RMSE). The second and the third examples use real

DNA sequences and we do not have any information about

the structure of dependence. We apply a test of independence

for these examples.

A. Example 1: Artificial data

Let (b1, b2, ..., b22000) be a sequence of random variables

generated with the parameters from Table I.

At first, we assume that we do not know the number of

change-point and apply our algorithm for different N . We run

our algorithm with the following simulation parameters: the

elite proportion value ρ = 0.1 and the sample size N1 = 1500.
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Algorithm 1 Algorithm for change-point detection

1: Choose initial sets for

µ(0) =
(
µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
N

)

and

(σ2)(0) =
(
(σ2

1)
(0), (σ2

2)
(0), . . . , (σ2

N )(0)
)
.

The length of both vectors is N . Set t = 1.
2: Generate a random sample c(1), c(2), . . . , c(N1) from the

normal distributions with parameters
(
µ(t−1), (σ2)(t−1)

)
,

where c(i) =
(
c
(i)
1 , c

(i)
2 , . . . , c

(i)
N

)
, i = 1, 2, . . . , N1, is a

change-point vector.

3: For i = 1, 2, . . . , N1 order
(
c
(i)
1 , c

(i)
2 , . . . , c

(i)
N

)
from small-

est to biggest.

4: Evaluate the performance of each c(1), c(2), . . . , c(N1)

based on (2).

5: Define the elite sample, which is the best performing

combinations of the change-points.

6: Let Nelite = ρN1 be the size of the elite sample.

7: For all j = 1, 2, . . . , N , estimate the parameters µ
(t)
j

and (σ2
j )

(t) using the elite sample and update the current

parameter sets as follows:

µ
(t)
j =

∑
i∈I

c
(i)
j

Nelite

,
(
σ2
j

)(t)
=

∑
i∈I

(
c
(i)
j − µ

(t)
j

)2

Nelite

,

where I is the set of indices of the best performing

samples.

8: Stopping criterion is maxj(σ
2
j )

(t) < ε.

9: if Stopping criterion is met then

10: stop the process and identify the combination of the

positions of change points c(i) that minimizes the BIC

11: else

12: t = t+ 1;

13: and iterate from step 2.

14: end if

Then we obtain the best solution for different models in each

of the N situations which minimize the BIC. We can see from

Figure 2 that the minimum value of the BIC at N = 10, which

corresponds to the number of change-points in Table I.

The true profiles of this sequence as well as the estimated

profile can be seen in Figures 3, 4. We can see that the

estimated and the true plots are very similar to each other.

This indicates that the CE method works very well and it

properly captures the segments in the binary sequence.

To test the efficiency of the CE method, we have applied

this algorithm with various values for the parameter ρ, which

is used to obtain the elite sample. We calculate the RMSE for

the different algorithms when applied to the synthetic sequence

Fig. 2. The scores of the BIC for different N

Fig. 3. The profile of θ0 obtained by the CE algorithm

Fig. 4. The profile of θ1 obtained by the CE algorithm
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Fig. 5. The values of the RMSE for θ0 depending on ρ

Fig. 6. The values of the RMSE for θ1 depending on ρ

of 22000 characters

RMSE =

√√√√
22000∑

i=1

(t(i)− e(i))2,

where e(i) is estimated value at position i and t(i) is the true

parameter value.

The RMSE and CPU time are obtained for ρ values from

0.01 to 0.1 with step of 0.01 for the model when number

of change-points is 10. We have obtained the average results

based on 50 simulations under each of the ρ values. We can

see from Figures 5, 6 that the plots are slowly decreasing, at

the same time the plot on Figure 7 is increasing. In this study,

we focus on the RMSE, though it would be possible to choose

ρ in such a way that will balance the trade-off between the

RMSE and the CPU time.

B. Example 2: Real data (Bacteriophage lambda)

We apply the CE with the same parameter specification as

above to the genome of the Bacteriophage lambda, a virus

of the intestinal bacterium Escherichia coli. The length of the

sequence is 48,502 bases. Boys and Henderson [50] studied

this sequence with 4 multinomial outcomes (each base is one

of either A, C, G, T) for the comparison of different algorithms

Fig. 7. CPU time for different ρ

TABLE III
OBSERVED FREQUENCIES OF THE 4 POSSIBLE PAIRS OF BASES FOR

EXAMPLE 2. EXPECTED FREQUENCIES ASSUMING INDEPENDENCE OF

SUCCESSIVE BASES ARE GIVEN IN PARENTHESES

First base Second base Second base Total

0 1

0 12544 11776 24320

(12194.85) (12125.15)

1 11776 12405 24181

(12125.15) (12055.85)

Total 24320 24181 48501

under the independence assumption. Table II presents a brief

summary of the results obtained in [51].

Table III shows the observed frequencies and the expected

frequencies for the Pearson χ2-test of independence. It can be

calculated from the table that the value of the test statistic is

40.22. On comparing with a χ2-distribution with 1 degree of

freedom, we conclude that the hypothesis about independence

should be rejected (p < 10−6). Therefore, we consider a case

with the first-order Markov dependence.

We can calculate the BIC for different number of change-

points. From Table II we can see that the authors found

8 change-points based on the use of 4-symbol alphabet.

According to our approach we found that 6236 was the

minimum value of the BIC at N = 9. Next, we check

each change-point using the Fisher exact test. We calculate

p-values and conclude that there are evidences for change-

points at 5806 (p1 = 7.82 · 10−4), 19503 (p4 = 0.018),

22109 (p5 = 1.25 · 10−11), 27660 (p6 = 6.18 · 10−6), 38018

(p8 = 0.0045), and 46259 (p9 = 5.19 · 10−4).

Note that our main objective is to identify change-points

in GC ratio, not in the model parameters θ0, θ1. Therefore,

we present our conclusions without profiles of θ0 and θ1 and

locations of false change-points. The GC profile can be seen on

Figure 8. The discordance can be explained by the fact that the

results in Table II were obtained using a different model with

4-character alphabet, whereas we used a binary representation.

From this comparison we can see that both methods identify
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TABLE II
ESTIMATED SEGMENTS AND ESTIMATED PROPORTIONS OF A, C, G, AND T FOR EACH SEGMENT

A C G T G+C A+T

0 – 20091 0.23 0.25 0.32 0.20 0.57 0.43

20092 – 20919 0.29 0.29 0.30 0.11 0.59 0.41

20902 – 22544 0.26 0.24 0.27 0.23 0.51 0.49

22545 – 24117 0.29 0.14 0.16 0.40 0.30 0.70

24118 – 27829 0.29 0.20 0.18 0.33 0.38 0.62

27830 – 33082 0.23 0.26 0.22 0.29 0.48 0.52

33083 – 38029 0.27 0.22 0.21 0.31 0.43 0.57

38030 – 46528 0.30 0.23 0.26 0.22 0.49 0.51

46529 – 48502 0.27 0.18 0.22 0.33 0.40 0.60

TABLE IV
OBSERVED FREQUENCIES OF THE 4 POSSIBLE PAIRS OF BASES FOR

EXAMPLE 3

First base Second base Second base Total

0 1

0 5344 5345 10689

(5713.56) (4975.49)

1 5346 3964 9310

(4976.44) (4333.56)

Total 10690 9309 19999

the most significant change-points and the proposed method

provides a smoother profile of GC ratio.

C. Example 3: Real data (MHC Region)

This example uses a part of the Human Major Histocom-

patibility Region (MHC) (for further detail, see [52]). Due to

this being real DNA, we do not know the true profile (as well

as in Example 2). Instead we look for agreement between the

CE and two well-known methods: IsoFinder [16], [23], [24]

and the BAIS [34], [35]. At first, we repeat the Pearson test

of independence. The value of the test statistic from Table IV

is 51.35. This means that the hypothesis about independence

should also be rejected (p < 10−6).

We use the same algorithm parameters as before. We found

a change-point vector and checked each position using the

exact Fisher test. There are 6 significant change-points in this

part of MHC sequence: 953 (p1 = 3.67 · 10−4), 7257 (p4 =
0.0078), 9132 (p5 = 7.80 · 10−6), 13041 (p6 = 6.28 · 10−12),

16114 (p7 = 3.19 · 10−11), and 18954 (p8 = 1.05 · 10−30).

Figure 9 shows the GC profiles for the CE algorithm, the

BAIS and the IsoFinder. We use the following simulation pa-

rameters: the BAIS algorithm for 1000 iterations and K = 50
parallel chains, and IsoFinder with a 0.95 significance level

and tract size of 1,000. It is clear that all algorithms can

detect the major regions within the MHC sequence. IsoFinder

identifies seven major regions while the other methods all

identify several smaller regions within these major regions.

The agreement between these methods allows for a great deal

of confidence in the exactness of the CE method as both the

BAIS method and IsoFinder are well established.

VI. CONCLUSION

In this paper, we have developed the Cross-Entropy method

for identifying change-points in binary Markov sequences.

In order to identify the correct number of change-points we

propose to use the BIC. This approach is easy to implement

and can also be extended to more general multiple change-

point models. We have demonstrated the effectiveness of this

technique in examples using both real and synthetic sequences.

The method has been shown to be highly effective on synthetic

data and real DNA sequences and compete well with existing

approaches.

The proposed approach gives results similar to previous

outcomes but it is not sufficient for understanding of de-

pendence mechanism in DNA sequences. Our future research

will include consideration of Markov dependence of a higher

order (the second or more). The proposed method can be im-

plemented using parallel computing, which will significantly

decrease the CPU time. For the independent case, this feature

was realized in R-package breakpoint [53].
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