
MuPAD codes which implement limit-computable
functions that cannot be bounded by any

computable function

Apoloniusz Tyszka
University of Agriculture

Faculty of Production and Power Engineering

Balicka 116B, 30-149 Kraków, Poland

Email: rttyszka@cyf-kr.edu.pl

Abstract—Let En = {xk = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈
{1, . . . , n}}. For a positive integer n, let f (n) denote the smallest
non-negative integer b such that for each system S ⊆ En with a
solution in non-negative integers x1, . . . , xn there exists a solution
of S in non-negative integers not greater than b. We prove that
if a function Γ : N \ {0} → N is computable, then f dominates Γ
i.e. there exists a positive integer m such that Γ(n) < f (n) for any
n ≥ m. For positive integers n, m, let g(n,m) denote the smallest
non-negative integer b such that for each system S ⊆ En with a
solution in {0, . . . ,m − 1}n there exists a solution of S in {0, . . . , b}n.
Then,

g(n,m) ≤ m − 1, (1)

0 = g(n, 1) < 1 = g(n, 2) ≤ g(n, 3) ≤ g(n, 4) ≤ . . . (2)

and

g(n, f (n)) < f (n) = g(n, f (n) + 1) =

g(n, f (n) + 2) = g(n, f (n) + 3) = . . . (3)

We present an infinite loop in MuPAD which takes as input a
positive integer n and returns g(n,m) on the m-th iteration.

Index Terms—Hilbert’s Tenth Problem, infinite loop, limit-
computable function, MuPAD, trial-and-error computable func-
tion.

L IMIT-computable functions, also known as trial-and-

error computable functions, have been thoroughly stud-

ied, see [6, pp. 233–235] for the main results. Our first goal

is to present an infinite loop in MuPAD which finds the

values of a limit-computable function f : N \ {0} → N \ {0}

by an infinite computation, where f dominates all com-

putable functions. There are many limit-computable func-

tions f : N \ {0} → N \ {0} which cannot be bounded by

any computable function. For example, this follows from

[2, p. 38, item 4], see also [5, p. 268] where Janiczak’s result

is mentioned. Unfortunately, for all known such functions f ,

it is difficult to write a suitable computer program. The

sophisticated choice of a function f will allow us to do so.

Let

En = {xk = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}.

For a positive integer n, let f (n) denote the smallest non-

negative integer b such that for each system S ⊆ En with

a solution in non-negative integers x1, . . . , xn there exists a

solution of S in non-negative integers not greater than b.

This definition is correct because there are only finitely many

subsets of En. For positive integers n, m, let g(n,m) denote

the smallest non-negative integer b such that for each system

S ⊆ En with a solution in {0, . . . ,m − 1}n there exists a solution

of S in {0, . . . , b}n. Then, conditions (1)-(3) stated in the

abstract hold.

Obviously, f (1) = 1. The system


















































x1 = 1

x1 + x1 = x2

x2 · x2 = x3

x3 · x3 = x4

. . .

xn−1 · xn−1 = xn

has a unique integer solution, namely
(

1, 2, 4, 16, . . . , 22n−3
, 22n−2

)

. Therefore, f (n) ≥ 22n−2
for

any n ≥ 2.

The Davis-Putnam-Robinson-Matiyasevich theorem states

that every recursively enumerable setM ⊆ Nn has a Diophan-

tine representation, that is

(a1, . . . , an) ∈ M ⇐⇒

∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0 (R)

for some polynomial W with integer coefficients, see [3].

The polynomial W can be computed, if we know the Turing

machine M such that, for all (a1, . . . , an) ∈ Nn, M halts on

(a1, . . . , an) if and only if (a1, . . . , an) ∈ M, see [3]. The repre-

sentation (R) is said to be single-fold, if for any a1, . . . , an ∈ N

the equation W(a1, . . . , an, x1, . . . , xm) = 0 has at most one

solution (x1, . . . , xm) ∈ Nm. Yu. Matiyasevich conjectures that

each recursively enumerable set M ⊆ Nn has a single-fold

Diophantine representation, see [4].

Let Rng denote the class of all rings K that extend Z.

Lemma ([8, p. 720]). Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. As-

sume that deg(D, xi) ≥ 1 for each i ∈ {1, . . . , p}. We can com-

pute a positive integer n > p and a system T ⊆ En which

satisfies the following two conditions:

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 623–629

DOI: 10.15439/2014F91

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 623

Condition 1. If K ∈ Rng ∪ {N, N \ {0}}, then

∀x̃1, . . . , x̃p ∈ K

(

D(x̃1, . . . , x̃p) = 0⇐⇒

∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T
)

Condition 2. If K ∈ Rng ∪ {N, N \ {0}}, then for each

x̃1, . . . , x̃p ∈ K with D(x̃1, . . . , x̃p) = 0, there exists a

unique tuple (x̃p+1, . . . , x̃n) ∈ K
n−p such that the tuple

(x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 1 and 2 imply that for each

K ∈ Rng ∪ {N, N \ {0}}, the equation D(x1, . . . , xp) = 0

and the system T have the same number of solutions in K.

Theorem 1. If a function Γ : N \ {0} → N is computable, then

there exists a positive integer m such that Γ(n) < f (n) for any

n ≥ m.

Proof. The Davis-Putnam-Robinson-Matiyasevich theorem

and the Lemma for K = N imply that there exists an integer

s ≥ 3 such that for any non-negative integers x1, x2,

(x1, x2) ∈ Γ⇐⇒ ∃x3, . . . , xs ∈ N Φ(x1, x2, x3, . . . , xs), (E)

where the formula Φ(x1, x2, x3, . . . , xs) is a conjunction

of formulae of the forms xk = 1, xi + x j = xk, xi · x j = xk

(i, j, k ∈ {1, . . . , s}). Let [·] denote the integer part function. For

each integer n ≥ 6 + 2s,

n−

[

n

2

]

−3−s ≥ 6+2s−

[

6 + 2s

2

]

−3−s ≥ 6+2s−
6 + 2s

2
−3−s = 0

For an integer n ≥ 6 + 2s, let S n denote the following system










































































































































all equations occurring in

Φ(x1, x2, x3, . . . , xs)

n −
[

n
2

]

− 3 − s equations

of the form zi = 1

t1 = 1

t1 + t1 = t2
t2 + t1 = t3

. . .

t[n
2]−1 + t1 = t[n

2]
t[n

2] + t[n
2] = w

w + y = x1

y + y = y (if n is even)

y = 1 (if n is odd)

x2 + t1 = u

with n variables. By the equivalence (E), S n is satisfiable

over N. If a n-tuple (x1, x2, x3, . . . , xs, . . . ,w, y, u) of non-

negative integers solves S n, then by the equivalence (E),

x2 = Γ(x1) = Γ(w + y) = Γ
(

2 ·
[

n

2

]

+ y

)

= Γ(n)

Therefore, u = x2 + t1 = Γ(n) + 1 > Γ(n). This shows that

Γ(n) < f (n) for any n ≥ 6 + 2s. �

Theorem 2. There exists a computable function

ϕ : N × N→ N which satisfies the following conditions:

1) For each non-negative integers n and l,

ϕ(n, l) ≤ l

2) For each non-negative integer n,

0 = ϕ(n, 0) < 1 = ϕ(n, 1) ≤ ϕ(n, 2) ≤ ϕ(n, 3) ≤ . . .

3) For each non-negative integer n, the sequence {ϕ(n, l)}l∈N
is bounded from above.

4) The function

N ∋ n
θ
−→ θ(n) = lim

l→∞
ϕ(n, l) ∈ N \ {0}

dominates all computable functions.

5) For each non-negative integer n,

ϕ(n, θ(n) − 1) < θ(n) = ϕ(n, θ(n)) =

ϕ(n, θ(n) + 1) = ϕ(n, θ(n) + 2) = . . .

Proof. Let us say that a tuple y = (y1, . . . , yn) ∈ Nn is a dupli-

cate of a tuple x = (x1, . . . , xn) ∈ Nn, if

(∀k ∈ {1, . . . , n} (xk = 1 =⇒ yk = 1)) ∧

(∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)) ∧

(∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk))

For non-negative integers n and l, we define ϕ(n, l) as

the smallest non-negative integer b such that for each

x ∈ {0, . . . , l}n+1 there exists a duplicate of x in {0, . . . , b}n+1.

Theorem 1 implies the claim of item 4) whereas the following

MuPAD code performs a Turing computation of ϕ(n, l).

input("input the value of n",n):

input("input the value of l",l):

n:=n+1:

X:=[i $ i=0..l]:

Y:=combinat::cartesianProduct(X $i=1..n):

W:=combinat::cartesianProduct(X $i=1..n):

for s from 1 to nops(Y) do

for t from 1 to nops(Y) do

m:=0:

for i from 1 to n do

if Y[s][i]=1 and Y[t][i]<>1

then m:=1 end_if:

for j from i to n do

for k from 1 to n do

if Y[s][i]+Y[s][j]=Y[s][k] and

Y[t][i]+Y[t][j]<>Y[t][k]

then m:=1 end_if:

if Y[s][i]*Y[s][j]=Y[s][k] and

Y[t][i]*Y[t][j]<>Y[t][k]

then m:=1 end_if:

end_for:

end_for:

end_for:

if m=0 and

max(Y[t][i] $i=1..n)<max(Y[s][i] $i=1..n)

then W:=listlib::setDifference(W,[Y[s]])

end_if:

624 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

end_for:

end_for:

print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):

Code 1

A Turing computation of ϕ(n, l)

�

Code 1 is also stored in [10]. The following algorithm

performs an infinite computation of f (n), because it returns

g(n,m) on the m-th iteration, where m stands for any positive

integer.

input("input the value of n",n):

i:=0:

while TRUE do

print(ϕ(n-1,i)):

i:=i+1:

end while:

Algorithm 1

An infinite computation of f (n)

A slightly changed MuPAD code that implements Algorithm 1

is stored in [10, Code 4].

Let us fix a computable enumeration D0,D1,D2, . . . of all

Diophantine equations. The following flowchart illustrates an

infinite computation of a limit-computable function that cannot

be bounded by any computable function.

Algorithm 2

A loop whose execution does not always terminate, and that defines

a partially computable function that cannot be bounded by any computable

function from N to N

For each non-negative integer n, the function has a non-

zero value at n if and only if the equation Dn has a solution

in non-negative integers. Unfortunately, the function does not

have any easy implementation.

The following MuPAD code is stored in [10].

input("input the value of n",n):

print(0):

A:=op(ifactor(210*(n+1))):

B:=[A[2*i+1] $i=1..(nops(A)-1)/2]:

S:={}:

for i from 1 to floor(nops(B)/4) do

if B[4*i]=1 then

S:=S union {B[4*i-3]} end_if:

if B[4*i]=2 then S:=S union

{[B[4*i-3],B[4*i-2],B[4*i-1],"+"]}

end_if:

if B[4*i]>2 then S:=S union

{[B[4*i-3],B[4*i-2],B[4*i-1],"*"]}

end_if:

end_for:

m:=2:

repeat

C:=op(ifactor(m)):

W:=[C[2*i+1]-1 $i=1..(nops(C)-1)/2]:

T:={}:

for i from 1 to nops(W) do

for j from 1 to nops(W) do

for k from 1 to nops(W) do

if W[i]=1 then T:=T union {i} end_if:

if W[i]+W[j]=W[k] then

T:=T union {[i,j,k,"+"]} end_if:

if W[i]*W[j]=W[k] then

T:=T union {[i,j,k,"*"]} end_if:

end_for:

end_for:

end_for:

m:=m+1:

until S minus T={} end_repeat:

print(max(W[i] $i=1..nops(W))):

Code 2

A loop whose execution does not always terminate, and that defines

a partially computable function that cannot be bounded by any computable

function from N to N

Theorem 3. The above code implements a limit-computable

function ξ : N→ N that cannot be bounded by any computable

function. The code takes as input a non-negative integer n,

returns 0, and computes a system S of polynomial equations.

If the loop terminates for S , then the next instruction re-

turns ξ(n). If the loop does not terminate, then ξ(n) = 0. The

loop defines a partially computable function that cannot be

bounded by any computable function from N to N.

Proof. Let n ∈ N, and let p1
t(1) · . . . · ps

t(s) be a prime fac-

torization of 210 · (n + 1), where t(1), . . . , t(s) denote positive

integers. Obviously, p1 = 2, p2 = 3, p3 = 5, and p4 = 7.

For each positive integer i that satisfies 4i ≤ s and t(4i) = 1,

the code constructs the equation xt(4i−3) = 1.

For each positive integer i that satisfies 4i ≤ s and t(4i) = 2,

the code constructs the equation xt(4i−3) + xt(4i−2) = xt(4i−1).

For each positive integer i that satisfies 4i ≤ s and t(4i) > 2,

the code constructs the equation xt(4i−3) · xt(4i−2) = xt(4i−1).

The last three facts imply that the code assigns to n a finite

and non-empty system S which consists of equations of the

APOLONIUSZ TYSZKA: MUPAD CODES WHICH IMPLEMENT LIMIT-COMPUTABLE FUNCTIONS 625

forms: xk = 1, xi + x j = xk, and xi · x j = xk. Conversely, each

such system S is assigned to some non-negative integer n.

Starting with the instruction m := 2, the code tries to find a

solution of S in non-negative integers by performing a brute-

force search. If a solution exists, then the search terminates

and the code returns a non-negative integer ξ(n) such that the

system S has a solution in non-negative integers not greater

than ξ(n). In the opposite case, the execution of the code never

terminates.

A negative solution to Hilbert’s Tenth Problem ([3]) and the

Lemma for K = N imply that the code implements a limit-

computable function ξ : N→ N that cannot be bounded by

any computable function. �

The execution of the last code does not terminate for n =

7 · 11 · 13 · 17 · 19 − 1 = 323322, when the code tries to

find a solution of the system {x1 + x1 = x1, x1 = 1}. Execution

terminates for any n < 323322, when the code returns 0 and

next 1 or 0. The last claim holds only theoretically. In fact,

for n = 218 − 1 = 262143, the algorithm of the code returns 1

solving the equation x19 = 1 on the
(

2 ·3 ·5 ·7 ·11 ·13 ·17 ·19 ·

23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 672 − 1
)

-th iteration.

Let P denote a predicate calculus with equality and one

binary relation symbol, and let Λ be a computable function

that maps N onto the set of sentences of P. The following

pseudocode in MuPAD implements a limit-computable func-

tion σ : N→ N that cannot be bounded by any computable

function.

input("input the value of n",n):

print(0):

k:=1:

while Λ(n) holds in all models o f size k do

k:=k+1:

end while:

print(k):

Algorithm 3

A loop whose execution does not always terminate, and that defines

a partially computable function that cannot be bounded by any computable

function from N to N

The proof follows from the fact that the set of sentences

of P that are true in all finite and non-empty models is not

recursively enumerable, see [1, p. 129], where it is concluded

from Trakhtenbrot’s theorem. The author has no idea how to

transform the pseudocode into a correct computer program.

The commercial version of MuPAD is no longer available

as a stand-alone product, but only as the Symbolic Math

Toolbox of MATLAB. Fortunately, the presented codes can be

executed by MuPAD Light, which was and is free, see [11].

Similar codes in MuPAD Light are presented and discussed at

http://arxiv.org/abs/1310.5363.

Limit-computable functions are related to the question of the

decidability of Diophantine equations with a finite number of

solutions in non-negative integers. Let κ ∈ {2, 3, 4, . . . , ω, ω1}.

For a positive integer n, let fκ(n) denote the smallest non-

negative integer b such that for each system S ⊆ En which

has a solution in non-negative integers x1, . . . , xn and which

has less than κ solutions in non-negative integers x1, . . . , xn,

there exists a solution of S in non-negative integers not

greater than b. Since fω1 = f , fω1 is limit-computable by

Algorithm 1.

Obviously, f2(n) is the smallest non-negative integer b such

that for each system S ⊆ En with a unique solution in non-

negative integers x1, . . . , xn this solution belongs to [0, b]n.

If κ < ω, then the function fκ is limit-computable as the

flowchart below describes an infinite computation of fκ(n).

Algorithm 4

An infinite computation of fκ(n)

The following MuPAD code is stored in [10, Code 3] and

performs an infinite computation of f2(n).

input("input the value of n",n):

X:=[0]:

while TRUE do

Y:=combinat::cartesianProduct(X $i=1..n):

W:=combinat::cartesianProduct(X $i=1..n):

for s from 1 to nops(Y) do

for t from 1 to nops(Y) do

m:=0:

for i from 1 to n do

if Y[s][i]=1 and Y[t][i]<>1 then m:=1 end_if:

for j from i to n do

for k from 1 to n do

626 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

if Y[s][i]+Y[s][j]=Y[s][k] and

Y[t][i]+Y[t][j]<>Y[t][k] then m:=1 end_if:

if Y[s][i]*Y[s][j]=Y[s][k] and

Y[t][i]*Y[t][j]<>Y[t][k] then m:=1 end_if:

end_for:

end_for:

end_for:

if m=0 and s<>t then

W:=listlib::setDifference(W,[Y[s]]) end_if:

end_for:

end_for:

print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):

X:=append(X,nops(X)):

end_while:

Code 3

An infinite computation of f2(n)

Theorem 5 implies that f2 dominates any function

h : N \ {0} → N with a single-fold Diophantine representation.

Therefore, Matiyasevich’s conjecture on single-fold Diophan-

tine representations implies that f2 dominates all computable

functions from N \ {0} to N.

Obviously, fκ(1) = 1 and fκ(n) ≥ 22n−2
for any n ≥ 2. The-

orem 1 implies that the equality

fκ = {(1, 1)} ∪
{(

n, 22n−2
)

: n ∈ {2, 3, 4, . . .}
}

is false for κ = ω1. The above equality is also false for

any κ ∈ {2, 3, 4, . . . , ω}. The conjecture in [8] is false. The

conjecture in [9] is false. The last three results were recently

communicated to the author.

The representation (R) is said (here and further)

to be κ-fold, if for any a1, . . . , an ∈ N the equation

W(a1, . . . , an, x1, . . . , xm) = 0 has less than κ solutions

(x1, . . . , xm) ∈ Nm

Theorem 4. ([7, Theorem 2]) Let us consider the following

three statements:

(a) There exists an algorithm A whose execution always

terminates and which takes as input a Diophantine equation D

and returns the answer YES or NO which indicates whether or

not the equation D has a solution in non-negative integers, if

the solution set S ol(D) satisfies card(S ol(D)) < κ.

(b) The function fκ is majorized by a computable function.

(c) If a set M ⊆ Nn has a κ-fold Diophantine representation,

then M is computable.

We claim that (a) is equivalent to (b) and (a) implies (c).

Proof. The implication (a)⇒ (c) is obvious. We prove the im-

plication (a)⇒ (b). There is an algorithm Dioph which takes

as input a positive integer m and a non-empty system S ⊆ Em,

and returns a Diophantine equation Dioph(m, S) which has the

same solutions in non-negative integers x1, . . . , xm. Item (a)

implies that for each Diophantine equation D, if the algo-

rithm A returns YES for D, then D has a solution in non-

negative integers. Hence, if the algorithm A returns YES for

Dioph(m, S), then we can compute the smallest non-negative

integer i(m, S) such that Dioph(m, S) has a solution in non-

negative integers not greater than i(m, S). If the algorithm A

returns NO for Dioph(m, S), then we set i(m, S) = 0. The

function

N \ {0} ∋ m→ max
{

i(m, S) : ∅ , S ⊆ Em

}

∈ N

is computable and majorizes the function fκ. We prove the

implication (b)⇒ (a). Let a function h majorizes fκ. By the

Lemma for K = N, a Diophantine equation D is equivalent to

a system S ⊆ En. The algorithm A checks whether or not S

has a solution in non-negative integers x1, . . . , xn not greater

than h(n). �

The implication (a)⇒ (c) remains true with a weak formu-

lation of item (a), where the execution of A may not terminate

or A may return nothing or something irrelevant, if D has

at least κ solutions in non-negative integers. The weakened

item (a) implies that the following flowchart

Algorithm 5

An algorithm that conditionally finds all solutions to a Diophantine

equation which has less than κ solutions in non-negative integers

describes an algorithm whose execution terminates, if the set

S ol(D) := {(x1, . . . , xn) ∈ Nn : D(x1, . . . , xn) = 0}

has less than κ elements. If this condition holds, then the weak-

ened item (a) guarantees that the execution of the flowchart

prints all elements of S ol(D). However, the weakened item (a)

is equivalent to the original one. Indeed, if the algorithm A

APOLONIUSZ TYSZKA: MUPAD CODES WHICH IMPLEMENT LIMIT-COMPUTABLE FUNCTIONS 627

satisfies the weakened item (a), then the flowchart below il-

lustrates a new algorithm A that satisfies the original item (a).

Algorithm 6

The weakened item (a) implies the original one

The equality fω1 = f and Theorem 1 imply that item (b)

is false for κ = ω1. By this and Theorem 4, we alternatively

obtain a negative solution to Hilbert’s Tenth Problem.

Theorem 5. ([7, Theorem 1]) If a function h : N \ {0} → N

has a κ-fold Diophantine representation, then there exists a

positive integer m such that h(n) < fκ(n) for any n ≥ m.

By the Davis-Putnam-Robinson-Matiyasevich theorem,

Theorem 1 is a special case of Theorem 5 when κ = ω1. Let

us pose the following two questions:

Question 1. Is there an algorithm B which takes as input a

Diophantine equation D, returns an integer, and this integer

is greater than the heights of non-negative integer solutions,

if the solution set has less than κ elements? We allow a

possibility that the execution of B does not terminate or B

returns nothing or something irrelevant, if D has at least κ

solutions in non-negative integers.

Question 2. Is there an algorithm C which takes as input a

Diophantine equation D, returns an integer, and this integer

is greater than the number of non-negative integer solutions,

if the solution set is finite? We allow a possibility that the

execution of C does not terminate or C returns nothing or

something irrelevant, if D has infinitely many solutions in non-

negative integers.

Obviously, a positive answer to Question 1 implies the

weakened item (a). Conversely, the weakened item (a) implies

that the flowchart below describes an appropriate algorithm B.

Algorithm 7

The weakened item (a) implies a positive answer to Question 1

Theorem 6. A positive answer to Question 1 for κ = ω is

equivalent to a positive answer to Question 2.

Proof. Trivially, a positive answer to Question 1 for κ = ω

implies a positive answer to Question 2. Conversely, if a

Diophantine equation D(x1, . . . , xn) = 0 has only finitely many

solutions in non-negative integers, then the number of non-

negative integer solutions to the equation

D2 (x1, . . . , xn) + (x1 + . . . + xn − y − z)2 = 0

is finite and greater than max(a1, . . . , an), where

(a1, . . . , an) ∈ Nn is any solution to D(x1, . . . , xn) = 0. �

References

[1] H.-D. Ebbinghaus and J. Flum, Finite model theory, Springer-Verlag,
Berlin, 2006.

[2] A. Janiczak, Some remarks on partially recursive functions, Colloquium
Math. 3 (1954), 37–38.

[3] Yu. Matiyasevich, Hilbert’s tenth problem, MIT Press, Cambridge, MA,
1993.

[4] Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377
(2010), 78–90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.pdf,
http://dx.doi.org/10.1007/s10958-010-0179-4.

[5] R. Murawski, The contribution of Polish logicians to recursion the-

ory, in: K. Kijania-Placek and J. Woleński (eds.), The Lvov-Warsaw

School and Contemporary Philosophy, 265–282, Kluwer Acad. Publ.,
Dordrecht, 1998.

[6] R. I. Soare, Interactive computing and relativized computability, in:
Computability: Turing, Gödel, Church, and beyond (eds. B. J. Copeland,
C. J. Posy, and O. Shagrir), MIT Press, Cambridge, MA, 2013,
203–260.

[7] A. Tyszka, A condition equivalent to the decidability of Diophantine

equations with a finite number of solutions in non-negative integers,

http://arxiv.org/abs/1404.5975.
[8] A. Tyszka, Conjecturally computable functions which unconditionally

do not have any finite-fold Diophantine representation, Inform. Process.
Lett. 113 (2013), no. 19–21, 719–722, http://dx.doi.org/10.1016/j.ipl.
2013.07.004.

628 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[9] A. Tyszka, Does there exist an algorithm which to each Diophantine

equation assigns an integer which is greater than the modulus of integer

solutions, if these solutions form a finite set? Fund. Inform. 125(1):
95–99, 2013, http://dx.doi.org/10.3233/FI-2013-854.

[10] A. Tyszka, Four MuPAD codes, http://www.cyf-kr.edu.pl/∼rttyszka/
codes.txt.

[11] A. Tyszka, Links to an installation file for MuPAD Light,

http://www.ts.mah.se/utbild/ma7005/mupad light scilab 253.exe,
http://caronte.dma.unive.it/info/materiale/mupad light scilab 253.exe,
http://www.cyf-kr.edu.pl/∼rttyszka/mupad light scilab 253.exe,
http://www.cyf-kr.edu.pl/∼rttyszka/mupad light 253.exe, http://www.
projetos.unijui.edu.br/matematica/amem/mupad/mupad light 253.exe.

APOLONIUSZ TYSZKA: MUPAD CODES WHICH IMPLEMENT LIMIT-COMPUTABLE FUNCTIONS 629

