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Abstract—Let E, = {x, = 1, xi+Xxj =X, Xj-X; =X : I, j,k €
{1,...,n}}. For a positive integer n, let f(n) denote the smallest
non-negative integer » such that for each system S C E, with a
solution in non-negative integers xi, ..., x, there exists a solution
of S in non-negative integers not greater than 5. We prove that
if a function ' : N'\ {0} —» N is computable, then f dominates I"
i.e. there exists a positive integer m such that I'(n) < f(n) for any
n > m. For positive integers n, m, let g(n,m) denote the smallest
non-negative integer » such that for each system S C E, with a

solution in {0, ..., m — 1}" there exists a solution of S in {0, ..., b}".
Then,
gn,m)y<m—1, (1)
0=g(mn1)<1=gmn2)<gn3)<ghd)<... 2)
and

g, f() < f(n) = g(n, f(m) + 1) =
g, f(m) +2) = g(n, f(m) +3) = ... 3

We present an infinite loop in MuPAD which takes as input a
positive integer n and returns g(n,m) on the m-th iteration.
Index Terms—Hilbert’s Tenth Problem, infinite loop, limit-

computable function, MuPAD, trial-and-error computable func-
tion.

IMIT-computable functions, also known as trial-and-

error computable functions, have been thoroughly stud-
ied, see [6, pp. 233-235] for the main results. Our first goal
is to present an infinite loop in MuPAD which finds the
values of a limit-computable function f: N\ {0} —» N\ {0}
by an infinite computation, where f dominates all com-
putable functions. There are many limit-computable func-
tions f:N\ {0} - N\ {0} which cannot be bounded by
any computable function. For example, this follows from
[2, p. 38, item 4], see also [5, p. 268] where Janiczak’s result
is mentioned. Unfortunately, for all known such functions f,
it is difficult to write a suitable computer program. The
sophisticated choice of a function f will allow us to do so.

Let
E,={x=1, xi+x;=x3, x;-xj=x¢: i, ,ke{l,... n}}.

For a positive integer n, let f(n) denote the smallest non-
negative integer b such that for each system S C E, with
a solution in non-negative integers xi,...,x, there exists a

978-83-60810-58-3/$25.00 (© 2014, IEEE

solution of § in non-negative integers not greater than b.
This definition is correct because there are only finitely many
subsets of E,. For positive integers n, m, let g(n,m) denote
the smallest non-negative integer b such that for each system
S C E,, with a solution in {0, ...,m — 1}" there exists a solution
of § in {0,...,b}". Then, conditions (1)-(3) stated in the
abstract hold.

Obviously, f(1) = 1. The system

X1 = 1

X1 + X1 = X3
X2+ X2 = X3
X3 X3 = X4
Xn—-1* Xn—-1 = X
has a unique integer solution, namely

n-3 n-2 n-2
(1, 2.4.16,...,22" 22 ) Therefore, f(n) > 22" for
any n > 2.

The Davis-Putnam-Robinson-Matiyasevich theorem states
that every recursively enumerable set M € N” has a Diophan-
tine representation, that is

(ai,...,ay) E M =

Axy, ... x, €N W(ay,.. X)) =0 (R)

for some polynomial W with integer coefficients, see [3].
The polynomial W can be computed, if we know the Turing
machine M such that, for all (ay,...,a,) € N, M halts on
(ai,...,a,) if and only if (ay,...,a,) € M, see [3]. The repre-
sentation (R) is said to be single-fold, if for any ay,...,a, € N
the equation W(ay,...,a,, x1,...,x,) =0 has at most one
solution (xy, ..., x,) € N™. Yu. Matiyasevich conjectures that
each recursively enumerable set M C N" has a single-fold
Diophantine representation, see [4].

<5 py X1 -

Let Rng denote the class of all rings K that extend Z.

Lemma ([8, p. 720]). Let D(xy,...,xp) € Z[xy,...,xp,]. As-
sume that deg(D, x;) > 1 for each i € {1,..., p}. We can com-
pute a positive integer n> p and a system T C E, which
satisfies the following two conditions:
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Condition 1. If K € Rng U{N, N\ {0}}, then

V)?l,...,fcpeK(D(fcl,...,fcp):0<=>

A%yt T €K (F1,. o Xpo Bpits. .., %) solves T)

Condition 2. If KeRngU({N, N\ ({0}, then for each
X,...., %, € K with D(X,...,%,) =0, there exists a
unique tuple (Xpi1,...,%,) € K" such that the tuple
(%1,.. ., X,) solves T.

Conditions 1 and 2  imply that for each
KeRngU{N, N\{0}}, the equation D(xi,...,x,)=0
and the system T have the same number of solutions in K.

s Fpy Tl -

Theorem 1. If a function T : N\ {0} — N is computable, then
there exists a positive integer m such that I'(n) < f(n) for any
nzm.

Proof. The Davis-Putnam-Robinson-Matiyasevich theorem
and the Lemma for K = N imply that there exists an integer
s > 3 such that for any non-negative integers xi, x,

(X],XQ) el = H)Cj;, .. (B

<y Xy eN (D(xlax27x37""-xx)a

where the formula ®O(xj,x;,x3,...,Xs) is a conjunction
of formulae of the forms x; =1, X +x; =X, X+ X; =X
(i, jok € {1,...,s}). Let [] denote the integer part function. For
each integer n > 6 + 2,

6+2s 6+2s

—3—5> 6+25— -3-5s=0

n—[g]—S—s > 64+25—

For an integer n > 6 + 2s, let S, denote the following system

all equations occurring in
D(xy, X2, X3, ..., Xg)

n-— [’%] — 3 — 5 equations
of the form z; = 1

n = 1
n+n = I
h+h = R
O N E)
Ta1tiy = v
w+y = X1
y+y =y (if nis even)
y = 1 (f nis odd)
X+t = u

with n variables. By the equivalence (E), S, is satisfiable
over N. If a n-tuple (xy,x2,%3,...,%s5,...,W,y,u) of non-
negative integers solves S, then by the equivalence (E),

X =T(x) =T(w+y) = r(z : [g] +y) =T(n)

Therefore, u=x,+t =I'(n)+1>T(n). This shows that
I'(n) < f(n) for any n > 6 + 2s. O

Theorem 2. There exists a computable function
¢ : N XN — N which satisfies the following conditions:
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1) For each non-negative integers n and I,
on, ) <1
2) For each non-negative integer n,
0=¢n0)<1=pn1)<pn?2)<pn3)<...

3) For each non-negative integer n, the sequence {¢(n,[)}en
is bounded from above.

4) The function
N5 n -5 6(n) = lim (1, ) € N\ {0}
dominates all computable functions.
5) For each non-negative integer n,
@(n,0(n) — 1) < 6(n) = ¢(n,0(n)) =
en,0(n)+1)=pn,0n)+2)=...

Proof. Let us say that a tuple y = (yy,...,y,) € N" is a dupli-

cate of a tuple x = (xy,...,x,) € N, if

(Mke(l,....n) (u=1=y,=1) A
Vi, jke{l,...,n} (i +x; =X = yi+y; =y) A
Vi, pkell,....n} (xi-x; = X = yi"yj = Vi)

For non-negative integers n and I, we define ¢(n,l) as
the smallest non-negative integer b such that for each
x€{0,...,Iy""! there exists a duplicate of x in {0,...,b}".
Theorem 1 implies the claim of item 4) whereas the following
MuPAD code performs a Turing computation of ¢(n, [).

the value of n",n):
the value of 1",1):

input ("input
input ("input
n:=n+1:
X:=[i $ i=0..1]:

Y:=combinat: :cartesianProduct(X $i=1..n):
W:=combinat: :cartesianProduct(X $i=1..n):
for s from 1 to nops(Y) do

for t from 1 to nops(Y) do

m:=0:

for i from 1 to n do

if Y[s][i]=1 and Y[t][i]<>1

then m:=1 end_if:

for j from i to n do

for k from 1 to n do

if Y[s][i1+Y[s][jl=Y[s]1[k] and

YOI [i1+Y [t [31<>Y [t [Kk]

then m:=1 end_if:

if Y[s][11*Y[s][j1=Y[s]1[k] and

YOt [i1*Y[t1[j1<>Y[t][k]

then m:=1 end_if:

end_for:

end_for:

end_for:

if m=0 and

max(Y[t][1i] $i=1..n)<max(Y[s][i] $i=1..n)
then W:=listlib::setDifference(W,[Y[s]])
end_if:
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end_for:
end_for:
print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):

Code 1
A Turing computation of ¢(n,[)
O

Code 1 is also stored in [10]. The following algorithm
performs an infinite computation of f(n), because it returns
g(n,m) on the m-th iteration, where m stands for any positive
integer.

input("input the value of n",n):
i:=0:
while TRUE do
print(e(n-1,1)):
i:=i+1:
end while:
Algorithm 1

An infinite computation of f(n)

A slightly changed MuPAD code that implements Algorithm 1
is stored in [10, Code 4].

Let us fix a computable enumeration Dy, Dy, D, ... of all
Diophantine equations. The following flowchart illustrates an
infinite computation of a limit-computable function that cannot
be bounded by any computable function.

Input a non-negative integer n

!
Print 0 /~— [k :=1]

Does the equation Dy have

a solution in non-negative

integers not greater than k?
Yes | 1 No

/Print & /- Stop)

Algorithm 2
A loop whose execution does not always terminate, and that defines

a partially computable function that cannot be bounded by any computable

function from N to N

For each non-negative integer n, the function has a non-
zero value at n if and only if the equation D, has a solution
in non-negative integers. Unfortunately, the function does not
have any easy implementation.

The following MuPAD code is stored in [10].

input ("input the value of n",n):
print(0):
A:=op(ifactor(210*(n+1))):
B:=[A[2*i+1] $i=1..(nops(A)-1)/2]:
S:={}:

for i from 1 to floor(nops(B)/4) do
if B[4*i]=1 then

S:=S union {B[4*i-3]} end_if:

if B[4*i]=2 then S:=S union
{[B[4%i-3],B[4*i-2],B[4*i-1],"+"]}
end_if:

if B[4*%i]>2 then S:=S union
{[B[4*%i-3],B[4*i-2],B[4*i-1],"*"]}
end_if:

end_for:

m:=2:

repeat

C:=op(ifactor(m)):

W:=[C[2*i+1]-1 $i=1..(nops(C)-1)/2]:
T:={}:

for i from 1 to nops(W) do

for j from 1 to nops(W) do

for k from 1 to nops(W) do

if W[il=1 then T:=T union {i} end_if:
if W[i]+W[j]=wW[k] then

T:=T union {[i,j,k,"+"]} end_if:

if W[il*W[j]=W[k] then

T:=T union {[i,j,k,"*"]} end_if:
end_for:

end_for:

end_for:

m:=m+1:

until S minus T={} end_repeat:
print(max(W[i] $i=1..nops(W))):

Code 2
A loop whose execution does not always terminate, and that defines
a partially computable function that cannot be bounded by any computable

function from N to N

Theorem 3. The above code implements a limit-computable
function ¢ : N — N that cannot be bounded by any computable
function. The code takes as input a non-negative integer n,
returns 0, and computes a system S of polynomial equations.
If the loop terminates for S, then the next instruction re-
turns £(n). If the loop does not terminate, then £(n) = 0. The
loop defines a partially computable function that cannot be
bounded by any computable function from N to N.

Proof. Let n€N, and let p;/@ ... . p/® be a prime fac-
torization of 210 - (n + 1), where #(1),...,#(s) denote positive
integers. Obviously, p; =2, pp =3, p3 =5, and ps =7.

For each positive integer i that satisfies 4i < s and #(4i) = 1,
the code constructs the equation xy4;-3) = 1.

For each positive integer i that satisfies 4i < s and #(4i) = 2,
the code constructs the equation xy4;-3) + Xy4i—2) = Xy(4i-1)-

For each positive integer i that satisfies 4i < s and #(4i) > 2,
the code constructs the equation xy4i—3) - Xi4i-2) = Xydi-1)-

The last three facts imply that the code assigns to # a finite
and non-empty system S which consists of equations of the
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forms: x; = 1, x; + x; = xt, and x; - x; = x;. Conversely, each
such system S is assigned to some non-negative integer n.

Starting with the instruction m := 2, the code tries to find a
solution of S in non-negative integers by performing a brute-
force search. If a solution exists, then the search terminates
and the code returns a non-negative integer £(n) such that the
system S has a solution in non-negative integers not greater
than £(n). In the opposite case, the execution of the code never
terminates.

A negative solution to Hilbert’s Tenth Problem ([3]) and the
Lemma for K =N imply that the code implements a limit-
computable function ¢ : N — N that cannot be bounded by
any computable function. O

The execution of the last code does not terminate for n =
7-11-13-17-19 — 1 = 323322, when the code tries to
find a solution of the system {x; + x; = x1, x; = 1}. Execution
terminates for any n < 323322, when the code returns 0 and
next 1 or 0. The last claim holds only theoretically. In fact,
for n =28 — 1 = 262143, the algorithm of the code returns 1
solving the equation xj9 = 1 on the (2~3-5-7- 11-13-17-19-
23-29-31-37-41-43-47-53-59-61-67> - 1)-th iteration.

Let # denote a predicate calculus with equality and one
binary relation symbol, and let A be a computable function
that maps N onto the set of sentences of #. The following
pseudocode in MuPAD implements a limit-computable func-
tion o : N — N that cannot be bounded by any computable
function.

input ("input the value of n",n):
print(0):
k:=1:
while A(n) holds in all models of size k do
k:=k+1:
end while:
print(k):
Algorithm 3
A loop whose execution does not always terminate, and that defines
a partially computable function that cannot be bounded by any computable

function from N to N

The proof follows from the fact that the set of sentences
of # that are true in all finite and non-empty models is not
recursively enumerable, see [1, p. 129], where it is concluded
from Trakhtenbrot’s theorem. The author has no idea how to
transform the pseudocode into a correct computer program.

The commercial version of MuPAD is no longer available
as a stand-alone product, but only as the Symbolic Math
Toolbox of MATLAB. Fortunately, the presented codes can be
executed by MuPAD Light, which was and is free, see [11].
Similar codes in MuPAD Light are presented and discussed at
http://arxiv.org/abs/1310.5363.

Limit-computable functions are related to the question of the
decidability of Diophantine equations with a finite number of
solutions in non-negative integers. Let x € {2,3,4,..., 0w, w}.
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For a positive integer n, let fi(n) denote the smallest non-
negative integer b such that for each system S C E, which
has a solution in non-negative integers xi,..., X, and which
has less than « solutions in non-negative integers xi,..., Xy,
there exists a solution of S in non-negative integers not
greater than b. Since fy, = f, fw, is limit-computable by
Algorithm 1.

Obviously, f>(n) is the smallest non-negative integer b such
that for each system S C E, with a unique solution in non-
negative integers xi,...,x, this solution belongs to [0, b]".
If k <w, then the function fx is limit-computable as the
flowchart below describes an infinite computation of fi(n).

Input an integer « >2

!

Input a positive integer n

Create a list L of all
systems § C Ey which

have a solution in {0,...,m}"

!

Remove from L all systems
which have more than
k—1 solutions in {0,...,m}
!

Print the smallest non-negative
integer b such that each element
of £ has a solution in {0,...,b}"

[ :=m+1]
Algorithm 4

An infinite computation of fi(n)

The following MuPAD code is stored in [10, Code 3] and
performs an infinite computation of f,(n).

n

input ("input the value of n",n):

X:=[0]:

while TRUE do

Y:=combinat: :cartesianProduct(X $i=1..n):
W:=combinat::cartesianProduct (X $i=1..n):
for s from 1 to nops(Y) do

for t from 1 to nops(Y) do

m:=0:

for i from 1
if Y[s][i]=1
for j from i
for k from 1

to n do
and Y[t][i]<>1 then m:=1 end_if:
to n do
to n do
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if Y[s][i]+Y[s1[j1=Y[s][k] and
Y[t][i]+Y[t]1[jl<>Y[t][k] then m:=1 end_if:
if Y[s][i1*Y[sI[j1=Y[s][k] and
YItI[i]*Y[t1[jl<>Y[t][k] then m:=1 end_if:
end_for:

end_for:

end_for:

if m=0 and s<>t then
W:=listlib::setDifference(W,[Y[s]]) end_if:
end_for:

end_for:

print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):
X:=append (X,nops(X)):

end_while:
Code 3
An infinite computation of f5(n)
Theorem 5 implies that f, dominates any function

h : N\ {0} - N with a single-fold Diophantine representation.
Therefore, Matiyasevich’s conjecture on single-fold Diophan-
tine representations implies that f dominates all computable
functions from N\ {0} to N.

n-2
Obviously, fkx(1) =1 and fx(n) > 22" for any n > 2. The-
orem 1 implies that the equality

fe=11, 1)U {(n 22"_2) ne {2,3,4,...}}

is false for k = w;. The above equality is also false for
any « €{2,3,4,...,w}. The conjecture in [8] is false. The
conjecture in [9] is false. The last three results were recently
communicated to the author.

The representation (R) is said (here and further)

to be «-fold, if for any a,...,a, €N the equation
W(ay,...,a5,x1,...,%,) =0 has less than « solutions
(X1,...,x,) € N"

Theorem 4. ([7, Theorem 2]) Let us consider the following
three statements:

(a) There exists an algorithm A whose execution always
terminates and which takes as input a Diophantine equation D
and returns the answer YES or NO which indicates whether or
not the equation D has a solution in non-negative integers, if
the solution set S ol(D) satisfies card(S ol(D)) < k.

(b) The function fy is majorized by a computable function.
(c) If a set M C N" has a k-fold Diophantine representation,
then M is computable.

We claim that (a) is equivalent to (b) and (a) implies (c).

Proof. The implication (a) = (c) is obvious. We prove the im-
plication (a) = (b). There is an algorithm Dioph which takes
as input a positive integer m and a non-empty system S C E,,,,
and returns a Diophantine equation Dioph(m, §) which has the
same solutions in non-negative integers xp,..., X,. Iltem (a)
implies that for each Diophantine equation D, if the algo-
rithm A returns YES for D, then D has a solution in non-
negative integers. Hence, if the algorithm A returns YES for

Dioph(m, S ), then we can compute the smallest non-negative
integer i(m,S) such that Dioph(m, S) has a solution in non-
negative integers not greater than i(m, S). If the algorithm A
returns NO for Dioph(m,S), then we set i(m,S) = 0. The
function

N\{O}am—>max{i(m,S):(Z)¢S gEm}eN

is computable and majorizes the function fx. We prove the
implication (b) = (a). Let a function h majorizes fx. By the
Lemma for K = N, a Diophantine equation D is equivalent to
a system S C E,. The algorithm A checks whether or not S
has a solution in non-negative integers xi, ..., X, not greater
than h(n). O

The implication (a) = (c¢) remains true with a weak formu-
lation of item (a), where the execution of ‘A may not terminate
or A may return nothing or something irrelevant, if D has
at least « solutions in non-negative integers. The weakened
item (a) implies that the following flowchart

Input a Diophantine
emmﬁm1D@b“qu:0

l

m:=0

Execute A on the equation
(m+y=(xg +.o b xm)) o+

Dz(xb.“,xn =0

|l YES is returned

bn::rn+-H

NO is returned

Print all tuples (xlp..,xn)efﬂn

for which max(xl,...,xn) <m and
D(x1,...,xn) =0

|

Algorithm 5

An algorithm that conditionally finds all solutions to a Diophantine

equation which has less than « solutions in non-negative integers
describes an algorithm whose execution terminates, if the set
Sol(D) :={(x1,...,x,) e N*: D(xq,...,x,) =0}

has less than « elements. If this condition holds, then the weak-
ened item (a) guarantees that the execution of the flowchart
prints all elements of S 0l(D). However, the weakened item (a)
is equivalent to the original one. Indeed, if the algorithm A
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satisfies the weakened item (a), then the flowchart below il-
lustrates a new algorithm (A that satisfies the original item (a).

Input a Diophantine equation D

l

m=1

Does D have a solution
in non-negative integers
not greater than m?

|l No
Does the execution

of A terminate after
m units of time?
1l Yes
Print the output of A

Gtop)

Algorithm 6

Yes
Print YES

The weakened item (@) implies the original one

The equality f, = f and Theorem 1 imply that item (b)
is false for k = w;. By this and Theorem 4, we alternatively
obtain a negative solution to Hilbert’s Tenth Problem.

Theorem 5. ([7, Theorem 1]) If a function h : N\ {0} - N
has a k-fold Diophantine representation, then there exists a
positive integer m such that h(n) < fx(n) for any n > m.

By the Davis-Putnam-Robinson-Matiyasevich theorem,
Theorem 1 is a special case of Theorem 5 when « = w;. Let
us pose the following two questions:

Question 1. Is there an algorithm B which takes as input a
Diophantine equation D, returns an integer, and this integer
is greater than the heights of non-negative integer solutions,
if the solution set has less than k elements? We allow a
possibility that the execution of B does not terminate or 8
returns nothing or something irrelevant, if D has at least
solutions in non-negative integers.

Question 2. Is there an algorithm C which takes as input a
Diophantine equation D, returns an integer, and this integer
is greater than the number of non-negative integer solutions,
if the solution set is finite? We allow a possibility that the
execution of C does not terminate or C returns nothing or
something irrelevant, if D has infinitely many solutions in non-
negative integers.

Obviously, a positive answer to Question 1 implies the
weakened item (a). Conversely, the weakened item (a) implies
that the flowchart below describes an appropriate algorithm 5.
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Input a Diophantine
equation D(xl, e ,xn) =0

l

m:=0

Execute A on the equation

(m+y—(x1 +...+ ) +

Dz(xl,...,xn):O
|l YES is returned
m:=m+1

NO is returned

Print m e

Algorithm 7
The weakened item (a) implies a positive answer to Question 1

Theorem 6. A positive answer to Question 1 for k = w is
equivalent to a positive answer to Question 2.

Proof. Trivially, a positive answer to Question 1 for x = w
implies a positive answer to Question 2. Conversely, if a
Diophantine equation D(xy, ..., x,) = 0 has only finitely many
solutions in non-negative integers, then the number of non-
negative integer solutions to the equation

D% (x1,..., %)+ (x1 +...+x,,—y—z)2 =0
is finite and greater than max(ay,...,a,), Wwhere
(ay,...,a,) € N" is any solution to D(xy,...,x,) = 0. m]
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