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Abstract—This paper addresses the comparison of algorithms
for a version of the Network Utility Maximization (NUM)
problem. The joint formulation of routing and transmission
rate control within the multi-user and single-path setting is
assumed within the NUM. Since the problem is NP-hard, the
efficient heuristics are designed, implemented and compared
experimentally with other existing heuristics and exact linear
programming solver. The linear approximation is applied for
a nonlinear utility function. The results of the experiments
demonstrate a trade-off between computing time and precision
of goal value.

Index Terms—Mathematical programming, network optimiza-
tion problem, network utility maximization, rate allocation,
congestion control, multi-rate computer networks, routing, NP-
hard problem, heuristic algorithm

I. INTRODUCTION

The Network Utility Maximization (NUM) problem was

introduced by Kelly et al. in 1998 [10]. Within the problem a

single route is associated with a user (constant to the problem)

and the goal is to maximize aggregate utility of all user rates

(variable to the problem). Such a basic NUM problem is

known to be polynomial-time solvable [17]. We refer to such

a problem as the basic NUM.

This article addresses an extended problem where both user

rates and routes are variable to the problem. We refer to such

a problem as the extended NUM problem or simply, the NUM

problem. Wang et al. prove such a problem to be NP-hard [17].

As a consequence, efficient heuristics are needed for larger

networks.

Such a joint formulation of the problem is useful since path

selection determines link congestion and the problem can be

solved efficiently. Efficiency is becoming a critical problem

in many application areas, e.g. in multimedia WSN (Wireless

Sensor Networks). Multimedia data producing wireless sensor

nodes require higher bandwidth, higher energy usage, and

strict quality of service (QoS) requirements [13]. Additionally,

we are interested in techniques to achieve fairness of multi-

stream allocations [10] [11] [3].

We designed and implemented several heuristics and com-

pared their performance with other existing heuristics and the

exact linear programming solver. Due to the fact that our

utility function was nonlinear, we applied linear approximation

within optimization procedure. The results of the experiments

demonstrate a trade-off between computing time and precision

of algorithms.

Since our approach is centralized, it cannot be used directly

in multi-rate networks operating in a distributed way. However,

there are certain applications where our heuristics can be

found useful. Firstly, in applications where centralized network

controllers are applied, e.g. SDN. Secondly, to estimate a gap

between single and multiple path solutions [18].

II. MOTIVATION AND RELATED WORK

A. The complexity of various versions of network utility max-

imization problem

The complexity of the basic and the extended NUM was

stated in the introduction. However, for various problem mod-

ifications it may differ. The decision version of m-commodity

flow problem with fixed rates and single-path setting is NP-

complete [4]. It is proved by reduction from the decision

version of the bin-packing problem. In [5] it is shown that even

the decision version of two-commodity integral flow problem

is NP-complete, by reduction from the SAT problem.

B. Distributed models

Since the work of Kelly et al. [10] was published, there have

been many works on price-based distributed network utility

maximizing methods. Chiang et al. [3] present the TCP/IP joint

optimization example and solve it through distributed decom-

position. Horizontal decomposition of TCP-AQM Congestion

Control to share link capacities among competing users is

described. Vertical decomposition of TCP/IP Joint Congestion

Control and Routing is described.

C. Centralized control in SDN networks

Amokrane el al. [1] propose an online energy efficient flow-

based routing approach for SDN controller, which allows for

dynamic reconfiguration of existing flows (paths and rates).

Huang et al. [8] solve utility-optimized flow-level bandwidth

allocation in hybrid SDNs.

D. Importance of single-path routing

Single-path routing is still important from the practical

point of view in the following areas: hybrid SDN networks

[8], energy-aware networks [1] [9], IP networks [3] [10],
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MANETs (Mobile Ad hoc NETworks) [16] and WSNs [13].

It imposes a smaller overhead in implementation and is less

expensive to support, as opposed to the multi-path [18]. Multi-

path routing, as opposed to single-path routing has several

disadvantages/challenges: data packet reordering, route main-

tenance, route discovery and a computational overhead.

E. Fairness and Efficiency

In literature there are various definitions of fairness. Two

of them are most common: Max-min fairness [14], and pro-

portional fairness [10] [14] [19] [11] [3]. The proportional

fair vector comes as a solution to maximization of aggregate

utility given by the equation (11) . Utility functions can be

interpreted as the level of elasticity of application traffic, user

satisfaction, optimality of resource allocation efficiency, as

well as fairness [3]. If α = 0, the NUM problem reduces

to system throughput maximization. If α = 1, proportional

fairness among competing users is attained. And finally, if

α = ∞, then max-min fairness is achieved (Lee et al. [11]).

The improvement in fairness is achieved by sacrificing the

network efficiency. As the value of α increases, the total rate

decreases. Our problem formulation assumes α = 1/2 for

heuristics testing purpose.

F. Multicommodity flow problem and its heuristics

Our problem belongs to a class of more general flow

problems, namely the multicommodity flow problem (MFP)

(Leighton et al. [12]). However, our formulation is single-path,

as opposed to the multi-path formulation in MFP. Additionally,

we do not assume a fixed demand for each source-destination

pair, but express such a demand with utility function. MFP

heuristics may be found in many works e.g. Garg and Kone-

mann [7], Fleisher [6].

G. Heuristics for NUM with single-path routing

Drwal [4] defines Utility-Maximizing Network Design prob-

lem understood as joint optimization over rates and paths

(single-path). The work introduces Maximum Spanning Tree

based algorithm, which gives a solution not less than a factor

O( 1
m
) of an optimal solution, where m is the number of pairs.

Wang et al. [18] introduce several upper-bounds to estimate

the performance gap between multi- and single-path solutions

of joint optimization of transmission rates and paths. They

introduce two heuristics: vertex-projection and greedy-branch-

and-bound.

III. MAIN RESULTS

In our paper we compared experimentally several heuristics

to the NUM problem: MstNum (see alg 1), IterativeMst-

Num (see alg 2), LPRoundingNum (see alg 3), LPBestPath-

Num (see alg 4) and IterativeLPBestPathNum (see alg 5).

Our main contribution is the design of two heuristics:

IterativeMstNum (an iterative procedure based on maximum

spanning tree) and IterativeLPBestPathNum (an iterative pro-

cedure based on LP solver).

The other heuristics may be found in literature: MstNum

[4], LPRoundingNum [4] [18] and LPBestPathNum [18].

All the algorithms are implemented and compared experi-

mentally with MilpNum (see alg 6), which gives an optimal

solution.

IV. PROBLEM DEFINITION

Let’s assume:

1) G = (V,E) an undirected graph representing a network,

where V is a set of nodes and E a set of edges (this

model could also be defined for a directed graph)

2) c : E → [0,∞) capacity function

3) S a set of users

4) Fst = {(sk, tk) ∈ V ×V : k ∈ S, and sk, tk ∈ V } a set

of (source,target) pairs - demands for transmission

5) u : S × [0,∞) → [0,∞) utility function

6) u(k, x) = uk(x) utility value of transmission rate x for

the user k ∈ S

The problem is to find a set of pairs {(xk, Pk) : k ∈ S},

where xk is a non-negative transmission rate assigned to the

user (2), Pk is a transmission path in the graph G from sk to tk,

assignments do not exceed (altogether) the edge capacity (3)

and rates are maximized (1). Such an extended NUM problem

is a generalization of the basic NUM formulated by Kelly [10].

max
∑

k∈S

uk(xk) (1)

For the purpose of the article we assume ∀i,j,∈S ui = uj .

∀k∈S xk ≥ 0 (2)

∀{u,v}∈E(G)

∑

k, s.t. {u,v}∈E(Pk)

xk ≤ c(u, v) (3)

MILP formulation: In MILP each flow fk takes a single

path Pk from the source sk to the target tk. We introduce a real

variable fkuv which indicates the amount of flow fk passing

via edge (u, v). The variable fkuv is defined to indicate u → v
flow direction and fkvu reverse. We rewrite the constraint (3)

as (4). We set a requirement that the flow is balanced (5),

except source and terminal nodes (6)(7).

∀{u,v}∈E(G)

∑

k, s.t. {u,v}∈E(Pk)

fkuv + fkvu ≤ c({u, v}) (4)

∀k∈S ∀u∈V \{sk,tk}

∑

v:{v,u}∈E(G)

fkvu =
∑

w:{u,w}∈E(G)

fkuw

(5)

∀k∈S

∑

w:{sk,w}∈E(G)

fkskw = xk (6)

∀k∈S

∑

v:{v,tk}∈E(G)

fkvtk = xk (7)

We introduce a binary variable ykuv which indicates

whether flow fk is passing via edge (u, v) (8). The variable
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ykuv is defined to indicate u → v flow direction and ykvu
reverse.

∀k∈S ∀{u,v}∈E(G) ykuv, ykvu ∈ {0, 1} (8)

We bind the variable ykuv with the variable fkuv using two

additional constraints (9)(10).

∀kuv:k∈S,{u,v}∈E(G) fkuv ≤ ykuv · c({u, v}) (9)

∀kuv:k∈S,{u,v}∈E(G) ykuv ≤ fkuv ·M (10)

where M is a large number.

In practice, fair allocations of capacity are needed. This

can be obtained by choosing the utility function properly. In

literature [3] [10] [4] most common is a family of functions:

uk(xk) =

{

wk
1

1−α
x1−α
k , α > 0, α 6= 1

wklog(xk), α = 1
(11)

For the experiment purpose, we have chosen α = 1/2,

which gives the function (12). We assume flow value to be

non-negative (2).

∀k ∈ S uk(x) = u(x) = 2
√
x (12)

We approximate the function (12) with three linear functions

over range x ∈ [0, 1] (see fig 1). Such a choice stems from

our assumption ∀{u, v} ∈ E(G) c(u, v) = 1. If links differ

in terms of capacity, approximation function could range from

0 to max edge capacity. For the approximation purpose, an

additional equation is introduced (14). The goal function (1)

is rewritten as (13).

max
∑

k∈S

(a1 · t1,k + a2 · t2,k + a3 · t3,k) (13)

where a1 = 12.00, a2 = 3.00, a3 = 1.3(3)

∀k∈S xk = t1,k + t2,k + t3,k (14)

where 0 ≤ t1,k ≤ 1/36, 0 ≤ t2,k ≤ 8/36, and 0 ≤ t3,k
Relaxed LP formulation: We relax the ykuv variable to

allow the flow to split and flow via multiple paths (15). Such

relaxation formulates the problem known in literature as Multi-

Commodity Flow (MCF). Since this is a linear program, MCF

can be solved in polynomial time [15].

∀k∈S∀{u,v}∈E(G) ykuv, ykvu ∈ [0, 1] (15)

In this NUM formulation all constraints { (2), (4), (5), (6),

(7), (14) } hold except {(8),(9),(10)}, which are replaced with

(15).
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Fig. 1. Approximation of utility function uk(x) = 2
√

x

V. ALGORITHMS

To solve the NUM problem we have implemented the

algorithms below. Some of them have been designed by us

and some taken from literature (see chapter III Main results).

1) MstNum(G, c, Fst) (see alg 1)

2) IterativeMstNum(G, c, Fst) (see alg 2)

3) LPRoundingNum(G, c, Fst) (see alg 3)

4) LPBestPathNum(G, c, Fst) (see alg 4)

5) IterativeLPBestPathNum(G, c, Fst) (see alg 5)

6) MilpNum(G, c, Fst) (see alg 6)

All the algorithms assume the following input parameters:

• G graph representing a network

• c capacity function

• Fst a set of demands for transmission

and output parameters:

• FAS such a set of pairs {(xk, Pk) : k ∈ S} that

constraints (2)(3) are satisfied

• U aggregate utility function value.

A. MST based NUM

The algorithm MstNum is based on [4]. It uses single MST

(Maximum Spanning Tree) run (line 1). All flow paths belong

to the MST (line 3). If competing flows pass the same edge,

the edge capacity is shared among the flows proportionally

with the use of min function (line 11).

In the worst case (having a network with |E| = m parallel

edges spanned between two vertexes), assuming ∀e∈Ec(e) =
k, and |S| = m, the heuristics MstNum gives a ratio of a

solution to an optimal solution equal to 1/m. It is shown in

[4] that the algorithm never returns a solution that is less than

a factor O( 1
m
) of an optimal solution.

B. Iterative MST based NUM

The algorithm IterativeMstNum offers a large improvement

over MstNum with respect to maximization of the goal func-

tion. It consists of two phases (init phase and iterative phase).

The first phase (init) runs MstNum (line 1). The second phase

runs an iterative utility improvement procedure (lines 3-28).

Within each iteration (a single while loop), |S| solutions are

found (line 4-21), compared and the best one is selected (line

22) to produce the input flow allocation set (FAS) for the next

iteration (line 26). To find an i-th solution (within an iteration)

the algorithm produces i-th MST (line 16) taking c
′

as the
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Algorithm 1 MstNum(G, c, Fst)

1: T = MST (G, c, Fst)
2: for i ∈ S do

3: Let Pi be siti-path in T

4: Update FAS with Pi

5: x
′

i = min{u,v}∈E(Pi) c(u, v)

6: xi = x
′

i

7: end for

8: for e ∈ E(T ) do

9: let Shre = {i ∈ S : e ∈ E(Pi)}
10: if (|Shre| > 1) then

11: ∀k∈Shre let xk = min(xk,
x
′

k∑
ℓ∈Shre

x
′

ℓ

· c(e))
12: Update FAS with xk

13: end if

14: end for

15: return (FAS,
∑

k∈S u(xk))

k

ε−

m

k

1
e

2
e

m
e

...

ε−

m

k

Fig. 2. Worst case for IterativeMstNum

graph edge capacity (lines 6-15), which equals c decreased by

the capacity used by the other users, and re-routes i-th flow to

a possibly better location within the i-th MST (the new route

may be the same as the previous one) (line 17). The ∆i is

computed as the aggregated sum of i-th flow utility difference

and all j-th flow utility difference (line 20). The best solution

is selected ∆max (line 22). If the objective improvement is

less or equal to ∆ε, the stop condition is satisfied (line 24).

In the worst case (see fig 2), assuming |S| = m, a ratio of a

solution to an optimal solution is determined by the equation

(16). For m ≫ 1 the ratio approximates to 1/2. The algorithm

IterativeMstNum never returns a solution that is less than a

factor O( 12 ) of an optimal solution.

sol

opt
=

1

2− 1/m
(16)

However, for practical networks the heuristics exposes a

solid ratio (see chapter VI Computational results).

C. Linear program relaxation and rounding NUM

The algorithm LPRoundingNum (a slight improvement of

the one given in [4]) begins with solving linear program

relaxation in phase1 (line 3). Subsequently in phase2 (lines 5-

14) a rounding is done by random selection of the single path

for each user. Finally, in phase3 (line 16) the LP problem is

Algorithm 2 IterativeMstNum(G, c, Fst)

1: FAS = MstNum(G, c, Fst)
2: stop = false
3: while (stop == false) do

4: for i ∈ S do

5: (x
′

i, P
′

i ) = FAS(i)
6: for (u, v) ∈ V × V do

7: cothers(u, v) = 0
8: for j ∈ S, s.t. j 6= i do

9: (x
′

j , P
′

j ) = FAS(j)

10: if (u, v) ∈ P
′

j then

11: cothers(u, v) = cothers(u, v) + x
′

j

12: end if

13: end for

14: c
′

(u, v) = c(u, v)− cothers(u, v)
15: end for

16: Ti = MST (G, c
′

, Fst)

17: Let P
′′

i bet siti-path in Ti

18: x
′′

i = min(u,v)∈P
′′

i
c
′

(u, v)

19: ∀j∈S,j 6=i recalculate x
′′

j using the idea given in

alg 1 (lines 2-14)

20: Compute ∆i = u(x
′′

i )−u(x
′

i)+
∑

j∈S,j 6=i(u(x
′′

j )−
u(x

′

j)) using (12)
21: end for

22: ∆max = max{∆i}i∈S

23: if (∆max ≤ ∆ε) then

24: stop = true
25: else

26: Update FAS with the best solution in the current

iteration (x
′′

max, P
′′

max)
27: end if

28: end while

29: return (FAS,
∑

k∈S u(xk))

solved again taking fixed single paths identified in the previous

phase as a constraint.

D. LP Best Path NUM

The algorithm LPBestPathNum begins with solving linear

program relaxation (line 3). Within the relaxed LP solution,

for each k ∈ S the single max path (max min ykuv on the

path) is identified as Pk (line 6). The procedure is using the

BFS (Breadth First Search) for that purpose. Finally, the LP

problem is solved again taking fixed single paths identified

(line 9) as a constraint. The algorithm is similar to the vertex

projection method given in [18].

E. Iterative LP Best Path NUM

The algorithm IterativeLPBestPathNum constitutes |S| + 1
iterations. In each {1, .., |S|} iteration, linear program relax-

ation is solved (line 7). Within the relaxed LP solution, for

each i ∈ S \ S′ the single max path Pi (max min yiuv on

the path) is selected (line 10). Among the |S \ S′|-paths, the

best (max) Pi is selected and added to the model (line 14) as
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Algorithm 3 LPRoundingNum(G, c, Fst)

1: Create a problem with goal as (13)

2: Add constraints {(2),(4),(5),(6),(7),(14),(15)} to the

problem
3: Solve the problem
4: Retrieve {y(k,u,v)∈S×V×V } and U from the problem

solution
5: for k ∈ S do

6: Set vertex u ∈ V s.t. u = sk
7: while (u! = tk) do

8: Let’s define a set Ru = {vi: (u, vi) ∈ V ×
V and ykuvi

> 0}
9: Let’s define a probability function Prob which as-

signs for each vi probability equal to
ykuvi∑

vj∈Ru
ykuvj

10: Choose randomly vi ∈ Ru, where probability of

selecting an element vi equals Prob(vi)
11: Add vertex vi to Pk

12: u = vi
13: end while

14: end for

15: Add constraints {Pk : k ∈ S} to the problem
16: Solve the problem
17: Retrieve {xk : k ∈ S} and U from the problem solution

18: Update FAS with values {(xk, Pk) : k ∈ S}
19: return (FAS,

∑

k∈S u(xk))

Algorithm 4 LPBestPathNum(G, c, Fst)

1: Create a problem with goal as (13)

2: Add constraints {(2),(4),(5),(6),(7),(14),(15)} to the

problem
3: Solve the problem
4: Retrieve {y(k,u,v)∈S×V×V } and U from the problem

solution
5: for k ∈ S do

6: Using the BFS based procedure choose the max path

Pk with value yPk
(max min ykuv on the path)

7: end for

8: Add constraints {Pk : k ∈ S} to the problem
9: Solve the problem

10: Retrieve {(xk, Pk) : k ∈ S} and U from the problem
solution

11: Update FAS with values {(xk, Pk) : k ∈ S}
12: return (FAS,

∑

k∈S u(xk))

a constraint (random selection, since there may be more than

one best path (line 13)). The constraint forces i-flow to use

only Pi edges in the next iterations.

In the last |S|+1 iteration the LP relaxation is solved assuming

single fixed paths for all the k ∈ S flows (line 17).

F. Mixed integer linear program NUM

The algorithm MilpNum is based on MILP formulation of

the problem. It is a single phase algorithm (line 3).

Algorithm 5 IterativeLPBestPathNum(G, c, Fst)

1: Create a problem with goal as (13)

2: Add constraints {(2),(4),(5),(6),(7),(14),(15)} to the

problem
3: Let’s initiate a set of users with fixed single path S′ = ∅
4: stop = false
5: while (stop == false) do

6: if (S \ S′ is not ∅) then

7: Solve the problem
8: Retrieve {y(k,u,v)∈S×V×V } and U from the

problem solution
9: for i ∈ S \ S′ do

10: Using the BFS based procedure choose the max

path Pi with value yPi
(max min yiuv on the

path)
11: end for

12: Let’s define a set M as following M = {i ∈ S \
S′: yPi

· xi == max{yPj
· xj}j∈S\S′}

13: Choose randomly i ∈ M , where probability of

selecting an element i equals 1
|M |

14: Add constraint Pi to the problem
15: S′ = S′ ∪ {i}
16: else

17: Solve the problem
18: stop = true
19: end if

20: end while

21: Retrieve {(xk, Pk) : k ∈ S} and U from the problem
solution

22: Update FAS with values {(xk, Pk) : k ∈ S}
23: return (FAS,

∑

k∈S u(xk))

Algorithm 6 MilpNum(G, c, Fst)

1: Create a problem with goal as (13)

2: Add constraints {(2),(4),(5),(6),(7),(8),(9),(10),(14)} to the

problem
3: Solve the problem
4: Retrieve {(xk, Pk) : k ∈ S} and U from the problem

solution

5: Update FAS with values {(xk, Pk) : k ∈ S}
6: return (FAS,

∑

k∈S u(xk))

VI. COMPUTATIONAL RESULTS

A. Experiment Setup

The algorithms were programmed in Python 2.7 with the

use of CPLEX Python library 12.8.0. The algorithm MilpNum

uses CPLEX executable. All the simulations were run on a PC

with 2-core 2.7GHz and 8GB RAM.

The experiments were conducted on five types of networks.

The first network Net7 with 7 nodes and 10 links [9]. The

second network Net22 with 22 nodes and 40 links [2]. In

the second network nodes 1-8 and T (which is a network

exit node) were source-destination nodes, whereas nodes 9-
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Fig. 3. Network aggregate utility (experiments S1− S11)

21 were transit nodes. The third, grid network Net64 with

8x8 nodes. The fourth network Net42 with 40 disjoint paths

spanned between node 1 and 42. Finally, the fifth, grid network

Net400 with 20x20 nodes. In all the networks above each link

had a capacity equal to 1.

1) Verification of algorithm performance for different net-

work structure and size: The experiment parameters were as

follows: S1 - Net7, 10 pairs as given in [9]; S2 - Net22, 10

users randomly selected 1; S3/4 - Net22, 20 users randomly

selected 1, S5 - Net22, 50 users randomly selected 1; S6 -

Net64, 20 users: 10 x (1,64) and 10 x (8,57); S7/8 - Net64,

20 users randomly selected; S9/10 - Net64, 20 users randomly

selected 2; S11 - Net42, 20 users (1,42).

The algorithm IterativeMstNum was run with ∆ε = 0.1.

In each experiment, the algorithms: LPRoundingNum,

LPBestPathNum and IterativeLPBestPathNum were run 20

times and the average values of objective Uavg and execution

time Tavg are presented.

2) Verification of algorithm performance for different num-

ber of users: Additional 10 experiments (on Net64) were

conducted to demonstrate an increase in utility and time upon

an increase in the number of users: S12 - 10, S13 - 20, ... ,

S21 - 100 users 2.

3) Verification of algorithm performance for a large net-

work: Finally, additional 3 experiments were conducted to

capture utility and time for the Net400: S22 - 20, S23 - 50,

S24 - 100 users 2.
1 50% of the pairs constitute internal traffic (between nodes

1-8), and 50% of the pairs constitute external traffic (between

nodes 1-8 and T)
2 Traffic sources and targets were located on the grid edge,

and were randomly selected. Each smaller user set was a subset

of a larger set.
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Fig. 5. Network aggregate utility in function of number of users (experiments
S12− S21)

B. Performance of IterativeMstNum heuristics

1) Different network structure and size - experiments S1−
S11: IterativeMstNum vs MstNum. The results from S1 −
S11 demonstrate a large improvement in the objective value

of the algorithm IterativeMstNum in comparison to MstNum

(Fig. 3) - efficiency (utility) was even several times higher as

high.

IterativeMstNum vs LPRoundingNum. The utility values

of IterativeMstNum observed in S1 − 5, 9 were not as high

as the average ones achieved by LPRoundingNum (utility of

LPRoundingNum was higher by 4% − 51% (Fig. 3)). On the

other hand, in S6 − 8, S10 − 11 the results were in favor

of IterativeMstNum (utility of IterativeMstNum was higher by
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TABLE I
UTILITY AND TIME FOR A LARGE NETWORK (EXPERIMENTS S22− S24)
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U T [s] Uavg Tavg [s] Uavg Tavg [s]
S22 20 33,36 10,96 31,54 27,09 36,18 139,78

S23 50 38,85 30,34 63,59 341,51 77,46 6152,44

S24 100 36,49 208,56 109,40 5129,93 - -

4%− 31% (Fig. 3)).

When it comes to the observed execution time, the algo-

rithms IterativeMstNum and LPRoundingNum exposed similar

performance, slightly in favour of LPRoundingNum (Fig. 4).

IterativeMstNum vs MilpNum. The objective values of

IterativeMstNum observed in the experiments S6, S11 were

very close to the ones achieved by MilpNum. In the experiment

S6 the value of MilpNum, lower than the value of IterativeM-

stNum, can be explained by an approximation error (Fig. 3).

For a small number of users (S1, S2) the observed distance

from the optimum (MilpNum) was not more than 12% , for a

larger number of users (S3− S5, S7− 10) it ranged between

11% and 80%.

2) Different number of users - experiments S12−S21: It-

erativeMstNum vs LPBestPathNum. In general, the observed

utility of IterativeMstNum increased when the number of users

grew, however the function was not monotonic. The utility was

comparable with the one achieved by LPBestPathNum when

the number of users was not high, up to 40 users for Net64

(Fig. 5). Then, the utility difference was not higher than 35%.

When the number of users was 10, for Net64, the utility of

IterativeMstNum was higher by 11%. This number of users

was correlated with the number of user-disjoint paths.

The time of execution of IterativeMstNum was comparable

with the one achieved by LPBestPathNum regardless of the

number of users (Fig. 6).

3) Large network - experiments S22− S24: IterativeMst-

Num vs LPBestPathNum. The utility of IterativeMstNum was

comparable with the one achieved by LPBestPathNum when

the number of users was not high (TABLE I). When number

of users was 20, for Net400, the utility of IterativeMstNum

was higher by 5.8%. The same remark on user-disjoint paths

applies, as above.

The time of execution of IterativeMstNum was much smaller

than the one achieved by LPBestPathNum (an order of mag-

nitude when the number of users was high - TABLE I).

C. Performance of LPBestPathNum and IterativeLPBestPath-

Num heuristics

1) Different network structure and size - experiments S1−
S11: LPBestPathNum vs LPRoundingNum. The average

objective values of LPBestPathNum observed in the most of

the experiments S1− S11 were superior to LPRoundingNum

by up to 9.7% (Fig. 3), except for S1, S4 - 1% and 3.6%
opposite difference, respectively. Both heuristics demonstrated

very similar execution time (Fig. 4).

LPBestPathNum vs IterativeLPBestPathNum. In S1−S11
the average observed objective values of IterativeLPBestPath-

Num were higher than values of LPBestPathNum by up to

14.5%, except for the parallel edge network (Net42) by 31%
(Fig. 3). However, IterativeLPBestPathNum exposed higher

execution time due to additional |S| − 1 iterations (Fig. 4).

IterativeLPBestPathNum vs MilpNum. In S1 − S6, S11
the optimal objective values (MilpNum) were higher than

IterativeLPBestPathNum solution by not more than 1.5%. In

S7, S9− 10 - by not more than 4.8%. In S8 - by 7.9%.

2) Different number of users - experiments S12 − S21:

IterativeLPBestPathNum vs LPBestPathNum. In S12− S21
the average objective values of IterativeLPBestPathNum and

LPBestPathNum grew when the number of users grew. The

utilities of IterativeLPBestPathNum were higher than those

of LPBestPathNum (Fig. 5). The observed difference became

smaller when the number of user grew. As observed, from

16% for 10 users to 2% for 100 users.

However, IterativeLPBestPathNum required much longer

computation times than LPBestPathNum, with an increasing

number of users (Fig. 6).

3) Large network - experiments S22 − S24: Itera-

tiveLPBestPathNum vs LPBestPathNum. The utility differ-

ence between IterativeLPBestPathNum and LPBestPathNum

was more visible for large networks (20x20 nodes), as ob-

served 14.7% (20 users) - 21.8% (50 users) in favor of the

former (TABLE I). However, the computation time of Itera-

tiveLPBestPathNum for a large networks and large number of

users may not be practically attainable (TABLE I).

D. Performance of MilpNum solver

The experiments S7−10 showed that MilpNum may expose

a very long computation time to achieve an optimal solution,
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in the range of hours (Fig. 4). A possible, way around for

MilpNum would be to configure the automatic termination

when reaching a defined solution gap. As an example, in the

experiment S9 MilpNum gave the value 26,22 (gap 16,95%)

in 12s and 29 (5,75%) in 90s. IterativeLPBestPathNum gave

29,928 in 8,4s. In S10 MilpNum gave 30 (11,11%) in 12s and

31,66 (5%) in 268s. IterativeLPBestPathNum gave 31,962 in

8,2s.

VII. CONCLUSIONS

Since our problem is NP-hard, search for optimum (Milp-

Num) may not be practically attainable even for medium-sized

grid networks (8x8 nodes) and a small number of users (∼ 20).

The experiments show that the algorithm LPBestPathNum

demonstrates a reasonably good trade-off between computing

time and precision of the utility value.

As observed, our LP-based heuristics IterativeLPBestPath-

Num demonstrates up to ∼ 15% higher utility, on networks

with up to 64 nodes and 50 users, but it is slower, in com-

parison to LPBestPathNum. The difference in utility may be a

few percent bigger for large grid networks (20x20 nodes) and a

high number of users (∼ 50), and even more for a special type

of network - parallel edges. The bigger difference is caused

by the edge allocation conflict. The IterativeLPBestPathNum

reduces the probability of such conflicts by iterative path fixing

(a single path fixed for each iteration).

The utility values of IterativeLPBestPathNum, on network with

up to 64 nodes and 50 users, are lower than MilpNum by only

∼ 2% on average.

The successful IterativeLPBestPathNum computations were

conducted for grid networks with up to 20x20 nodes and

50 users. For comparison, the successful and not terminated

MilpNum computations were conducted for grid networks with

up to 8x8 nodes and 20 users.

As observed, our MST-based heuristics IterativeMstNum

ensures reasonably good utility in certain cases. When the

number of users is not high (the number is correlated with

the number of user-disjoint paths), the IterativeMstNum utility

is lower than MilpNum by not more than ∼ 10%. With such

an assumption it has efficiency comparable to LPBestPathNum.

When the number of users grows, the gap between IterativeM-

stNum and LPBestPathNum increases. The IterativeMstNum

has utility which is equal to optimal for a special type of

network - parallel edge network, since it avoids allocating

the same edge to competing streams if alternative ones are

available. In such networks, it may be much more efficient

than LPBestPathNum (e.g. S11− 30%).

On average, for the observed cases, the IterativeMstNum utility

value is lower than MilpNum by ∼ 25%.

Additionally, IterativeMstNum has computing time compara-

ble to LPBestPathNum for small and medium-sized networks.

For large networks and a high number of users, it may be

an order of magnitude faster than LPBestPathNum. Finally,

it does not use LP solver but a simple MST-based iterative

procedure.
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