Measuring the Polarity of Conversations between Chatbots and Humans: A Use Case in the Banking Sector
Guillaume Le Noé-Bienvenu, Damien Nouvel, Djamel Mostefa
DOI: http://dx.doi.org/10.15439/2020F63
Citation: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 21, pages 193–198 (2020)
Abstract. This paper describes a study on opinion analysis applied to both human to chatbot conversations, but also to human to human conversations using data coming from the banking sector. A polarity classifier SVM model applied to conversations provides insights and visualisations of the satisfaction of users at a given time and its evolution. We conducted a study on the evolution of the opinion on the conversations started with the chatbot and then transferred to a human agent. This work illustrates how opinion analysis techniques can be applied to improve the user experience of the customers but also detect topics that generate frustrations with a chatbot or with human experts.
References
- B. Liu, “Sentiment Analysis and Opinion Mining”, 2012, pp. 11-19.
- B. Hancock, A. Bordes, P.-E. Mazaré and J. Weston , “Learning from Dialogue after Deployment: Feed Yourself, Chatbot!,” CoRR abs/1901.05415, Madison, WI, 2019,
- C. J. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text.,” 2014
- E. Andrea and S. Fabrizio, “SENTIWORDNET: A publicly available lexical resource for opinion mining,” in Proceedings of the 5th Conference on Language Resources and Evaluation (LREC), 2006
- L. Joseph, E. Morin and S. Peña Saldarriaga, “CANÉPHORE : un corpus français pour la fouille d’opinion ciblée,” in Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles, Caen, France, 2015, pp. 418–424.
- L. Zhang and S. Ferrari, “Intensité et polarité : un modèle opératoire articulant plusieurs travaux linguistiques,” in Langue française, (num 184), 2014, pp. 35–54.
- G. Salton and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,” in Inf. Process. Manage. vol. 24 num. 5 , Tarrytown, NY, 1988, pp. 513–523.
- J. Thorsten, “Text Categorization with Support Vector Machines: Learning with Many Relevant Features,” 1998
- B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs Up: Sentiment Classification Using Machine Learning Techniques,” in Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing vol. 10, Stroudsburg, PA, 2002, pp. 79–86
- J. Lilleberg, Y. Zhu, and Y. Zhang, “Support vector machines and Word2vec for text classification with semantic features,” in IEEE, 2015/07, pp. 136-140
- Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, Doha, Qatar, 2014, pp. 1746–1751
- T. Hamon, A. Fraisse, P. Paroubek, P. Zweigenbaum and C. Grouin, “Analyse des émotions, sentiments et opinions exprimés dans les tweets: présentation et résultats de l’édition 2015 du défi fouille de texte (DEFT),” in Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles (TALN 2015), 2015, pp. A20.
- L. Buitinck, et al., “API design for machine learning software: experiences from the scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, Madison, WI, 2013, pp. 108–122.
- S. Bird, E. Klein and E. Loper, “Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit,” 2009