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Abstract—Stochastic techniques have been developed over
many years in a range of different fields, but have only recently
been applied to the problems in machine learning. A fundamental
problem in this area is the accurate evaluation of multidimen-
sional integrals. An introduction to the theory of the stochastic
optimal generating vectors has been given. A new optimized
lattice sequence with a special choice of the optimal generating
vector has been applied to compute multidimensional integrals
up to 30-dimensions. Clearly, the progress in the area of machine
learning is closely related to the progress in reliable algorithms
for multidimensional integration.

I. INTRODUCTION

MONTE Carlo methods are suitable for mathematical

modelling of multi-dimensional problems [10], since

their computational complexity increases polynomially, but not

exponentially with the dimensionality [2]. A general problem

in neural networks and machine learning is the accurate

evaluation of multidimensional integrals. In 2011 Shaowei Lin

in his works [4], [5] consider the problem of evaluating mul-

tidimensional integrals in Bayesian statistics which are used
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in neural network and machine learning. We will primarily be

interested in two kinds of integrals. The first has the form
∫

Ω

pu1
1 (x) . . . pus

s (x)dx, (1)

where Ω ∈ Rs, x = (x1, . . . , xs), pi(x) are polynomials and

ui are integers. The second kind of integrals has the form
∫

Ω

e−Nf(x)φ(x)dx, (2)

where f(x) and φ(x) are s-dimensional polynomials and N is

a natural number. The asymptotics of such integrals is well

understood for models in machine learning, but little was

known for singular models until a breakthrough in 2001 [9].

II. QMC METHODS BASED ON LATTICE RULES

Lattice point sets are a special type of low-discrepancy

stochastic sequences based on the use of deterministic se-

quences instead of random sequences [8]. The monographs

of Sloan and Kachoyan [7] and Hua and Wang [3] provide

comprehensive expositions on the theory of integration lattices.

In our study we will use the following a particular rank-1

lattice sequence [8]:

xk =

{

k

N
z

}

, k = 1, . . . , N, (3)

where N is an integer, N ≥ 2, z = (z1, z2, . . . zs) is an integer

vector modulo N of dimensionality s called a generator of

the set and {z} denotes the fractional part of z. We denote by

PN = {x1, x2, . . . , xN}, xi ∈ [0, 1)s the integration nodes of

the formula.

Definition 1: [7] We say that f(x) belongs to the class of

functions Eα
s (c) for α > 1 and c > 0, if f is a periodic
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function with period 1 for every of its components xi, i =
1, 2 . . . , s, defined over the unit cube [0, 1]s and its Fourier

coefficients satisfy the following inequalities:

|a(m)| <
c

(m1 . . .ms)α
, (4)

where

m =

{

|m|, |m| 6= 0,
0, m = 0,

and the constant c does not depend on m1, . . . ,ms.

The discrepancy and the ”worst case” error are two impor-

tant characteristics for the quality of the lattice sequences.

Definition 2: Consider the point set X = {xi | i =
1, 2, . . . N} in [0, 1)s and N > 1. Denote by xi =

(x
(1)
i , x

(2)
i , . . . , x

(s)
i ) and J(v) = [0, v1)×[0, v2)×. . .×[0, vs).

Then the discrepancy of the set is defined as

D(N) := sup
0≤vj≤1

∣

∣

∣

∣

∣

∣

#{xi ∈ J(v)}

N
−

s
∏

j=1

vj

∣

∣

∣

∣

∣

∣

.

Definition 3: For f ∈ Es
α(c) the worst case error is defined

as [8]

Pα(z,N) =
∑

z.a≡0 (modN),a 6=0

c

(m1 . . .ms)α
.

The quantity Pα(N, z) and the discrepancy are similar mea-

sures of the quality of the lattice point set.

In 1959 Bahvalov proved that [1] there exists an optimal

choice of the generating vector z, for which the error of

integration satisfies
∣

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

k=0

f

({

k

N
z

})

−

∫

[0,1)s

f(u)du

∣

∣

∣

∣

∣

∣

∣

≤ cd
(logN)β(s,α)

Nα
,

(5)

for the function f ∈ Eα
s (c), where α > 1 and d(s, α), β(s, α)

do not depend on N .

Moreover, if N is a prime number, then β(s, α) = α(s−1).
The generating vector z, for which inequality (5) is satisfied,

is an optimal generating vector and the point set PN is a

set of good integration points and the numerical integration

method is called Good Lattice Point method (GLP). While the

theoretical result establish the existence of optimal generating

vectors, the difficulty of the development of GLPs is in the

construction of the optimal vectors and this is especially

difficult with increasing the dimensionality of the integral and

dramatically increases the computational complexity.

The first generating vector that we are going to use is based

on the generalized Fibonacci numbers of the corresponding

dimension. Let F
(s)
n is the n-th term of the corresponding

generalized Fibonacci sequence [8] of dimensionality s. It’s a

sum of previous s terms from this sequence:

F (s)
n =

n−1
∑

i=n−s

F
(s)
i , where n is an integer and n ≥ s (6)

and the following initial conditions hold:

F
(s)
0 = F

(s)
1 = . . . = F

(s)
s−2 = 0, F

(s)
s−1 = 1. (7)

Consider the following generating vector [8]:

z = (1, F (s)
n (2), . . . , F (s)

n (s)), (8)

where we use that

F (s)
n (j) := F

(s)
n+j−1 −

j−2
∑

i=0

F
(s)
n+i (9)

and F
(s)
n+l (l = 0, . . . , j − 1, j is an integer, 2 ≤ j ≤ s) is the

corresponding term of the generalized Fibonacci sequence of

dimensionality s.

The generating vector (8) is transformed into [3], [8]:

z = (1, F
(s)
n−1+F

(s)
n−2+. . .+F

(s)
n−s+1, . . . , F

(s)
n−1+F

(s)
n−2, F

(s)
n−1).

(10)

Hua and Wang in 1981 [3] proved that the lattice point set

with N = F
(s)
n points obtained by using generating vector

based on generalized Fibonacci numbers of corresponding

dimensionality
(

{

1

F
(s)
n

k

}

,

{

F
(s)
n (2)

F
(s)
n

k

}

, . . . ,

{

F
(s)
n (s)

F
(s)
n

k

})

, (11)

1 ≤ k ≤ F
(s)
n , has discrepancy

D∗

F
(s)
n

= O

(

F (s)
n

− 1
2−

1

2s+1. ln 2
− 1

22s+3

)

and the worst case error is

Pα(z, F
(s)
n ) = O

(

(F (s)
n )

−α
2 − α

2s+1. log 2
− α

22s+4

)

.

If we change the generating vector to be optimal in the

way described in [6] we have improved the lattice sequence.

The optimal generating vector that we are going to use is

constructed recently by Dirk Nuyens [6]. This is a 600-

dimensional base-2 generating vector of prime numbers for

up to 220 = 1048576 points. The method is improved by

generating the points from a lattice sequence in base 2 in

gray coded radical inverse ordering. This generating vector

is generated by the fast component-by-component algorithms,

developed in his PhD thesis. The special choice of this optimal

generating vector is better than the generating vector from

generalized Fibonacci numbers for higher dimensions, which

is only optimal for the two dimensional case [8].

III. NUMERICAL EXAMPLES

We considered three different examples of 4,7,10 and 30 di-

mensional integrals, respectively, for which we have computed

their referent values.

Example 1. s = 4.
∫

[0,1]4

x1x
2
2e

x1x2 sin(x3) cos(x4) ≈ 0.108975. (12)
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Example 2. s = 7.

∫

[0,1]7

e
1−

3∑

i=1
sin(π

2 .xi)
.arcsin











sin(1) +

7
∑

j=1

xj

200











≈ 0.7515.

(13)

Example 3. s = 10.
∫

[0,1]10

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x10 ≈ 14.808435. (14)

Example 4. s= 30.
∫

[0,1]30

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x20x21 . . . x30 ≈ 3.244. (15)

The results are given in the tables below. We make a

comparison between plain Monte Carlo (CRUDE)optimized

lattice sequence with an optimal generating vector (OPT),

Fibonacci lattice sets (FIBO), Sobol sequence (SOBOL) and

Matousek scrambling for Sobol sequence (SCR). Each Table

contains information about the stochastic approach which is

applied, the obtained relative error (RE), the needed CPU-

time in seconds and the number of points. Note that when

the FIBO method is tested, the number of sampled points are

always Generalized Fibonacci numbers of the corresponding

dimensionality.

Table I
ALGORITHM COMPARISON OF THE RE FOR THE 4-DIMENSIONAL

INTEGRAL.

# of points OPT t,s FIBO t,s SOBOL t,s SCR t,s

1490 6.11e-4 0.002 1.01e-3 0.004 9.46e-4 0.43 3.78e-3 0.47

10671 2.13e-5 0.01 8.59e-5 0.02 5.28e-4 1.4 6.10e-4 1.59

20569 6.56e-6 0.02 3.89e-5 0.03 3.52e-5 4.32 1.97e-5 4.54

39648 9.14e-7 0.06 3.01e-5 0.07 2.68e-5 7.77 9.67e-6 8.26

147312 4.78e-7 0.15 3.71e-6 0.24 2.29e-6 23.7 1.40e-6 27.91

Table II
ALGORITHM COMPARISON OF THE RE FOR THE 4-DIMENSIONAL

INTEGRAL

t, s OPT FIBO SOBOL SCR

1 5.66e-7 5.62e-6 7.54e-4 6.32e-4

5 3.12e-7 5.38e-7 3.26e-5 1.23e-5

10 5.14e-8 3.77e-7 1.50e-5 8.48e-6

20 3.18e-8 2.67e-8 3.55e-6 1.16e-6

Numerical results show essential advantage for the opti-

mized lattice sets algorithm based on an optimal generating

vector in comparison with Fibonacci generalized numbers and

Sobol scramble sequence (1-2 orders). For lower dimensions

FIBO and Sobol gives results of the same order-see Table I,II.

For higher dimensions Scramble sequence SCR is better than

FIBO and Sobol by at least 1 order. The results for relative

Table III
ALGORITHM COMPARISON OF THE RE FOR THE 7-DIMENSIONAL

INTEGRAL.

# of points OPT t,s FIBO t,s SOBOL t,s SCR t,s

2000 6.39e-4 0.14 2.81e-3 0.23 5.45e-3 1.04 2.51e-3 1.42

7936 3.23e-4 0.64 1.38e-3 0.87 1.28e-3 2.08 1.16e-3 3.08

15808 1.23e-5 0.95 9.19e-4 1.73 9.65e-4 3.26 7.58e-4 5.89

62725 3.15e-6 2.54 2.78e-5 3.41 5.18e-4 12.3 3.11e-4 15.64

124946 1.12e-6 6.48 6.87e-5 6.90 1.09e-4 25.4 8.22e-5 31.41

Table IV
ALGORITHM COMPARISON OF THE RE FOR THE 7-DIMENSIONAL

INTEGRAL

t, s OPT FIBO SOBOL SCR

0.1 7.38e-4 2.38e-3 8.85e-3 8.37e-3

1 1.17e-5 6.19e-4 5.85e-3 1.37e-3

5 2.32e-6 8.81e-5 1.79e-3 8.38e-4

10 9.11e-7 1.88e-5 7.36e-4 4.78e-4

20 7.43e-7 3.87e-6 1.96e-4 9.87e-5

Table V
ALGORITHM COMPARISON OF THE RE FOR THE 10-DIMENSIONAL

INTEGRAL.

# of points OPT t,s FIBO t,s SOBOL t,s SCR t,s

1597 3.14e-4 0.002 4.39e-3 0.003 6.31e-3 0.02 1.46e-3 0.05

17711 6.21e-5 0.02 1.81e-3 0.04 5.31e-4 0.11 1.83e-4 0.21

121393 4.34e-6 0.15 1.20e-3 0.16 1.78e-4 1.21 3.12e-5 1.47

832040 4.11e-7 0.75 1.19e-5 0.70 3.24e-5 12.1 8.25e-6 14.41

3524578 5.32e-8 6.35 2.63e-6 6.45 4.57e-6 121.5 7.71e-7 139.1

Table VI
ALGORITHM COMPARISON OF THE RE FOR THE 10-DIMENSIONAL

INTEGRAL

t, s OPT FIBO SOBOL SCR

0.1 4.95e-6 9.19e-6 5.31e-4 4.19e-4

1 8.10e-7 5.63e-6 1.81e-4 1.21e-4

5 3.56e-8 2.15e-6 8.07e-5 7.21e-5

10 4.31e-8 1.79e-6 4.77e-5 3.51e-5

20 9.13e-9 8.61e-7 8.42e-6 7.09e-6

Table VII
ALGORITHM COMPARISON OF THE RE FOR THE 30-DIMENSIONAL

INTEGRAL.

# of points OPT t,s SCR t,s SOBOL t,s FIBO t,s

1024 1.21e-2 0.02 5.78e-2 0.53 1.18e-1 0.42 8.81e-1 0.02

16384 4.11e-3 0.16 1.53e-2 5.69 8.40e-2 4.5 6.19e-1 0.14

131072 5.24e-4 1.34 1.35e-3 42.1 1.18e-2 30.2 2.78e-1 1.16

1048576 8.81e-5 9.02 6.78e-4 243.9 9.20e-3 168 9.86e-2 8.61

errors corresponding to FIBO and Sobol are similar especially

for higher sample number, see Tables III. If the computational

time is fixed the advantage of Fibonacci lattice sets in terms

of relative error in comparison with Sobol approach is clearly
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Table VIII
ALGORITHM COMPARISON OF THE RE FOR THE 30-DIMENSIONAL

INTEGRAL

time,sec OPT SCR SOBOL FIBO

1 3.48e-3 2.38e-2 1.01e-1 2.38e-1

5 4.23e-4 5.46e-3 7.76e-2 1.81e-1

10 8.91e-5 1.25e-3 5.71e-2 9.48e-2

20 2.33e-5 6.11e-4 1.28e-2 7.87e-2

seen, see Tables IV. In general scrambling procedure improves

the relative error of the unscrambled nets as it is the case for

Sobol sequence and its scrambled version by Matousek linear

scrambling as can be seen form the results in Tables V,VI. For

very high dimensions the optimized lattice rule outperforms

not only the scramble sequence, but also the FIBO method

and Sobol sequence by at least 2 orders - see Table VII,VIII.

The experiments show that the optimized lattice sequence with

a special choice of the optimal generating vector is the best

method in terms of lower relative errors with increasing the

dimensionality of the integral. The optimized lattice sequence

gives the best results compared to the other stochastic ap-

proaches also for a fixed computational times which show that

the presented algorithm is the most computationally efficient.

IV. CONCLUSION

In this paper an optimized lattice rule has been presented

and tested on multidimensional integrals used in machine

learning. A comprehensive experimental study of optimized

lattice rule, Fibonacci lattice sets, Sobol sequence and Ma-

tousek scrambling for Sobol sequence has been done on some

case test functions. This approaches are the only possible algo-

rithms for high dimensional integrals because the deterministic

algorithms need an huge amount of time for the evaluation of

the integral. The numerical tests show that the optimized lattice

rule is the most efficient for multidimensional integration

and especially for computing high dimensional integrals. It

is an important element since this may be crucial in order to

achieve a more reliable interpretation of the results in Bayesian

statistics which is foundational in artificial intelligence and

machine learning.
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