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Abstract—We present a natural probabilistic variation of the
multi-depot vehicle routing problem with pickup and delivery
(MDVRPPD). In this paper, we present a variation of this deter-
ministic problem, where each pair of pickup and delivery points
are present with some probability, and their realization are only
known after the routes are computed. We denote this stochastic
version by S-MDVRPPD. One route for each depot must be
computed satisfying precedence constraints, where each pickup
point must appear before its delivery pair in the route. The
objective is to find a solution with minimum expected traveling
distance. We present a closed-form expression to compute the
expected length of an a priori route under general probabilistic
assumptions. To solve the S-MDVRPPD we propose an Iterated
Local Search (ILS) that uses the Variable Neighborhood Descent
(VND) as local search procedure. The proposed heuristic was
compared with a Tabu Search (TS) algorithm based on a previous
work. We evaluate the performance of these heuristics on a data
set adapted from TSPLIB instances. The results show that the
ILS proposed is efficient and effective to solve S-MDVRPPD.

I. INTRODUCTION

V
EHICLE routing problems (VRPs) have been extensively

studied over the last three decades, mainly due to their

economic importance and their theoretical challenges. The

diversity of applications has motivated the study of several

variants of VRPs. One of its more challenging variants is the

multi-depot vehicle routing problem (MDVRP), where the well

know TSP is a particular case of this problem. On the other

hand, uncertainty is a characteristic of many real VRPs. Some

common stochastic elements are customer requests, travel time

and service time. The stochastic VRP (SVRP) is basically any

VRP where one or more parameters are stochastic.

The VRP variant we consider is the stochastic version

of MDVRP with pickup and delivery (MDVRPPD). The

MDVRPPD is closely related to the problem proposed in

[1]. In this work, the authors introduced the multi-depots

pick-up and delivery problem with time windows and multi-

vehicles. The principle of MDVRPPD is to design an optimal

set of routes for a fleet of vehicles, each one located in a

different depot. The set of routes allows serving a set of pickup

and delivery points geographically dispersed. The number of

vehicles is equal to the number of depots. Each vehicle must

start and end the route in its assigned depot. Vehicles must

visit once and only once each node. In Figure 1 we show the

tour of three vehicles belonging each one to a different depot.
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Fig. 1. Example of a solution for the MDVRPPD with three vehicles. Each
vertex ri represents a pickup point while ci represents its corresponding
delivery point.

In the stochastic version of the MDVRPPD the pickup and

delivery points are uncertain. Consider for example an online

marketplace provider, which is an e-commerce platform owned

and operated by the provider, where third-parties can sell their

products. It is common for the provider to be responsible

for the gather and delivery of sold products (specially in the

case of food delivery for example). If, based on past data, the

provider has access to a probability distribution of the chance

of a request from costumer A from seller B to occur, better

routes can be constructed.

We propose an Iterated Local Search (ILS) heuristic to solve

this problem that uses the Variable Neighborhood Descent

(VND) heuristic as a local search. We denote the proposed

algorithm by ILS-VND. The ILS-VND is based on the ILS

heuristics presented by Subramanian et. al. [2] for the VRP

with simultaneous pickup and delivery. To evaluate its perfor-

mance we compare it with an adaptation of the TABUSTOCH

algorithm proposed by Gendreau et. al. [3]. The tabu search

algorithm is one of the main methods to deal with SVRPs [4].

The remainder of this paper is organized as follows. Section

II-A presents the description and mathematical formulation

of the MDVRPPD. Section III presents the closed-form ex-

pression to compute the expected length of an a priori
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route. Section IV introduces the proposed heuristic ILS-VND.

Section V presents the adapted tabu search heuristic. Section

VI describes the computational experiments, and Section VII

presents the conclusions of this work.

A. Related work

The proposed problem has a close connection with the

well known multi-depot traveling salesman problem (mTSP)

[5]. Specifically, with the special case of multi-depot multiple

travelling salesman problem (MmTSP). In the MmTSP each

salesman starts from a unique city, travels to a set of cities and

completes the route by returning to his original city with each

city visited once [6]. Kara and Bektas [7] presents a mTSP

review and explores connections with VRPs. The MDVRPPD

is also closely related to the steiner multi cycle problem

(SMCP), recently introduced in [8]. The SMCP arises in the

scenario where a company has to periodically exchange goods

between two different locations, and different companies can

collaborate to create a route that visits all its pairs of locations

sharing the total cost of the route [8]. The MDVRPPD can be

seen as a version of the SMCP with depots. There are several

heuristic approaches to solving VRPs and its stochastic variant.

State of the art solutions include: particle swarm optimization

approach [1], VNS [9], adaptive large neighbourhood search

[10], ant colony optimization [11], genetic approach [12], tabu

search [13], simulated annealing [14] and hybrid heuristic with

exact methods [15] [16]. A review of the solution methods

used in the past 20 years for the SVRP is presented in [17].

II. PROBLEM DESCRIPTION AND MODEL

In this section, we present the MDVRPPD and model

it as an integer linear program first, then we define the

S-MDVRPPD.

A. MDVRPPD

In this work, MDVRPPD is defined as follows. Let

G = (V,E) be a complete undirected graph, where V =
{v1, . . . , vn} is the vertex set and E = {(vi, vj) : vi, vj ∈
V, i < j} is the edge set. With each edge (vi, vj), it is

associated a non-negative cost or distance dij . A subset of

vertices D = {v1, . . . , vm} represents the depots, and the

remaining vertices V ′ = {vm+1, . . . , vn} corresponds to

pickup and delivery points. Let w = |V ′|/2, then w vertices

are pickup points and w vertices are delivery points. Each

pickup point vi is associated with a unique delivery point

vi+w, and vice versa, for m + 1 ≤ i ≤ m + w. There are

m identical vehicles of unlimited capacity such that each one

is located in a single depot. Each vehicle leaves its depot,

serves a subset of pickup and delivery vertices and returns to

its depot, forming a cycle (or route). The problem consists in

determining a set of m vehicle cycles of minimal total cost

considering the following constraints: a) each cycle starts and

ends at the corresponding vehicles depot; b) each v ∈ V ′ is

visited exactly once by one vehicle c) each pair of pickup and

delivery points, e.g {vi, vi+w} for m+ 1 ≤ i ≤ m+w, must

belong to the same cycle and d) each cycle has an orientation

where each pickup vertex in this cycle appears before its

delivery pair.

The MDVRPPD is NP-hard since it includes the Traveling

Salesman Problem (TSP) as a special case (e.g. if each pair

of pickup and delivery are in the same location and there is

only one depot).

We adapt the mathematical formulation proposed in [5]

for the deterministic static version of MDVRPPD. In this

formulation we assume G is a complete symmetric directed

graph. The parameters and variables of the formulation are

defined in Table I.

TABLE I
PARAMETERS AND DECISION VARIABLES FOR THE MDVRPPD

D Set of depots, {v1, ..., vm}.
V ′ Set of nodes (pickup and delivery), {vm+1, ..., vn}
H+ Set of pickup nodes, |H+| = w.

uk
i

A positive integer variable that indicates the order vertex

i is visited by vehicle k, and uk
i = 0 if i is not visited by

k, i ∈ V ′, k ∈ D.
dij Distance between vertices i and j.

xk
ij

If the vehicle from depot k travel along arc (i, j),

then xk
ij = 1, otherwise xk

ij = 0.

minimize
∑

k∈D

∑

j∈V ′

(dkjx
k
kj + djkx

k
jk) +

∑

k∈D

∑

i∈V ′

∑

j∈V ′

dijx
k
ij

(1)

s.t.
∑

j∈V ′

xk
kj = 1, k ∈ D, (2)

∑

j∈V ′

xk
jk = 1, k ∈ D, (3)

∑

k∈D

xk
kj +

∑

k∈D

∑

i∈V ′

xk
ij = 1, ∀j ∈ V ′, (4)

xk
kj +

∑

i∈V ′

xk
ij = xk

jk +
∑

i∈V ′

xk
ji, ∀k ∈ D, j ∈ V ′, (5)

uk
i ≤ n(

∑

j∈V ′

xk
ij + xk

ik), i ∈ V ′, k ∈ D, (6)

xk
ki ≤ uk

i , i ∈ V ′, k ∈ D, (7)

uk
i + 1 ≤ uk

j + (1− xk
ij)n, i, j ∈ V ′, k ∈ D, (8)

uk
i + 1 ≤ uk

i+w + (1−
∑

j∈V ′

xk
ij)n, i ∈ H+, k ∈ D, (9)

xk
ij ∈ {0, 1}, i, j ∈ V, (10)

uk
i ∈ Z+, i ∈ V, k ∈ D, (11)
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In this formulation, constraint (2) ensures that exactly one

vehicle depart from each depot k ∈ D, while (3) assures the

vehicle returns to the depot. Constraint (4) ensures that each

node is visited exactly once. Route continuity is ensured by

the flow conservation constraints (5). Constraints (6) assures

that the order of client i is 0 if it is not in the route of vehicle

k. Constraints (7) impose that if i is the first vertex visited in

route k, than its order in this route is at least 1. Constraint (8)

is a subtour elimination constraint, since if j is visited after

i in route k, then the visit order of j must be larger than the

one of i in this route. Constraint (9), ensures that each pick-

up node (i) must be visited before the corresponding delivery

node (i+ w). Finally we have the integrality constraints (10)

and (11) of the variables in the model.

B. S-MDVRPPD

Now, we define the particular S-MDVRPPD considered in

this work. This problem has one type of uncertainty: stochastic

pickup and delivery points. Each pair {vi, vi+w} ∈ V ′, for

m + 1 ≤ i ≤ m + w, has a probability pi of being

present when traveling along the route. When pickup point

vi is absent, delivery point vi+w is also absent. We consider

the S-MDVRPPD as a two stage stochastic problem. In the

first stage, a set of cycles satisfying constraints (a) - (d) of

the MDVRPPD are computed. The presence or absence of

{vi, vi+w} is revealed at the latest time upon leaving the

preceding vertex of vi. We suppose that the demand of every

delivery point vi+w is the same e.g. one unit. In the second

stage, the first stage routes are followed as planned, with

the following exception: any absent node is skipped. The

S-MDVRPPD consists of designing a first stage solution that

minimizes the expected cost of the second stage solution.

The S-MDVRPPD can be formulated as a stochastic integer

program. We will use the parameters and variables defined in

Table I. Let T (x, ξ) be the cost of second stage solution if

x = (xk
ij) is the first stage solution, and ξ = (ξi) is the vector

of non-negative random variables associated with the vertices

of V ′. The S-MDVRPPD is then formulated as

min
x

Eξ[T (x, ξ)] (12)

subject to equations (2)-(11).

III. THE EXPECTED COST OF AN a priori ROUTE

Given a priori computed route s = (v0, v1, . . . , v2q, v0),
where v0 is a depot, let ls be the cost/length of s. Our goal

is to compute efficiently the expected length E[ls] of route

s, given that during its execution, each pair {vi, vi+w} of

pickup and delivery points in this route have a probability

of occurring during s’s execution. We may also refer to

node vi as ri, and vi+w as ci. Let P (vi) be the probability

that node vi appears in s. Note that we have the following

relationship for a pair of pickup and delivery points ri and ci:
P (ri) = P (ci), P (ci|ri appears) = P (ri|ci appears) = 1, and

P (ci|ri not appear) = P (ri|ci not appear) = 0.

In this theorem we assume that R is the set of pickup

points that appear in s (|R| = q). The pickup points are

numbered in the superscript, in the order they appear in s,

from r1 until rq . Likewise, C is the set of the corresponding

delivery points and are also numbered in the superscript, from

c1 until cq in the order they appear in s. We also use the

following notation. If vi is a pickup point we denote this by

writing r(vi), and its corresponding delivery point as v−i , and

if vi is a delivery node, we denote this by writing c(vi) and

denote its corresponding pickup point as v+i . Finally, given

a subsequence sji = (vi, vi+1, . . . , vj) of s, let R(sji ) denote

the set containing the pickup points that appear in sji , and

also containing the pickup points of the delivery vertices that

appear in sji . Notice that |R(sji )| ≤ j− i+1, and it is strictly

small only when a pickup point appears in sji and its delivery

point also appears. Then we can compute E[ls] as follows.

Theorem 1. Given a priori route s = (v0, v1, . . . , v2q, v0),
then:

E[ls] =

q
∑

i=1

dv0,riP (ri)

i−1
∏

k=1

(1− P (rk))

+

q
∑

i=1

dci,v0
P (ci)

q
∏

k=i+1

(1− P (rk))

+

2q
∑

i=1

2q
∑

j=i+1

f(vi, vj)

(13)

where

f(vi, vj) =















0 , (a) or (b)

dvi,vjP (vi)
∏

v∈R(sj−1

i+1
)(1− P (v)) , (c)

dvi,vjP (vi)P (vj)
∏

v∈R(sj−1

i+1
)(1− P (v)) , (d)

(14)

× vjr(vi)

v−i

(a)

× c(vj)vi

v+j

(b)

v−ir(vi)

(c)

vjvi

(d)

Fig. 2. In (a) vi is a pickup node and vj appears after vi’s corresponding

delivery node v−i . In (b) vi is any vertex, vj is a delivery node and v+j
appears after vi. Both situations, (a) and (b) do not occur, since in (a), if

r(vi) is present in the route then v−i must appear as well, and in (b) if c(vj)

is present then v+j must be present as well, so going from vi directly to vj
skipping vertices in between is not a valid route. In (c) we have the case
where vi is a pickup point and vj is its corresponding delivery point. In (d)
we have all other cases that do not belong to one of the previous cases.
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Proof: In equation (13) we are basically computing the

probability of each edge between vertices in s to appear, in the

execution of s, and multiplying this probability by the edge’s

cost. We have three terms in this equation.

In the first term, we are computing the expected cost of

each possible initial edge of the route, such that if the route

starts with (v0, r
i) then all previous pickup points rk, k =

1, . . . , i − 1 must not be present in the route. In the second

term, we are computing the expected cost of each possible

final edge in the route, similar to the first term.

In the last term we compute the expected cost of each edge

from any pair of vertices in the route. Figure 2 represents all

the possible cases between vertices vi and vj . Since cases (a)

or (b) do not occur in practice the expected cost of an edge

(vi, vj) in any one of these cases is zero. In case (c), the

probability of going directly from r(vi) to vj = v−i is the

probability of request of pickup point vi to occur times the

probability of requests of points in between vi and vj to not

occur. Likewise, in case (d), if vi and vj are not related in any

of the previous cases, then the probability of edge (vi, vj) to

occur, is equal to the probability of vi and vj to occur times

the probability of none of the requests of vertices in between

them to occur.

We can compute the expected cost of an a priori route,

E(ls), with time complexity O(q2), where 2q + 2 is the size

of the route.

IV. ILS-VND

The proposed heuristic (ILS-VND) for the S-MDVRPPD

works as follows. The method is executed MaxIter times.

In each iteration an initial solution is generated by a greedy

algorithm, then this solution is improved using ILS. Internally,

the ILS procedure uses the VND heuristic for performing

the local search and a refinement heuristic for the initial

solution called Random Mix-Shift. The ILS-VND is presented

in Algorithm 1, where s∗ corresponds to the best solution

found during any iteration.

A. Initial solution generation

The method employed for building a feasible initial solution

is based in the work of [18], so it is generated by following

two steps. The first step is called nodes assignment. Each pair

of pickup and delivery is assignment to one of the depots.

After all vertices have been assigned to depots, the second

step, called nodes sequencing, decides the service sequence

of the pickup and delivery nodes. The details of these two

steps are introduced in the following paragraphs.

1) Nodes assignment: This step assigns nodes to the depot

which is closer to them. In the same way as in [18], in order

to make the initial solution more flexible, the assignments of

pickup an delivery nodes to depots are based on a probability.

Suppose that d(Da, ri, ci) indicates the sum of the distances

between pickup point ri and depot Da, and the distance

between the delivery point ci and depot Da. Let d(D, ri, ci)
the average distance between the pair of pickup and delivery

Algorithm 1: ILS-VND

for k := 1, . . . ,MaxIter do

s := GenerateInitialSolution(seed);

s′ := RandomMixShift(s) ;

iterILS := 0;

while iterILS < MaxIterILS do

r = number of neighborhoods ;

s := V ND(N(.), r, s) ;

if f(s) < f(s′) then

s′ := s ;

s := Perturb(s′) ;

iterILS := 0 ;

else

iterILS := iterILS + 1 ;

if f(s′) < f(s∗) then

s∗ := s′ ;

{ri, ci} and all depots. The probability of the set {ri, ci} being

assigned to depot Da, is calculated by Eq. (15).

P (Da, ri, ci) =
max

{

d(D, ri, ci)− d(Da, ri, ci), 0
}

∑|D|
a=1 max

{

d(D, ri, ci)− d(Da, ri, ci), 0
}

(15)

2) Nodes sequencing: Once we have assigned all pickup

and delivery nodes to depots, we sequence the nodes to create

cycles. Let Di be an arbitrary depot, vi a pickup or delivery

point associated with Di and ti a tour containing Di. The

procedure begins by looking for a node vi nearest to the

last node of ti, which initially contains only Di, such that

all constraints of the S-MDVRPPD are satisfied when vi is

appended to ti. Then vi is appended to ti and the procedure

is repeated until all the pickup and delivery nodes are inserted

into ti. The Figure 3 shows an example of sequencing one

depot and four pairs of pickup and delivery points. The

complexity time of this procedure is O(n2).

B. Local Search

The local search is based on the VND heuristic introduced

by Mladenović and Hansen [19]. In the variable neighborhood

descent method a change of neighborhoods is performed

in a deterministic way. The proposed VND is presented in

Algorithm 2.

A set {N1, . . . , N6} of six neighborhood operators were

used by the proposed VND. All operators are exhaustively

executed. These operators are adapted in such a way that

they preserve feasibility. We divide these operators into three

groups: inter-tour, intra-tour and inter&intra-tour operators.

The inter-tour operators are: Shift(1,0) and Swap(1,1). The

intra-tour neighborhood operators are: 2-opt, 3-opt and Re-

verse. Finally, Mix-shift(1,0) is the only operator that is

inter&intra-tour operator. In the case of inter-route operators,

to reduce the computational cost, each vertex removed of a
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(a) (b)

(d)(c)

x x

y

x

y

Fig. 3. Example of nodes sequencing in a route. Gray nodes are pickups
and white nodes deliveries. In (a) distances from the depot to all vertices are
calculated. In (b) node x is added to the route, since it is the closest to the
depot and its addition does not break the constraints of the problem. Then, the
distances from x to all the nodes that are not part of the route are computed.
The node y is the closest to x, and its addition does not break the constraints
of the problem. In (c) node y is added to the route. The process repeats until
all nodes are added to the route. The obtained route is shown in (d).

route can only be inserted before or after one of its p closest

neighbors in the other routes.

The list of neighborhoods considered are:

• Shift(1,0) – N1 – A pickup and delivery pair r, c is

removed from a route t1 and each one is moved to the

best position in route t2 keeping the feasibility of the

solution.

• Swap(1,1) – N2 – An exchange between a pair r1, v1
from a route t1 and another pair r2, v2 from route t2.

Each vertex of the pairs are inserted in the best possible

Algorithm 2: VND

Let r be the number of neighborhoods

structures and s a current solution ;

k := 1; current neighborhood ;

while k ≤ r do

Find the best neighbor s′ of s ∈ Nk ;

if f(s′) < f(s) then

s := s′ ;

k := 1 ;

intensification in the modified

routes ;

s′ := 2− opt(s) ;

s′′ := 3− opt(s′) ;

s′′′ := Reverse(s′′′) ;

if f(s′′′ ≤ f(s) then
s := s′′′

else k := k + 1 ;

position while maintaining the feasibility of the solution.

• Mix-Shift(1,0) – N3 – This operator is similar to the

Shift(1,0) operator with the difference that now it is

allowed a movement within its own route.

• 2-opt – N4 – Two nonadjacent arcs are removed and

other two are added to form a new route. We only

consider movements that do not break the constraints of

the problem.

• 3-opt – N5 – Three nonadjacent arcs are removed and

other two are added to form a new route. We only

consider movements that do not break the constraints of

the problem.

• Reverse – N6 – This operator reverses the direction of

the route. Then swaps are performed between each pair

of pickup and delivery.

In case of improvement of the current solution, the algo-

rithm performs an intensification process on each route. The

objective is to decrease the cost of each route. Therefore, the

neighborhoods N4, N5 and N6 are applied in this order in

the current solution.

Given the versatility of the Mix-Shift(1,0) operator, and

based on the neighborhood structure proposed by Gendreau et.

al. [3], we present the Random Mix-Shift heuristic (Algorithm

3). In this heuristic a randomly selected pickup and delivery

pair {r, c} is removed, r is inserted immediately before or

after one of its p closest neighbors. The vertex c is randomly

inserted into the same route, without breaking the constraints

of the problem. To avoid necessary iterations of Random Mix-

Shift heuristic, we chose to use s′ if it is promising. A solution

s′ is promising if it has the potential to become the new best

solution, specifically, if its cost is at most α% higher than the

cost of the best solution so far, s. We use this heuristic in the

ILS-VND as a refinement mechanism to improve the initial

solution.

C. Perturbation Mechanism

A set P of two perturbation mechanisms were adopted in

the ILS-VND heuristic. Every time the perturb() function is

called one of the following operators is randomly selected and

applied.

Algorithm 3: Random Mix-Shift

for k := 1 . . . ,MaxIterShift do

r, c := SelectRandomPair(r, c) ;

s′ := Mix-Shift(s, r, c) ;

if f(s′) < f(s∗) then

s := s′; s∗ := s′; k := 1 ;

else

if f(s′) < αf(s∗) then

s := s′ ;

else
s := s∗;
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Double-Swap – P 1 – Two Swap(1,1) operators are per-

formed in sequence.

Depot Exchange – P 2 – The depot exchange operator select

two depots at random, and exchange their routes.

V. TABU SEARCH

We present an adaptation of the TABUSTOCH heuristic

proposed by Gendreau et. at. [3] that was originally designed

to the Vehicle Routing Problem (VRP) with stochastic de-

mands. The algorithm solves a two stage stochastic VRP,

where in the first stage a feasible solution is constructed

including all vertices (clients). In the second stage recourse

actions maybe taken, since the real demands of costumers

are realized, capacity constraints may become violated. In

traversing a route, once a vehicle becomes full it returns to the

depot and resumes the route in the next client to be visited.

All the parameters in the adapted algorithm, are the same

used in the original TABUSTOCH. We will only present the

modifications made to TABUSTOCH in order to deal with

the S-MDVRPPD. Let xk be a solution in the first stage in

iteration k of the algorithm. Let T (xk) be the expected value

in the second stage. Let T (xk) =
∑mk

i=1 T
i(xk), where mk is

the number of routes at iteration k.

The initial solution is built by assigning to each depot the

closest candidate pair of pickup and delivery. A pair of pickup

and delivery is a candidate if it has not been assigned to

some depot. The selected pickup and delivery pair is appended

to the solution (first pickup and then delivery). The initial

solution is always feasible. The neighbourhood structure used

by TABUSTOCH is the Mix-shift(1,0) operator presented in

section IV-B. Thus, there is the possibility of inserting pairs

of pickup and delivery in different cycles.

We consider the movement of nodes in a solution as

elements of the tabu list. There are two ways to move a vertex:

1) change the position of the vertex in the same tour and 2)

move the vertex (and its corresponding pair) to another tour.

Either of these two movements is tabu for θ iterations, where θ
is randomly selected from the interval [|V |−5, |V |]. The search

of solutions in each iteration considers the current solution

xk and the best non-tabu solution xk+1 in the neighborhood

structure Mix-Shift(1,0). However, a tabu solution can be

selected if it improves the best solution T ∗ (aspiration criteria).

Note that computing the expected value of a solution is

expensive. Moving a pickup and delivery pair not only affects

the cost related to their immediate neighbors, but also affects

the cost of each node in the tour. Notice also that the movement

affects the costs of both previous and new tours where they

where inserted.

Suppose we wish to insert a pair of pickup and delivery

{x+, x−} into a route. Figures (4a) and (4b) represents the

possible positions of {x+, x−} in a route before removing

them while Figures (4c) and (4d) represents all possible

positions of x+ and x− after their insertion into the new

route. Dotted arrows represent arcs before insertion. Red

lines represent subtours and black arrows arcs. We denote

the approximations of the effect of inserting a pickup and

delivery in a route with Ai and Āi. Ai refers to the insertion

of {x+, x−} as shown in the Figure (4c). Āi refers to the

insertion of {x+, x−} as shown in Figure (4d). Note that the

approximations of the effect of removing a pickup and delivery

in a route can be represented with −Ai and −Āi.

We use three easy-computational approximations of inser-

tion cost to speed up the search process. The first approxima-

tion, given by equations (16) and (17), completely detach the

stochastic nature of the problem. The second approximation,

given by equations (18) and (19), partially remediate the first

approximation, but these equations give all the weight for

e, f, g, h and x−. Taking into account Pe, Pf , Pg, Ph and Px− ,

the third approximation, given by equations (20) and (21),

seeks to remedy the second approximation. The problem with

this last approximation happens when Pe, Pf , Pg, Ph are small

and Px+ (and so Px− ) is large.

Tests conducted on 600 randomly generated instances in-

volving between 10 and 100 vertices indicates that the third

approximation yields the best correlation with the true cost

increase (r = 0.89).

A1(e, f, g, h, x
+, x−) = dex+ + dx+f + dgx− + dx−h

− def − dgh
(16)

Ā1(e, f, x
+, x−) = dex+ + dx+x− + dx−f − def (17)

A2(e, f, g, h, x
+, x−) = (dex+ + dx+f + dgx− + dx−h

− def − dgh)Px+

(18)

Ā2(e, f, x
+, x−) = (dex+ + dx+x− + dx−f − def )Px+ (19)

A3(e, f, g, h, x
+, x−) = dex+PePf + dx+fPx+Pf

+ dgx−PgPx− + dx−hPx−Ph

− defPePf − dghPgPh

(20)

b

x−

x+

a

(a)

d

x−

cb

x+

a

(b)

h

x−

gf

x+

e

(c)

f

x−x+

e

(d)

Fig. 4. Example of movements of nodes x+ and x−. Cases (a) and (b)
represent different situations of nodes x+ and x− in a route, before the
movement. Cases (c) and (d) represent possible insertion of x+ and x− in a
route, after the movement.
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Ā3(e, f, x
+, x−) = dex+PePx+ + dx+x−Px+Px−

+ dx−fPx−Pf − defPePf

(21)

We have the necessary terms to approximate the cost of a

movement. The expressions (22)-(25) are used to evaluate the

movement cost of x+ and x−. We will use the cases shown in

Figure 3. If the movement of x+ and x− happens in the order:

from case (4a) to case (4c) we use the equation (22); from

case (4a) to case (4d) we use equation (23); from case (4b) to

case (4c) we use (24); and, from case (4b) to case (4d) we

use (25).

∆1 = A3(e, f, g, h, x
+, x−)− Ā3(a, b, x

+, x−) (22)

∆̄1 = Ā3(e, f, x
+, x−)− Ā3(a, b, x

+, x−) (23)

∆2 = A3(e, f, g, h, x
+, x−)−A3(a, b, c, d, x

+, x−) (24)

∆̄2 = Ā3(e, f, x
+, x−)−A3(a, b, c, d, x

+, x−) (25)

VI. COMPUTATIONAL EXPERIMENTS

We conducted experiments using a data set derived from

six TSPLIB instances (ulysses16, bayg29, dantzig42, eil51,

st70 and st76). For each of these instances, n vertices in the

interval of [2, 10] were randomly selected to be depots. A

random matching was performed among the other vertices to

create pickup and delivery pairs. The probability of presence

of each pickup and delivery pair was chosen uniformly in the

interval [0, 1]. We generate 30 test instances.

The algorithms described above were coded in C++ and

all experiments were run on a Linux operating system with

3 GB memory and Intel Core i5 2.54x4 Ghz processor.

Computational times reported here are in CPU seconds on this

machine. To evaluate our ILS-VND heuristic we compare it

with an adaptation of TABUSTOCH algorithm. Ten indepen-

dent runs of the algorithms were performed for each test case.

The number of iterations (MaxIter) and perturbation allowed

(MaxIterILS), was 10 and 15 respectively. The parameters α,

MaxIterShift and p were fixed to 1.05, 100 and 5, respec-

tively. They were calibrated empirically after preliminary tests

with different values.

Table II shows the results obtained by the ILS-VNS and the

TABUSTOCH heuristics. The best solutions are in boldface.

The columns related with the instances show: the instance

name, Name, the number of vertices in the graph, |V |, and

the number of depots |D|. Columns Avg. and Best show the

average and the best solution costs found by the algorithms in

their ten independent executions, respectively. Column Time

presents the average processing time, in seconds, spend by

each algorithm. The ILS-VND presented the best results for

all instances.

Table III shows the percentage improvement of the best and

average solutions obtained by the ILS-VND, against the TA-

BUSTOCH. Negative values mean that ILS-VND was better

than the TABUSTOCH. The formula ILS-VND−TABUSTOCH
ILS-VND

was

used to generate the values presented in Table III. The results

show that the ILS-VND was superior to the TABUSTOCH for

all instances tested.

TABLE II
RESULTS OF THE ILS-VND AND TABUSTOCH TO SOLVE 30 INSTANCES OF THE S-MDVRPPD. BOTH HEURISTICS WERE EXECUTED 10 TIMES FOR

EACH INSTANCE, AND AVG. COST AND TIME ARE THE AVERAGE SOLUTION COST AND AVERAGE TIME OVER THESE 10 EXECUTIONS.

Instance ILS-VND TS

Name |V | |D| Best Cost Avg. Cost Time (s) Best Cost Avg. Cost Time (s)

ulysses16a 16 2 66,44 67,41 0,91 69,96 71,14 0,46
ulysses16b 16 2 30,68 30,69 0,72 31,94 31,94 0,41
ulysses16c 16 2 44,92 44,92 0,70 45,26 45,93 0,66
ulysses16d 16 4 57,59 57,59 0,26 65,05 65,55 0,53
ulysses16e 16 4 53,21 53,21 0,27 81,09 81,09 0,60
bayg29a 29 3 7082,80 7247,16 6,30 8010,40 9348,96 11,37
bayg29b 29 9 11890,90 11990,20 0,46 15745,10 15745,10 8,50
bayg29c 29 9 10631,60 10660,90 0,61 13856,80 13856,80 7,43
bayg29d 29 3 7121,43 7219,10 8,34 7705,80 8449,30 10,00
bayg29e 29 5 8078,92 8116,32 4,37 10800,10 11700,60 11,27
dantzig42a 42 8 676,93 696,76 5,11 985,70 1009,46 28,37
dantzig42b 42 4 542,06 557,25 28,43 676,76 723,88 69,13
dantzig42c 42 10 714,80 730,77 2,00 1130,56 1130,56 35,98
dantzig42d 42 2 599,89 628,23 55,22 617,35 696,75 41,13
dantzig42e 42 10 671,76 680,96 3,41 1244,39 1334,65 45,51
eil51a 51 3 351,98 369,15 90,39 418,03 447,26 122,13
eil51b 51 7 368,78 384,45 24,70 537,55 586,47 66,46
eil51c 51 9 340,74 354,02 11,94 579,64 596,45 45,63
eil51d 51 7 323,60 329,68 39,62 493,12 535,91 107,50
eil51e 51 5 339,41 344,22 22,97 409,80 484,96 93,16
st70a 70 4 621,25 690,76 224,80 810,95 875,85 408,45
st70b 70 6 728,87 760,81 88,89 871,67 945,15 765,90
st70c 70 8 680,43 710,06 115,43 1078,96 1249,14 459,02
st70d 70 8 620,63 669,17 87,50 1012,48 1071,10 398,99
st70e 70 6 575,27 616,96 200,63 960,09 1048,68 483,40
eil76a 76 6 556,89 599,37 171,47 703,79 790,67 480,91
eil76b 76 2 464,73 486,68 606,41 491,96 530,28 352,76
eil76c 76 4 513,01 564,59 309,40 559,31 636,99 381,38
eil76d 76 6 522,01 557,11 236,04 694,46 806,43 582,45
eil76e 76 6 490,29 534,55 176,54 642,77 723,63 404,50
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TABLE III
PERCENTAGE DECREASE IN SOLUTIONS COST OBTAINED BY ILS-VND COMPARED TO TABUSTOCH.

ILS-VND ILS-VND

Instance Best (%) Avg. (%) Instance Best (%) Avg. (%)

ulysses16a -5,30 -5,25 eil51a -18,76 -21,16
ulysses16b -4,12 -3,92 eil51b -45,77 -52,55
ulysses16c -0,76 -2,20 eil51c -70,11 -68,48
ulysses16d -12,96 -12,14 eil51d -52,39 -62,56
ulysses16e -52,39 -34,38 eil51e -20,74 -40,88
bayg29a -13,10 -22,48 st70a -30,53 -26,79
bayg29b -32,41 -23,85 st70b -19,59 -24,23
bayg29c -30,34 -23,06 st70c -58,57 -75,92
bayg29d -8,21 -14,56 st70d -63,14 -60,06
bayg29e -33,68 -30,63 st70e -66,89 -69,98
dantzig42a -45,61 -30,98 eil76a -26,38 -31,92
dantzig42b -24,85 -23,02 eil76b -5,86 -8,96
dantzig42c -58,17 -35,36 eil76c -9,02 -12,82
dantzig42d -2,91 -9,83 eil76d -33,04 -44,75
dantzig42e -85,24 -48,98 eil76e -31,10 -35,37

VII. CONCLUSION

This article described a new and practical SVRP involving

multiple depots, and pickup and delivery (S-MDVRPPD).

Contrary to the deterministic case, it is not easy to compute

the objective function associated with a solution [20]. We

presented a closed-form expression to compute the expected

length of an a priori sequence under general probabilistic as-

sumptions. In order to dealt with S-MDVRPPD, an algorithm

based on the Iterated Local Search metaheuristic, which uses

a VND heuristic as local search procedure was proposed. We

use six local search operators, Shift(1,0), Swap(1,1), 2-opt, 3-

opt, Reverse, and Mix-Shift. Also, we use two perturbation

mechanisms, Double-Swap and Depot-exchange. We propose

a heuristic based on Mix-shift operator to refine the initial

solution of the ILS-VND. The ILS-VND was compare with a

tabu search algorithm (TABUSTOCH). We report the results

for 30 instances. The results show that the ILS-VND was

superior to the TABUSTOCH for all instances tested. Our

approach can be used as benchmark for future research in this

area. The S-MDVRPPD can be further generalized to handle

more practical constraints, e.g., limited capacity vehicles, time

windows and stochastic demands.
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