
A Reactive Search-Based Algorithm for Scheduling Multiprocessor

Tasks on Two Dedicated Processors

Méziane Aïder

LaROMaD, USTHB

BP 32 El Alia, 16111 Alger, Algérie

Email: m-aider@usthb.dz

Fatma Zohra Baatout

LaROMaD, USTHB

BP 32 El Alia, 16111 Alger, Algérie

Email: fbaatout@usthb.dz

Mhand Hifi⋆

EPROAD, UPJV

7, rue du Moulin Neuf, 80000 Amiens, France

Email: hifi@u-picardie.fr

Abstract—In this paper, we propose a reactive search-based
algorithm for solving the problem of scheduling multiprocessor
tasks on two dedicated processors. An instance of the problem is
characterized by a set of tasks divided into three subsets and
two processors, where some tasks can be executed either on
one processor or two processors. The goal of the problem is to
determine the scheduling of all tasks minimizing the execution
of the last assigned task. The proposed reactive search starts
with a starting greedy solution. Next, a series of local operators
combined with a tabu list are introduced in order to intensify
the search process. The method is also reinforced with a drop
and rebuild operator that is applied for diversifying the search
process. Finally, the performance of the proposed method is
evaluated on a set of benchmark instances, where its provided
results are compared to those achieved by a recent method
available in the literature. Encouraging results have been reached.

I. INTRODUCTION

T
HE problem of Scheduling multiprocessor Tasks on Two

dedicated Processors (noted ST2P) is an NP-hard com-

binatorial optimization problem (cf. Hoogeveen et al. [8]),

where its aims is to assign available tasks to two different

processors. Generally, for the scheduling problems, the mea-

sures of performance are often categorized into three main

groups: criteria based on completion time, criteria based on

due dates, and those based on inventory cost and use. The

studied problem is a special case of the scheduling problems

family, where the set of tasks is divided into three groups,

where the first group contains the tasks that need to be

performed on the first processor, the second group contains

those executed on the second processor while the third group

contains the tasks that must be performed simultaneously on

both processors. For such problem, on the one hand, several

objective functions can be considered, like (i) minimizing the

makespan, (ii) to minimize the summation of the delays of all

tasks, (iii) to minimize both delays and makespan, etc. On the

other hand, several versions of the scheduling problem can be

accessed (i) on the number of available processors, (ii) how

tasks are assigned on certain processors, etc.

Herein, we study the multiprocessor tasks scheduling on

two dedicated processors problem. Its goal is to minimize the

completion time of the last assigned/executed task (makespan).

Such a version of the problem can be encountered in several

real-world applications, like production and data transfer (cf.

Manaa and Chu [10]). An instance of ST2P problem may be

⋆Corresponding Author (M. Hifi)

defined as follows: let N denote the set containing n tasks

to scheduling on two dedicated processors (namely P1 and

P2) such that a task j is released at time rj and has to

be processed without preemption during its processing time

pj and Cj is the completion time of the j-th task while

Cmax denotes the makespan of the schedule to minimize. As

described in Graham et al. [5], such a problem is defined as

P2|fixj , rj |Cmax, where:

• P2: represents two processors on which all tasks must be

executed.

• fixj : means that task j is affected to both processors.

• rj : denotes the release date of the j-th task.

• pj : is the processing time of the j-th task when executed

on the processors.

• Cmax: denotes the makespan (completion time) of the

last assigned / executed task.

The remainder of the paper is organized as follows. Sec-

tion II reviews some related works tackling scheduling prob-

lems. A nice decomposition of ST2P, proposed by Manaa

and Chu [10], providing a tight lower bound is given in

Section III. Section IV describes the proposed reactive search-

based algorithm for approximately solving ST2P. A start-

ing solution, using a knapsack greedy rule, is described in

Section IV-A. The intensification operators, combined with a

tabu list, are discussed in Section IV-B. The diversification

strategy, using the drop and rebuild operator, is discussed in

Section IV-C. Section V exposes the experimental part, where

the performance of the proposed method is evaluated on a set

of benchmark instances. The provided results are compared to

those achieved by a recent algorithm of the literature and to

the results achieved by Manaa and Chu’s lower bound. Finally,

Section VI summarizes the content of the paper.

II. RELATED WORKS

The scheduling problems family contains a huge number

of problem types as underlined in Brucker [3]. Generally,

the performance measures for scheduling problems are often

categorized into three main groups of criteria: those based on

completion time, those based on due dates, and those based

on inventory cost and utilization. Due to the complexity of the

studied problem, there are few available papers tackling it in

the literature.

Bianco et al. [1] tackled the problem of scheduling tasks on

two dedicated processors with preemptive constraints (noted

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 257–261

DOI: 10.15439/2020F134

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 257

P2|fixj , rj , pmtn|Cmax), where the task can be interrupted

and completed later. An exact algorithm has been designed

that is based on two steps polynomial time complexity.

Manaa and Chu [10] proposed an exact algorithm for

solving the problem studied in this paper. The method is based

upon a branch and bound where the internal nodes are bounded

with special lower and upper bounds. The experimental part

showed the performance of such a method, where it was able

to solve instances up to thirty tasks within fifty minutes.

Kacem and Dammak [9] tailored an effective genetic al-

gorithm for approximately solving the same problem. The

principle of the algorithm is based upon the classical genetic

principle reinforced with a constructive procedure able to

provide feasible solutions for the problem. The resulting algo-

rithm was evaluated on random instances generated following

Manaa and Chu’s [10] generator and the experimental evidence

showed that the method was able to achieve bounds closest to

those provided by Manaa and Chu’s [10] tight lower bounds.

Thesen [11] designed a tabu search for tackling general

multiprocessor scheduling problems. The method combines

tabu strategy and local search operator. Several strategies have

been considered, like random blocking related to the size of

the tabu list, frequency-based penalties for diversifying the

search, and the hashing operator for stocking high solutions.

The experimental part showed that some combinations have

better behavior than others.

Blazewicz et al. [2] tackled the problem of scheduling

multiprocessor tasks on three dedicated processors. The au-

thors studied the complexity analysis, where different cases

were considered for which they proposed optimal solutions in

polynomial time complexity.

Buffet et al. [4] developed two tabu search for solving the

scheduling problem with m processors. A standard tabu search

was followed, where a starting solution is built by respecting a

legal schedule, the intensification strategy that checks possible

permutations between tasks, the diversification strategy using

a local search for exploring unvisited subspaces.

III. A LOWER BOUND FOR ST2P

Manaa and Chu [10] proposed a nice lower bound for

ST2P that is based on relaxing the original problem into two

subproblems to solve. They also proved that bound provides

an optimal solution for the preemptive case of the problem,

i.e., P2|fixj , rj , pmtn|Cmax. The calculation of such a bound

is explained in what follows.

Let N = {1, . . . , n} be the set of tasks and P1 and P2 two

processors such that a task j is released at time rj and has

to be processed without preemption during its processing time

pj and Cj is the completion time of the j-th task while Cmax

denotes the makespan of the schedule to minimize. A task

j ∈ N is called a P1 − task (resp. P2 − task) if it is affected

to the processor P1 (resp. P2) while it is called P12 − task

whenever the j-th task requires simultaneously both processors

P1 and P2; that is a bi-processor task. Then, the lower bound

can be computed by splitting ST2P into two subproblems,

where all bi-processor tasks are divided into two sets of mono-

processor tasks each. In this case, the first (resp. second)

set, noted P 1
12 − Tasks (resp. P 2

12 − Tasks) are separately

scheduled on each processor. Thus,

• P1 − Tasks and P 1
12 − Tasks should be scheduled on

processor P1.

• P2 − Tasks and P 2
12 − Tasks should be scheduled on

processor P2.

Finally, the optimal solution for each subproblem can be

provided by processing tasks in nondecreasing order of their

release dates rj on each processor. Positioning step by step the

tasks affected to each processor induces an optimal solution

for each subproblem, an optimal solution C
opt
1 for the first

subproblem with processor P1 and C
opt
2 for the second one

with processor P2. Hence, ST2P’s lower bound corresponds

to

max(Copt
1 , C

opt
2).

Note that the solution procedure used for computing the

aforementioned bound is a polynomial-time algorithm with an

order time complexity of O(n log n).

IV. A REACTIVE SEARCH FOR ST2P

In this section, we expose the cooperative method for

scheduling tasks on two dedicated processors problem. The

main principle of the reactive search can be summarized as

follows:

1) Starting the search process by an initial solution using

a basic knapsack’s greedy procedure (cf. Section IV-A).

2) Building an improved solution using a series of permu-

tations (cf. Section IV-B).

3) Perturbing the search process and re-constructing a new

current solution with a basic greedy procedure according

to the new order (cf. Section IV-C).

4) Steps (1)-(3) are repeated until a satisfactory solution is

reached.

A. A Constructive Procedure

Generating a solution is equivalent to generate a sequence

of positions of the tasks on the processors. Herein, the starting

solution can be provided by using a standard scheduling’s

greedy procedure that can be adapted for ST2P. The procedure

can be viewed as a Constructive Procedure (noted CP) that

applies two main steps: (i) reordering the objects (tasks)

according to given criteria and (ii) selecting step by step a non-

affected item (task) and assigning it to a knapsack (processor).

The second step is repeated until positioning all the items

(tasks) on their corresponding knapsack (processor).

Indeed, let rj be the release date of the j-th task and pj its

processing time. Then,

1) Compute all ratios representing the processing time per

release date, i.e.,
pj

rj
, j ∈ N .

2) Reorder all ratios in non-increasing order; that is p1

r1
≥

. . . ≥
pj

rj
≥ . . . ≥ pn

rn
.

Finally, by applying the principle of the greedy knapsack

procedure to each task, according to the aforementioned order,

258 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

a starting solution is provided for ST2P; that forms a sequence

of tasks assigned to either the first processor, or the second

processor, or both processors.

B. Intensification Search

Determining an improved solution (with a new sequence)

is equivalent to solve a reduced problem by fixing some

tasks. Making some moves between tasks is equivalent to fix

some of them and to reassign the rest of the tasks on their

corresponding processors(s).

1) A 2-opt Operator: A 2-opt operator is a simple local

search/improvement procedure, which is even based upon

simple local modifications of the current solution. Given a

(current) feasible solution, the operator repeatedly makes some

moves/swaps/shakes as long as the quality of the induced

solution is improved. Whenever the improvement stagnates

around the same objective value, we say that the 2-opt operator

reaches its limits; that is a situation where the method is

trapped into a local optimum. Herein, the 2-opt operator

consists of swapping two randomly chosen positions of the

sequence. The series related to these swaps induces the current

neighborhood around the solution at hand.

Fig. 1. The 2-opt operator

Figure 1 illustrates the swapping operator used at each step

of the intensification search. One can observe that making

a simple swapping between two tasks may provide either a

feasible solution or (i) an unfeasible one. In the case of the

unfeasible solution, we propose a repairing operator, which

can be viewed as a two-step procedure. Let i and j denote the

two positioned tasks (after a swap), such that i is positioned

before j. Then the following two-steps procedure is applied

to the provided configuration.

The first-step. The first step of the repairing operator can

be applied as follows: (i) According to the position of the i-th

task, move all tasks from the left to the right till removing

all overlapping; (ii) According to the position of the j-th task

(with its new position), move all tasks from the left to the

right till removing all overlapping.

The second-step. Observe that swapping two tasks induces

a new sequence and so, a simple knapsack greedy procedure

CP can be applied to that order.

Hence, by applying both steps for the current solution, a series

of solutions are built; that are the solutions forming the current

2-opt neighborhood.

2) A 3-opt Operator: In this section, we propose a local

search based upon the 3-opt operator. As observed above

(Section IV-B1), a current solution may be locally improved

by using a simple 2-opt operator that is based on small moves.

Herein, we propose to introduce a neighbor operator with

higher freedom, which can mix two consecutive solutions

around the current solution.

The idea is to repeat a series of small moves around the

current solution. After some iterations, apply another search

operator with higher moves and continue searching with small

moves. Such a search is repeated until satisfying a predefined

stopping criteria. One step of the higher move-based operator

can be described as follows (let S be the current solution):

(i) Select two random tasks from S, permute both tasks for

forming a new configuration S′; (ii) Select two random tasks

from S′ (different from the already swapped tasks), permute

both tasks for forming a new configuration S′′; (iii) Call the

2-opt operator on S′′ for providing the best solution (noted

S′) around the solution at hand S.

Fig. 2. The 3-opt operator

Figure 2 illustrates the steps used when applying the 3-opt

operator that is applied to the current feasible solution.

3) Using a Tabu List: Generally, both 2-opt and 3-opt

operators try to build a series of solutions belonging to a series

of subspaces. Because a new solution built can be provided by

exchanging the positions of two tasks, one can observe that

repeating the same process may lead toward the same local

optimum and so, the method can be trapped into that optimum.

Among the techniques that can be introduced to avoid cycling

towards the same solutions, the tabu search remains one of the

simplest strategies that can be introduced whenever the studied

problem belongs to the combinatorial optimization problems

family. Because the method uses swaps between tasks, it is

interesting to reinforce the search process by adding a tabu

list. It contains a list of temporarily inverse-moves that avoids

returning to the solutions already visited.

C. Diversification Search

The intensification strategy tries to find a series of feasible

solutions to the problem, which are often considered as

local optima. The objective of the building procedure is to

provide a series of neighborhoods, issuing from the solution

at hand, which might contain better solutions. Despite some

improvements that can be realized, and because of the number

of achievable solutions with the same objective value, it is

interesting to provide a manner capable to drive the search

process through other unvisited subspaces.

Herein, we propose a diversification search that consists of

removing a subset of tasks from the current sequence (i.e.

a feasible solution of the problem). The removing strategy

tries to diversify the search process by degrading the quality

of the solution at hand with the aim of avoiding stagnating

in a local optimum. Then, a partial solution is obtained and

it is completed using the constructive procedure as a tool for

refining the quality of the partial solution, according to the new

MHAND HIFI ET AL.: A REACTIVE SEARCH-BASED ALGORITHM FOR SCHEDULING MULTIPROCESSOR TASKS ON TWO DEDICATED PROCESSORS 259

order associated with the remaining tasks. Such a strategy was

already used with success for solving variants of the knapsack

type problems (cf., Hifi [6] and Hifi and Michrafy [7]).

Herein, the diversification strategy can be applied by using

the Drop and Rebuild Operator (DRO) that is described as

follows. According to the current solution S, DRO tries to

reduce the problem, by randomly fixing a subset of tasks of S,

as follows. Step 1: From the solution S, drop β% of the tasks

belonging to that sequence; Step 2: Solve the reduced instance

by calling the constructive procedure CP (cf., Section IV-A)

and Step 3: Complete the current solution by calling CP, with

the already removed tasks.

Algorithm 1 A Reactive Search-Based Algorithm (RSBA)
Input. An instance of SP2P.

Output. A feasible solution S⋆ with its objective value C⋆
max.

1: Set S⋆ = ∅ and C⋆
max = +∞.

2: Call CP for solving the original problem providing the solution S with objective

value Cmax.

3: repeat

4: while (the stopping criterion is not performed) do

5: if (Cmax < C⋆
max) then

6: set S⋆ = S and C⋆
max = Cmax.

7: end if

8: while (2-opt local iterations is not matched) do

9: Call 2-opt using S’s neighborhood and let S′ be the neighbor solution

with the best objective value C′

max.

10: if (C′

max < C⋆
max) then

11: set S⋆ = S and C⋆
max = C′

max.

12: end if

13: Update the local iterations and set S = S′.

14: end while

15: (i) Call 3-opt using S’s neighborhood and let S′ be the neighbor solution with

the best objective value C′

max.

(ii) Set S = S and Cmax = C′

max.

16: end while

17: (i) Apply DRO to the best current solution S⋆ and let S be the solution reached.

(ii) Reinitialize the 2-opt local iterations.

18: until (the global criterion is performed).

19: return S⋆ with its objective value C⋆
max.

D. An Overview of the Reactive Search

Algorithm 1 describes the main steps of the Reactive

Search-Based Algorithm (denoted RSBA). The input of RSBA

is an instance of SP2P and its output is an (near)optimal

solution S⋆ with its objective value C⋆
max. The algorithm

begins by generating a starting solution (line 2) provided by

calling the constructive procedure CP. RSBA is composed

of three loops, a global loop, and two internal loops. The

global loop repeat from line 3 to line 18 that is applied for

generating a series of current solutions, which are enhanced

by using both intensification and diversification phases. Its

stopping condition is defined according to the number of

iterations based on the size of the instance. The first internal

loop repeat from line 8 to line 14 serves to intensify the

search by using the 2-opt operator while the second internal

loop (from line 4 to line 16) is used for calling the 3-opt

operator. The diversification procedure is considered whenever

both internal loops stagnate on a local optimum (points (i)

and (ii) of line 17). Both internal loops are embedded into the

global loop repeat which serves to repeat the enhancement

and the scattering on a new solution generated by the drop

and rebuild operator DBO. The global loop is iterated until

either the runtime limit or the number of global iterations

is performed. Finally (line 19), RSBA returns S⋆, the best

solution found so far with its objective value C⋆
max.

V. COMPUTATIONAL RESULTS

The solution method proposed in this study, the Reactive

Search-Based Algorithm (noted RSBA), is evaluated on two

sets instances, where each set is composed of five groups such

that each group is related to the type of instances considered

(as suggested in Manaa and Chu [10]). The proposed method

was coded in C++ language and run on an Intel Pentium Core

i7-8550U 1.99 GHz and 16 Gb of RAM. In order to evaluate

the behavior of the proposed RSBA, we also compared its

provided results to those achieved by both the Genetic Algo-

rithm (noted GA) proposed in Kacem and Dammak [9](1) and

the tight Lower Bound (noted LB) proposed in Manaa and

Chu [10] (as used in Kacem and Dammak [9]).

TABLE I
CHARACTERISTICS OF THE INSTANCES

Type of task T1 T2 T3 T4 T5

n1 n n n n [n/2]

n2 [n/2] n [n/2] n [n/2]

n12 [n/2] [n/2] n n n

TABLE II
PERFORMANCE OF BOTH RSBA AND GA ON INSTANCES OF SET 1:

SMALL AND MEDIUM INSTANCES

Tasks GA RSBA

n = 10 LB UB Av. UB TGA UB Av. UB TR
T1 α = 0.5 400.90 441.30 467.80 0.068 407.20 407.20 0.2064

α = 1 478.70 540.90 575.50 0.0654 496.40 496.40 0.1961

α = 1.5 789.30 845.50 907.20 0.0734 797.90 797.90 0.225

T2 α = 0.5 402.40 519.10 556.00 0.0935 476.60 476.60 0.2606

α = 1 651.00 738.10 810.30 0.1025 648.80 648.80 0.1975

α = 1.5 914.80 1002.70 1067.20 0.0929 925.90 925.90 0.1824

T3 α = 0.5 494.90 594.70 640.20 0.1042 528.50 528.50 0.1924

α = 1 664.00 841.30 895.20 0.0943 696.60 696.60 0.2354

α = 1.5 924.80 1062.80 1125.40 0.079 936.10 936.10 0.1512

T4 α = 0.5 547.60 690.90 751.30 0.1175 582.10 582.10 0.1808

α = 1 732.20 959.10 1025.80 0.1149 781.70 781.70 0.2287

α = 1.5 674.50 767.10 811.60 0.0931 681.20 681.20 0.232295

T5 α = 0.5 373.00 444.80 475.30 0.0727 397.00 397.00 0.2149

α = 1 545.00 655.40 709.40 0.0627 560.80 560.80 0.1938

α = 1.5 595.50 667.70 712.30 0.061 601.60 601.60 0.1736

Average 612.57 718.09 768.70 0.086 634.56 634.56 0.205

n = 20 LB UB Av. UB TGA UB Av. UB TRSBA
T1 α = 0.5 354.50 405.80 427.70 0.16234 353.20 353.20 0.280971

α = 1 411.60 523.40 567.10 0.164691 418.40 418.50 0.191233

α = 1.5 536.30 656.10 691.30 0.163243 554.10 554.30 0.196438

T2 α = 0.5 318.60 466.00 491.50 0.258109 387.10 387.10 0.232317

α = 1 471.10 630.60 666.40 0.256941 491.00 491.30 0.226608

α = 1.5 703.50 838.40 882.30 0.259082 708.90 708.90 0.234278

T3 α = 0.5 392.80 519.90 541.50 0.245839 396.00 396.00 0.218839

α = 1 491.80 690.50 722.40 0.246592 507.10 507.80 0.219218

α = 1.5 670.70 842.50 884.50 0.245212 680.20 680.60 0.224639

T4 α = 0.5 443.40 611.40 640.00 0.356819 504.90 504.90 0.263979

α = 1 568.50 810.20 853.50 0.357753 596.00 597.00 0.252089

α = 1.5 843.30 1059.20 1107.30 0.357673 854.20 854.20 0.265056

T5 α = 0.5 287.10 391.30 413.10 0.156887 319.20 319.20 0.187833

α = 1 395.10 549.30 582.50 0.163567 422.60 422.60 0.182792

α = 1.5 643.00 755.80 793.60 0.158044 651.00 651.00 0.1956

Average 502.09 650.03 684.31 0.237 522.93 523.11 0.225

The generator suggested by Manaa and Chu [10] considered

five types of instances, related to the number of tasks n to use

and those affected to both P1 and P2 and the bi-processor tasks

affected to both P1 and P2 simultaneously: (i) the number of

tasks n = 10 for small instances, n = 20 for medium-sized

ones and n = 100 for large-scale ones, where thirty instances

are considered for each value, (ii) the number n1 (resp. n2 and

n12) denotes the number of tasks assigned to the processor

1The code was provided by the first author for generating and testing the
behavior of all methods on the same instances.

260 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

P1 (resp. P2 and P12) and generated according to the values

illustrated in Table I, where [x] denotes the integral value of

x, (iii) the processing time pj related to the duration of the

j-th task is randomly generated in {1, . . . , 50} and (iv) the

release date rj of task j, is randomly generated in the interval

{1, . . . , k}, where k is setting equal to α× (s12+(s1+s2)
2 such

that α ∈ {0.5; 1; 1.5} (the density of the instance) and s1
(resp. s2 and s12) denotes the total duration related of the

tasks belonging to P1 (resp. P2 and P12).

TABLE III
PERFORMANCE OF BOTH RSBA AND GA ON INSTANCES OF SET 2:

n = 100 (LARGE-SCALE INSTANCES)
Tasks GA RSBA

n=100 LB UB Av. UB TGA UB Av. UB TR
T1 α = 0.5 3708.6 5 649.8 5 839,7 4.035 3742.4 3 748.4 1.161

α = 1 4 885.8 7 711.7 7 935.4 4.014 5 167.3 5 261.3 1.136

α = 1.5 7 465.6 10 260.1 10 537.2 4.053 7 508.4 7 595.9 1.172

T2 α = 0.5 3 793.1 6 753.6 6 940.8 6.502 4 875.8 4 877.1 1.532

α = 1 6 113.9 9 581.9 9 770.8 6.488 6 463.1 6 609.1 1.452

α = 1.5 9 374.6 12 641.5 12 958.6 6.485 9 518.9 9 621.8 1.453

T3 α = 0.5 4 931.6 7 617.0 7 805.9 6.440 5 012.1 5 026.5 1.421

α = 1 6 181.4 10 312.3 10 570.1 6.410 6 790.5 6 896.2 1.399

α = 1.5 9 019.7 12 908.8 13 181.3 6.422 9 134.5 9 285.4 1.410

T4 α = 0.5 4 981.6 8 821.4 9 032.2 10.245 6 073.3 6 079.3 1.877

α = 1 7 270.7 12 010.3 12 265.5 9.580 8 098.7 8 214.4 1.727

α = 1.5 10 918.8 15 372.1 15 769.1 9.658 11 120.4 11 259.6 1.739

T5 α = 0.5 3 855.9 6 204.3 6 394.1 3.974 4 383.8 4 386.2 1.141

α = 1 4 951.8 8 257.7 8 476.0 3.960 5 383.8 5 468.5 1.084

α = 1.5 7 378.2 10 436.4 10 748.6 3.973 7 408.7 7 473.1 1.122

Average 6 322.1 9 635.9 9 881.7 6.15 6 712.11 6 786.85 1.388

A. Behavior of RSBA vs GA on small and medium instances
First, in order to evaluate the performance of the proposed

method RSBA, we compare its provided results to those of

GA and to the lower bound LB of Manaa and Chu [10].

Table II shows LB, Kacem and Dammak’s algorithm (GA) and

those provided by RSBA. Columns 1 and 2 display the data

information, column 3 reports LB of each instance, column 4

(resp. column 5 and column 6) tallies the GA’s bound (resp.

the average value and the average runtime over the ten trials)

while column 7 (resp. column 8 and column 9) reports the

best RSBA’s bound (resp. the average values and the average

runtime needed for the same trials). Finally, the last line of

the table displays the average values of all values represented

in each column (we note that the value in “boldface" (last

line of the table) means that the best (average) solution values

have been obtained by the considered algorithm). According

to Table II, for the small instances with n = 10, RSBA

outperforms GA although when considering the average value

(the solution values over the ten trials). Indeed, RSBA realizes

an average global value of 634.56 while GA provides an

average global value equals to 768.70. The Gap between both

values is closest to 134 units even GA’s average runtime

remains smaller than that of RSBA. For the medium-sized

instances with n = 20, the same phenomenon can be observed.

Indeed, the global RSBA’s best value (522.93) is better than

that achieved by GA (650.03). For the achieving results, GA’s

global average runtime is slightly greater (0.237 sec) than that

needed by RSBA (0.225 sec), for the medium instances.

B. Behavior of RSBA vs GA on large-scale instances: Set 2
Herein, RSBA’s behavior is analyzed on the instances of

Set 2 which contains thirty instances representing more largest

benchmark instances. Its achieved results are also compared

to those achieved by GA and Manaa and Chu’s lower bound.

Table III reports the bounds achieved by RSBA, GA and LB

on the instances of Set 2. From the table, one can observe

that RSBA remains competitive when comparing its results to

those achieved by GA. RSBA’s average best solution value is

equal to 6712.11 while that of GA is equal to 9635, 93, which

achieves a significant Gap closest to 2924. The global RSBA’s

average solution values are also better than those matched by

GA and the average RSBA’s runtime, in this case, is smaller

than that needed by GA, i.e., 1.388 sec versus 6.150 sec. The

average RSBA’s best solution value provides an experimental

approximation ratio of 1.062 when compared to Manaa and

Chu’s lower bound LB while GA’s reaches an approximation

ratio equal to 1.524. The larger the instance, more the behavior

of RSBA is interesting, which also consumes a smaller runtime

for this type of instance.

VI. CONCLUSION

The problem of scheduling tasks on two dedicated proces-

sors is solved with a reactive search-based algorithm. The

method combines three main features: a starting solution built

by tailoring a constructive greedy procedure, an intensification

search introduced in order to visit a series of local solutions

and a diversification strategy using the drop and rebuild op-

erator. Finally, the experimental part showed the effectiveness

of the proposed method when compared to the best available

method in the literature.

REFERENCES

[1] Bianco, L., Blazewicz, J., Dell’Olmo, P. and Drozdowski, M. (1997).
’Preemptive multiprocessor task scheduling with release times and time
windows’, Annals of Operations Research,Vol. 70, No. 1, pp.43-55,
https://doi.org/10.1023/A:1018994726051.

[2] Blazewicz, J., Dell’Olmo, P., Drozdowski, M. and Speranza,
M.G (1992). ’Scheduling multiprocessor tasks on three dedicated
processors’. Information Processing Letters 41 (1992) 275-280,
https://doi.org/10.1016/0020-0190(92)90172-R.

[3] P. Brucker. Scheduling algorithms. Springer, ISBN 978-3-540-20524-1
4th ed. Springer Berlin Heidelberg New York, 2007.

[4] Buffet. O, Cucu. L, Idoumghar. L and Schott. R. (2010). ’Tabu Search
Type Algorithms for the Multiprocessor Scheduling Problem’. Con-
ference: Artificial Intelligence and Applications, https://hal.archives-
ouvertes.fr/hal-00435241.

[5] Graham, R.L., Lower, E.L, Lenstra, J.K., Rinnoy, A.H.G. (1979) ’Opti-
mization and Approximation in Deterministic Sequencing and Schedul-
ing Theory’: A Survey. Annals of Discrete Mathematics.V5, p287-326,
https://doi.org/10.1016/S0167-5060(08)70356-X.

[6] Hifi, M. (2014). An iterative rounding search-based algorithm for the
disjunctively constrained knapsack problem. Engineering Optimization.
46(8), 1109–1122, https://doi.org/10.1080/0305215X.2013.819096.

[7] Hifi M. and Michrafy M. (2006). A reactive local search-
based algorithm for the disjunctively constrained knapsack prob-
lem. Journal of the Operational Research Society. 57(6), 718-726,
https://doi.org/10.1057/palgrave.jors.2602046.

[8] Hoogeveen, J.A., van de Velde, S.L. and Veltman, B. (1994) ’Com-
plexity of scheduling multiprocessor tasks with prespecified proces-
sor allocations’, Discrete Applied Mathematics, Vol. 55, pp.259-272,
https://doi.org/10.1016/0166-218X(94)90012-4.

[9] Kacem, A., Dammak, A. (2014)’A genetic algorithm to mini-
mize the makespan on two dedicated processors’, In IEEE, In-
ternational Conference on Control, Decision and Information Tech-
nologies (CoDIT), pp.400-404, 3-5 Nov. 2014 Metz, France, doi:
10.1109/CoDIT.2014.6996927.

[10] Manaa, A., Chu, C. (2010) ’Scheduling multiprocessor tasks to minimise
the makespan on two dedicated processors’. European Journal of Indus-
trial Engineering, 4(3), https://dx.doi.org/10.1504/EJIE.2010.033331.

[11] Thesen. A. (1998) ’Design and evaluation of tabu search algorithms
for multiprocessor scheduling’. Journal of Heuristics, 4: 141-160,
https://doi.org/10.1023/A:1009625629722

MHAND HIFI ET AL.: A REACTIVE SEARCH-BASED ALGORITHM FOR SCHEDULING MULTIPROCESSOR TASKS ON TWO DEDICATED PROCESSORS 261

