
 

 

 

 

Abstract—In this paper we propose a two-stage lattice Monte 

Carlo approach for optimization of bimetallic nanoalloys: 

simulated annealing on a larger lattice, followed by simulated 

diffusion. Both algorithms are fairly similar in structure, but 

their combination was found to give significantly better solutions 

than simulated annealing alone. We also discuss how to tune the 

parameters of the algorithms so that they work together 

optimally. 

I. INTRODUCTION 

HE fundamental and practical significance of studying 

the structural characteristics and transformations in na-

noparticles and nanosized heterostructures is associated with 

the wide prospects for their use in various fields of nano-

technology. For example, they may serve as nanocon-

tacts/nanowires, as sensors, or as catalysts. In this context, 

the search for stable configurations is a very important re-

search problem [1], [2], [3]. A configuration is stable when 

its potential energy is minimal. This is a global optimization 

problem: traditional numerical methods are impractical be-

cause they need huge amounts of computational resources 

[4]. Therefore, the global minimum has to be approximated 

using time-efficient optimization strategies (metaheuristics). 

A lot of methods are available for the prediction of nano-

particle structures [5]. For example, metal nanowires are 

studied in [6] by means of canonical Monte Carlo simula-

tions and embedded atom potentials, demonstrating some 

advantages of Monte Carlo simulations over molecular dy-

namics simulations. In [7], grand and semigrand canonical 

global optimization approaches are presented, using ba-

sin-hopping with an acceptance criterion based on the local 

contribution of each potential energy minimum to the 

(semi)grand potential. Details regarding the implementation 

of the basin-hopping method are also given in relation to 
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Monte Carlo moves that change the system size. The ba-

sin-hopping Monte Carlo algorithm was modified to deter-

mine a global minimum structure in Ag and AgPd nanoclus-

ters [8]. For a pure metallic silver nanocluster, the newly 

developed quadratic basin-hopping Monte Carlo algorithm is 

more efficient than the standard basin-hopping Monte Carlo 

algorithm. For a bimetallic AgPd nanocluster, the new algo-

rithm succeeds in finding the global minimum structure even 

though the standard algorithm fails. It is important that such 

approach as the formation energy machine learning model 

[9] can be used to predict the stable metal element distribu-

tion in the nanoparticles via Monte Carlo simulations. In 

[10], Monte Carlo sampling for pure random selection of 

sample points is used. It can be useful when implementing 

the so-called surrogate models, which can be a suitable re-

placement for complex simulation models in applications. 

II. THE BASIC ALGORITHMS 

Our method performs the optimization on a lattice, com-

bining two Monte Carlo algorithms. The energy of the sys-

tem is given by the multi-particle tight-binding potential of 

Cleri–Rosato [11], having the following form: 
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where i  ranges over all atoms; j  ranges over all atoms 

other than i  but within distance cutR  from i ; a  and b  

represent the species of the atoms i  and j ; abijE ,  and 

abijB ,  are the repulsive and binding components of the po-

tential due to the atom pair ),( ji ; ijr  is the distance be-

tween the atoms; abr ,0 , abA , abp , ab , abq  are con-

stants particular to the chemical elements under considera-
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tion. We use a value for cutR  corresponding to five coor-

dination spheres, beyond which the interaction is assumed to 

be zero. 

A. The Wide-Lattice Monte Carlo Algorithm 

The first algorithm, which we will call the “wide-lattice” 
Monte Carlo, is specified in [12]. It starts by placing the at-

oms at random on a lattice several times larger than the total 

number of atoms. At each iteration, one atom and one 

neighboring empty node are chosen at random. If the poten-

tial energy would decrease by the atom moving into the 

empty node, the jump is performed unconditionally. Other-

wise, the jump may still be performed, with a probability 

given as: 

  kTEP  exp , (4) 

where E  is the energy difference of the configurations 

and T  is the current temperature of the system. The itera-

tion ends either with or without a jump. 

The temperature is set high at the beginning, and then 

gradually decreases as the algorithm proceeds. We use a 

linear formula for the cooling, subtracting a small amount 

once every several thousand iterations. The algorithm ends 

when the temperature reaches 1 K. 

The appropriate initial temperature strongly depends on 

the size and type of lattice used, as well as on the size and 

chemical composition of the nanostructure [13], therefore it 

is best determined experimentally. 

Due to its simplicity and its particular form, this algorithm 

lends itself to a highly optimized computer implementation. 

It can run for billions of iterations within minutes on a 

standard personal computer. 

B. The Diffusion Algorithm 

The second algorithm, which we will call the “diffusion,” 
is specified in [14]. It runs on a lattice filled with atoms of 

two different kinds, plus a small number of empty nodes (~4 

for a 200-atom structure). At each iteration, one empty node 

is chosen at random, and the iteration always ends with a 

jump of a neighboring atom into that empty node. Which 

atom jumps is determined by calculating (4) separately for 

each candidate, and picking a random number in the interval 

from zero to the sum of all P s. 

Note that the term neighboring atom is defined here as 

being within a radius of three coordination spheres. This is 

different from the wide-lattice Monte Carlo algorithm above, 

where nodes are neighbors only within one coordination 

sphere. This difference is due to the scarcity of the empty 

nodes during diffusion, and we have verified experimentally 

that three coordination spheres seem to be optimal for this 

purpose. 

Temperature is managed similarly to the wide-lattice 

Monte Carlo algorithm. 

The running time, while slower than the wide-lattice 

Monte Carlo, is still on the order of millions of iterations per 

minute. 

III. THE COMBINED METHOD 

The starting point of this research is the observation that 

combining the two algorithms above may produce better 

solutions than just a single-staged approach. The proposed 

combined method has the following steps: 

Step 1: Parameter tuning. Repeatedly run the wide-lattice 

Monte Carlo algorithm from random initial configurations, 

for 10N  (~ 40 million) iterations at each trial, to deter-

mine the optimal initial temperature, cooling speed, and 

scaling factors (along each of the x , y , and z  axes) for 

the lattice. Due to the lower number of iterations used, each 

trial completes quickly to save time for the more important 

following steps. 

Step 2: Shape fixing. Using the best values from Step 1 

for the initial temperature and scale factors, repeatedly run 

the wide-lattice Monte Carlo algorithm afresh from random 

initial configurations, with 1/10th the cooling speed, i.e. for 

N  (~ 400 million) iterations at each trial. However, set up 

the nanoalloy to have   (~ 2) extra atoms of each type. 

The goal of this step is to obtain the advantageous geometric 

shapes appropriate for the nanoparticle (3D), film (2D) or 

wire (1D) under consideration on the given lattice. The re-

sulting configurations also have a somewhat low-energy or-

dering of the atoms, to be further improved by diffusion. 

Step 3: Diffusion. From each resulting configuration, de-

lete all empty nodes, then convert   atoms of each type 

into empty nodes, to use as vacancies during diffusion. This 

is the same number of extra atoms added in Step 2, but the 

converted atoms are selected randomly. Run the diffusion 

algorithm once per configuration, for 2N  (~ 200 million) 

iterations at each trial. 

After all Monte Carlo simulation is finished, following 

existing practice [12], relaxation with molecular dynamics 

(MD) may be used to further improve the energy of the sys-

tem before selecting the best solution as the final result. 

IV. VERIFICATION 

We do a number of tests to verify that the proposed 

method is a significant improvement over simpler approach-

es. 

All trials are performed for a 200-atom AuAg nanoparticle 

(gold and silver in 1:1 proportion), on a 309-node lattice with 

a twinned bi-pyramid shape. One example configuration of 

this particle is illustrated on Fig. 1. It is expected that the 

results also hold for other chemical compositions and other 

lattices (we have observed this in our preliminary testing). 

Instead of relaxation with MD, all comparisons of final solu-

tions below are done after applying an additional round of 

scaling of the lattice (with separate factors for the x , y , 

and z  axes). 

In Fig. 2, the combined method (Steps 1+2+3) is com-

pared against running only the wide-lattice Monte Carlo al-

gorithm (Steps 1+2, but for a larger number of iterations). 
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The number of iterations is chosen such that the total 

wall-clock running time is the same in both cases. The com-

bined method gives clearly better solutions, which is the 

main result of this research. 

In Fig. 3, tests verify that the parameter tuning approach of 

Step 1 is sound. In other words, that the optimal initial tem-

perature determined at the higher cooling speed of Step 1 

( 10N  iterations) is still optimal when the algorithm is run 

at the much lower cooling speed of Step 2 ( N  iterations). 

From the figure, it can be read out that the initial temperature 

giving best results is 2500 K, the same in both cases. 

We note that for this lattice, the differences between initial 

temperatures seem to be small, to the point that any temper-

ature from the chosen range may be adequate. With larger 

lattices and more atoms, however, the influence of the initial 

temperature is more dramatic [13], and in that case the ad-

vantage of knowing the best initial temperature before run-

ning the main algorithm may also be more substantial. 

The last series of tests evaluate whether the parameter 

tuning approach of Step 1 is advantageous. That is, whether 

the solutions by the full combined method are better than if 

we only ran Steps 2+3. 

In Fig. 4, comparing the left (black) column with the mid-

dle (red) column, it can be seen that there is not much dif-

ference between the full combined method and a variant 

omitting Step 1 but running Step 2 for 10% more iterations 

(and since the best initial temperature is assumed unknown, 

from a random temperature in the range of 1000-4000 K). 

This corresponds to the fact that the influence of the initial 

temperature is small, as was already observed in Fig. 3. It 

remains open whether choosing the initial temperature at 

random is adequate for larger numbers of atoms, where the 

temperature effects are amplified. 

In Fig. 4, the right (green) column shows the case of an 

alternative way of determining the lattice scaling factors to 

be applied before Step 3: instead of performing the scaling 

after Step 1 and using that for Steps 2+3, omit Step 1 and 

perform the scaling after Step 2. Comparing these solutions 

to the left (black) column, we see that the alternative ap-

 

left side (black) dots: 30 trials right side (blue) dots: 30 trials 

combined method 

Step 1: 40 million iterations 

Step 2: 400 million iterations 

Step 3: 170 million iterations  

wide-lattice algorithm only 

Step 1: 40 million iterations 

Step 2: 4 billion iterations 

(so that total running time is the same) 

Fig. 2 Comparing the combined method (Steps 1+2+3) against using 

only the wide-lattice simulated annealing algorithm (Steps 1+2) 

 

Fig. 1 One example configuration of Au100Ag100 (top: blue – fcc at-

oms, green – hcp atoms, grey – unknown atoms; bottom:  

yellow – Au atoms, red – Ag atoms) 

 

for each initial temperature: 

left side (black dots): 30 trials right side (pink crosses): 30 trials 

fast cooling (40 million iterations)  slow cooling (400 million iterations) 

Fig. 3 Comparing the optimal initial temperature for fast cooling (such 

as in Step 1) versus slow cooling (such as in Step 2). The tried temper-

atures are the same for both cases but the crosses are shown slightly to 

the right of the dots for clarity. 
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proach is not substantially different. If anything, it may even 

look like the original (black) approach is slightly worse, but 

this cannot be determined from our data—the test design 

allows only confirming or failing to confirm a potential ad-

vantage, not a disadvantage. (The alternative (green) trials 

run Step 2 for 10% more iterations while still starting from 

the known best initial temperature, which gives them an un-

fair start.) 

V. CONCLUSION 

We have proposed a lattice Monte Carlo method for opti-

mization of bimetallic nanoalloys, combining two previous 

algorithms: a wide-lattice simulated annealing algorithm and 

a simulated diffusion algorithm. We have verified that the 

combined method gives significantly better solutions than 

using only wide-lattice simulated annealing. We have dis-

cussed several ways to tune the algorithm parameters, pro-

posing one particular approach (namely, with an additional 

tuning step), and verifying its soundness. As regards the al-

ternative parameter tuning approaches investigated, they 

were found to be equally good to the proposed one on the 

relatively small lattice on which the tests were performed. 

There are other important parameters to be tuned that we 

have not discussed here. In particular, better managing the 

temperature during diffusion is something that, in our expe-

rience, becomes much more important when a large number 

of atoms are involved. Further research will be needed to 

determine the optimal strategy for particle sizes where this 

becomes relevant. It is also worth mentioning that appropri-

ate size effects at the nanoscale region should be taken into 

account, in particular, at the interface between components 

[15], [16]. 
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left side (black) 

dots: 30 trials 

middle (red) 

dots: 30 trials 

right side (green) 

dots: 30 trials 

full combined method 

Step 1: 40 million 

iterations 

Step 2: 400 million 

iterations 

Step 3: 170 million 

iterations 

alternative 1 

random initial 

temperature 

Step 2: 440 million 

iterations 

Step 3: 170 million 

iterations 

alternative 2 

scaling of the lattice 

after Step 2 

Step 2: 440 million 

iterations 

Step 3: 170 million 

iterations 

Fig. 4 Influence on the final results of using Step 1 to tune the parame-

ters: the initial temperature (comparing left vs. middle columns), and the 

lattice scaling factor (comparing left vs. right columns) 
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