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Abstract—We describe the 7th edition of the international data
mining competition held at Knowledge Pit in association with the
FedCSIS conference series. The goal was to predict workload-
related characteristics of monitored network devices. We analyze
solutions uploaded by the most successful participants. We
investigate prediction errors which had the greatest influence on
their results. We also present our own baseline solution which
turned out to be the most reliable in the final evaluation.

I. INTRODUCTION

The topic of the FedCSIS 2020 Data Mining Challenge
falls into a category of implementing data analysis techniques
in operational processes that employ either mechanical or
electrical units. Part of the field, known as predictive mainte-
nance, focuses on minimizing downtime and associated costs
related to such units. Various techniques are applied to gather
relevant data. It can be done using existing in-process sensors
and system logs, or sensors introduced purely for predictive
maintenance purposes. Data can also be acquired in an active
way by injecting a test signal into a system [2].

Such data can be explored using various methods ranging
from condition-based qualifiers to machine learning. A com-
mon approach relies on prediction of quantitative indicators,
their association with given maintenance issues, and determi-
nation of their relationship to operational costs and failure risks
[8]. The specific direction of analysis depends on individual
processes under scrutiny, e.g. variability of their parameters,
or importance of anomaly detection versus long-term trend
detection. It often requires an ensemble of methods in order
to tackle operational issues in a reliable way.

Due to their complexity, the predictive maintenance tasks
are premium example of problems that could be solved using
crowdsourcing, e.g. via online machine learning competitions.
Rise of this approach has been accelerated thanks to pop-
ularity of sites like Kaggle or Knowledge Pit. In its core,
a competition method can be drilled down to: formulation
of research problem, data preparation by an unbiased team,
creation of competition baseline, data analysis and solution
preparation by competition participants, and finally evaluation
of submissions on a platform that supports fair environment.
If all these steps are provided, then the owner of data (usually
the main stakeholder interested in the competition outcomes)
can expect various benefits, ranging from proof of feasibility,
through obtaining insights on how to resolve the problem in
real-world application, up to using competition results as a
guideline for assembling a dedicated R&D team.
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In this paper, we investigate the outcomes of the considered
challenge with a particular focus on the most substantial
errors in predictions sent by participants. In Section II, we
describe the challenge objectives, data sets that we prepared,
the selected evaluation function, as well as our baseline model
which turned out to be the most robust among all submitted
solutions. In Section III, we provide an overview of the
competition results and we present conclusions drawn from
the analysis conducted on the set of over 700 solutions. We
summarize the challenge and the paper in Section IV.

II. COMPETITION OUTLINE

The challenge took place at Knowledge Pit1. The data
was provided by EMCA Software, the company specializing
in log analytics. The goal was to predict long-term workload-
related characteristics of devices, based on their history. Thus,
competition results relate to EMCA’s business model. More-
over, we wanted to foster deeper understanding of predictive
maintenance nuances in the data science community.

A. Data preparation

The competition was held on real, previously unpublished
data gathered from 3728 network devices monitored by EMCA
as part of their operations. An additional, quite inspiring diffi-
culty arose from the fact that those devices were not uniform.
Logs covered readings from various types of hardware. There
were also cases of different hostnames being a part of the same
network, thus making their workload states correlated.

The data was collected over a period of December 2019
– February 2020. The raw data was provided in batches
corresponding to individual days. Each batch contained ≈ 2.45
GB of data extracted from network device logs (≈ 220 GB in
total), in form of a collection of JSON entries. Every entry
consisted of device identifier, timestamp, and a list of one or
more tuples indicating one of 45 so-called metrics.

Figure 1 shows the first preprocessing step. Each batch
was streamed due to its large size. Individual JSON entries
were parsed. The extracted hostnames were anonymized using
a dynamically extended dictionary. The rest of information
was transformed into EAV format (metric-timestamp-value)
and aggregated for every metric in consecutive one-hour-
long windows. Each such period for a given metric/hostname
combination was characterized by some aggregate measures
and written down to far smaller files. Similar window-based
summaries are widely used in data analytics, e.g. to improve
representation [7] or decrease data footprint [1].

1https://knowledgepit.ai/fedcsis20-challenge/
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Fig. 1. The initial data preprocessing schema. The input files were processed
in a streaming fashion to limit the required computational resources.

In the second step, the data from local files was merged and
time series with too low number of entries were filtered out.
At this point the total data size was relatively small (≈ 4GB).
At the end, the data set was divided into training and test parts
based on time. The last seven days were used as the test period.
Therein, we included 10000 time series (hostname/metric
combinations) which did not have any missing values in the
test period. From this set, we randomly selected 1000 series
to be used for preliminary evaluation of solutions.

B. Task description and evaluation procedure

The training data was made available to teams in form
of a CSV file containing 10 columns. The first three of
them create a joint identifier, followed by seven window-based
aggregations forming in particular a candlestick representation
of time series. The detailed column meanings are:

1) hostname: anonymized ID of device
2) series: name of the considered metric
3) time_window: timestamp indicating window start
4) Mean: the mean of the considered metric values2

5) SD: standard deviation of the considered metric
6) Open: the first reading in the given time window
7) High: the maximum reading in the given window
8) Low: the minimum reading in the given window
9) Close: the last reading in the given window

10) Volume: total number of corresponding readings

For each hostname in the training data, values could be ar-
ranged into series spanning for over 80 days. However, in many
series, some values (time windows) were entirely missing,
which typically means that a device was not accessible.

Participants were asked to predict 168 future values (i.e.
hourly mean values of a given metric in one full week) of a
number of devices. They were submitting their predictions to
Knowledge Pit via the online evaluation system. IDs of devices
and metrics were indicated in an exemplary solution file.

During the challenge (i.e. before closing it), submissions
were evaluated on the already-mentioned subset of 1000 (out of
10000) test time series. We used R2 measure, i.e. for each time
series, the forecasts were compared to ground truth values, and
their quality was assessed by the following formula:

2Values of all columns 4-10 are calculated for the considered metric (series)
of the given device (hostname) within the considered time_window.

TABLE I. SELECTED FINAL AND PRELIMINARY RESULTS. THE SCORES

OF TOP 3 TEAMS WITH REGARD TO THE PRELIMINARY AND FINAL SCORES

ARE SHOWN. THE LAST COLUMN INDICATES THE NUMBER OF SUBMITTED

SOLUTIONS. NOTICEABLE IS THE NEGATIVE CORRELATION BETWEEN THE

NUMBER OF SUBMISSIONS AND FINAL SCORE OF PARTICULAR TEAMS.

Rank Team name Preliminary Final score #subs

1 baseline solution 0.2267 0.229530 3

2 Les Trois Mousquetaires 0.1888 0.162979 19

3 papiez69 0.1841 0.151499 13

4 Wrong Team Name 0.1836 0.143708 6

· · · · · · · · · · · · · · ·

13 cdata 0.2766 -0.059837 90

14 amy 0.3130 -0.138349 100

· · · · · · · · · · · · · · ·

17 Dymitr 0.3223 -0.779576 146

· · · · · · · · · · · · · · ·

R2(f, y) = 1− RSS(f,y)
TSS(y) (1)

where f is a vector of forecasts, y is the target ground truth,

RSS(f, y) =
∑

i (yi − fi)
2

is the residual sum of forecast

squares, and TSS(y) =
∑

i (yi − ŷ)
2

is the total sum of
squares, where ŷ is the mean value of time series y estimated
using the available training data. The submission score is the
average R2 over all time series from the test set.

The best evaluation results of participating teams were vis-
ible on the public Leaderboard. Each team could submit up to
100 solutions, but teams could merge during the competition.
Thus in the end, the total number of submissions for a given
team could be greater than this limit (in such a case, the merged
team could not submit any new solution files).

The final evaluation was performed after completion of the
competition using the remaining part of the test data (90%).
Those results were published online too. Only those teams who
submitted a report describing their approach before the end of
the challenge were qualified for final evaluation.

C. Our baseline solution

At the beginning of the challenge, we prepared a relatively
simple baseline solution in order to provide to participants a
reference score at the Leaderboard. We did also for the purpose
of equipping EMCA with a light-weight tool for detecting
anomalies in device usage patterns in real-time.

First, we cleaned the training data out of outlying metric
readings. Such readings could be a result of some unexpected
device malfunction, monitoring software error, or some un-
usual actions performed by device users. Since we were mostly
interested in detecting typical device usage patterns, outliers
in the training data could distort our forecasts.

There are many approaches to time series anomaly detec-
tion. In our solution, we used the well-known 3-sigma method.
We assumed weekly periodicity of the considered time series,
which was confirmed on a random sample using the Fisher’s
test. We divided the training data into disjoint, one-week long
time windows. For each window, we estimated the mean and
standard deviation. We clipped the time series values which
were identified as outliers by means of 3-sigma. We treated
the clipped windows as time series motifs [5].

Then, for each time series in the test data, we extracted the
latest weekly time window from the training data as a tempo-
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Fig. 2. Squared differences between forecasts and reference values. On the left, scaled by TSS of each series, aggregated by the metric/hostname combination,
and averaged for each hour. The shaded area represents a distance of one standard deviation from the mean. Red dots indicate an increase in the error rate above
one standard deviation from the mean of all errors. The plot on the right shows the resulting values with additional scaling of each series to [0,1] interval.

rary validation set. We averaged the last three motifs from
the remaining time windows to create the series templates. It
means that – denoting the last i-th motif for the k-th series by
~xk,i – the corresponding template is specified as:

Tk = 1
3

∑3
i=1 ~xk,i (2)

We compared such templates with the corresponding validation
windows by means of R2 score. Then we updated templates
with the data from validation period. When making forecasts,
we applied templates with R2 > 0 to predict the corresponding
series in the test period. Otherwise, our forecast was simply
the global mean for the given series, estimated on the whole
of training data. Table I indicates that this method achieves the
best final score among all submitted solutions.

III. COMPETITION RESULTS

The competition attracted 151 teams from over 30 coun-
tries. The highest number of participants had IP addresses
from Poland (52), India (19), Russia (15), China (7), and
the United States (7). Over 700 correctly formatted solutions
were submitted. Besides the above-discussed baseline, Table I
reports the final ranks, scores, and the number of submissions
for some of the best performing teams. More details about
some of those teams can be found in [3], [6], [9], [10].

The best submitted solution, i.e. Rank 2 in Table I, relied
on an ensemble of XGBoost, Prophet and linear regression
models. The final model took into account their individual
performance for each host, applying the mean value if neither
of them proved to give satisfactory results, or if there were less
than 300 of data points for the host. Rank 3 utilized ensemble
of two different XGBoost models – one using only hours and
holiday days as features, and the other using also days of the
week – together with the mean value for the cases for which
the considered models delivered R2 less than 0.04.

A. Error distribution over time

As device logs vary greatly, we run our comparisons using
scaled and averaged values. Figure 2 suggests that reasoning
about further-future values does not deteriorate over time.
This may indicate that submitted methods can successfully (on
average) deal with data seasonality, grasping periodicity within

the series that may be observed in the training data set and,
based on that, producing future forecasts. On the other hand,
the errors tend to happen around the same hours every day.
Such events may be unpredictable, although the highest final
score solutions are more robust with this respect.

B. Error distribution among the best solutions

At Knowledge Pit, competition participants can verify their
solutions using a small test data portion. This functionality
usually helped in fine-tuning meta-parameters of developed
methods. However this time, the solution with the highest
preliminary score did not want to generalize to the entire test
set at all. According to Figure 3, the preliminary-best solutions
tend to neglect the importance of some series which turn out
to be a significant part of the test data. This may be because
of under-representation of some patterns and overall difficulty
in forecasting those series in the training data set.

C. Errors according to the metrics

Figure 4 shows that metrics vary in terms of forecasting
difficulty. This fact could be a reason for some of participating
teams to give up some series and focus on increasing R2

based on a few simpler ones. Accordingly, let us note that our
way of splitting test data onto preliminary and final subsets
preserved most of desired statistical properties of the metrics
aggregations. Out of 27 distinct metrics in the test set, 25 occur
in preliminary part, with sufficient cardinality. This yields a
corollary that it was not a design of data sets that caused
problems, but the very structure of explored data.

IV. CONCLUSIONS

We reported our international challenge aimed at predicting
long-term network device workload characteristics. Our base-
line model achieved the score R2 = 0.23 and we assess that
this result can be further improved. The analysis of errors of
other submitted solutions revealed no significant correlation
with a time horizon of forecasts. It suggests that models can
often correctly take into account periodicity, but any deviations
are hard to predict. It not only means that modeling of typical
workload patterns is feasible, but it may also allow us to design
a simple real-time anomaly detection algorithm.
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Fig. 3. R
2 scores per submission (the darker the color, the lower the value of R2 for particular submitted solution on data corresponding to a particular metric),

for individual metrics (series). Vertically, rows are sorted by the mean score (increasing towards bottom). Horizontally, solutions are sorted by the final score.
The plots on the left and right sides show the values for the top 75 submissions with regard to the final and preliminary scores, respectively.

Fig. 4. Errors (9000 series, each 704 dimensions) reduced with UMAP [4] to three dimensions. The plots color the points according to the metric (on the
right) and to percentiles of the mean values (on the left). The points form clusters by means of a similar scale of values and metrics.

It is worth discussing why competition participants – rep-
resenting truly diverse background and data science experience
levels – could not come up with any solution yielding better
prognostic power than our baseline. One reason is that we
focused on typical work patterns of the system, not attempting
to forecast outliers. From the perspective of R2 evaluation
score, any model that did try to predict anomalies was highly
punished for missed forecasts. It may mean that although – as
mentioned above – it seems to be easy to detect anomalies, it
is incomparably harder to predict their values.

Future works can include better adjustment of the applied
error function to end-user expectations. Moreover, one can
develop an ensemble approach combining models tuned to typ-
ical workloads (e.g. our baseline) with those reflecting outliers
(some other submissions). One can also consider anomalies
of various kinds: power-law anomalies (black swans), phase
transition anomalies (dragon knights), and unique events not
exceeding operational parameters (unicorns).

Finally, as for our general competition-based approach to
crowdsourcing of data mining problems, one can see that the
current setup at Knowledge Pit fits both, the needs of data
science community and expectations of real-life data owners.
Accordingly, new challenges will be organized.
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