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Abstract—We introduce an algorithm that computes and
counts the duals of finite Gödel-Dummett algebras of k ≥ 1

elements. The computational cost of our algorithm depends on
the factorization of k, nevertheless a Python implementation is
sufficiently fast to compute the results for very large values of k.

I. INTRODUCTION

Mathematical Fuzzy Logics (MFL) interpret predicates in
truth-degrees ranging over the unitary real interval [0, 1].
It has been argued that this is a valid approach to deal
with the inherent vagueness of terms in human languages
[1]. In his seminal book [2], Hájek introduced a family of
many-valued fuzzy logical systems where conjunction and
implication connectives are modeled by continuous t-norms
1 and their residua, respectively. One of the three main fuzzy
logics in Hájek’s framework is Gödel-Dummett logic G, whose
conjunction is modeled by the minimum. Gödel-Dummett logic
is a non-classical logic whose studies date back to Gödel [3]
and Dummett [4]. Note that G can be obtained by adding the
prelinearity axiom to Intuitionistic logic.

The algebraic counterpart of Gödel-Dummett logic is the
variety of Gödel algebras G. In the study of the algebraic
semantics of non-classical logics, the notion of free algebra
is of particular importance. This is due to the well-known
isomorphism between free algebras and Lindenbaum algebras

of logically equivalent formulas in a given logic. One can find
in the literature several methods to obtain the order structures
and cardinalities of free Gödel algebras. In 1969, Horn [5]
obtained a recurrence formula to compute the cardinalities of
free k-generated Gödel algebras, for any k ∈ N

+. Another
solution to this problem can be achieved by restating the
Horn’s recurrence in terms of finite forests [6].

A related counting problem is the fine spectrum problem
[7], which aim to find the number of non-isomorphic algebras
of cardinality k in a given variety. In [8], the author introduces
a method to generate duals of finite Gödel algebras of a given
cardinality and a recurrence relation to count the number of
such structures, solving in this way the fine spectrum problem
for G. Such a result is obtained by exploiting the relation
between finite forests and finite Gödel algebras.

In this paper, we build on [8] to obtain an algorithm that
accepts a positive integer k as input and returns the number
of non-isomorphic k-elements Gödel algebras. Moreover, we
propose a Python implementation of such algorithm which
is also able to generate the dual structures of the algebras.

1A t-norm is an associative, commutative and monotone function
⊙ : [0, 1]2 → [0, 1], where 1 is the neutral element.

Finally, we compare the execution times of our algorithm
with those obtained using Mace4 [9], a general purpose com-
puter algebra system used to generate finite models. Besides
being an interesting theoretical problem, the generation of
finite algebras has also important applications in automated

reasoning [10]. Indeed, such procedures can be used to find
countermodels of logical formulas.

II. GÖDEL ALGEBRAS, FORESTS AND RECURRENCE

We assume that the reader is acquainted with many-valued
logics in Hájek’s sense and with their algebraic semantics. We
refer the reader to [2] for any unexplained notion. Throughout
the paper we use the same symbols for logic’s connectives and
their algebraic interpretations.

Hájek’s logic BL is the logic of all continuous t-norms and
their residua, built over the language {⊙,∧,∨,→, ¬,⊥,⊤}.
The algebraic semantics of BL is given by the variety BL

of BL algebras, that is, prelinear, divisible, commutative,
bounded, integral, residuated lattices [2]. A BL algebra is
an algebra A = 〈A,∧,∨,⊙,→,⊥,⊤〉 of type (2, 2, 2, 2, 0, 0)
such that 〈A,∧,∨,⊥,⊤〉 is a bounded lattice, with top ⊤ and
bottom ⊥, 〈A,⊙,⊤〉 is a commutative monoid, satisfying the
residuation equivalence, x⊙ y ≤ z if and only if x ≤ y → z,
the prelinearity equation (x → y) ∨ (y → x) = ⊤, and
divisibility x ⊙ (x → y) = x ∧ y. Notice that divisibility
implies that the lattice structure is distributive. A BL algebra
satisfying x ∧ y = x⊙ y is called Gödel algebra. Hence, the
variety of Gödel algebras G is a subvariety of BL [2].

Let A be a Gödel algebra, a filter of A is a non-empty
subset p of A such that for all y ∈ A, if there is x in p such
that x ≤ y then y ∈ p, and x∧ y ∈ p for all x, y ∈ p. We call
propers the filters p such that p 6= A. A proper filter p of A

is said to be prime when for all x, y ∈ A, either x → y ∈ p

or y → x ∈ p. The set of all prime filters Spec(A) of A

ordered by reverse inclusion is called the prime spectrum of
A. When A is finite, each prime filter p of A is generated
by a join-irreducible element a as p = {b ∈ A | a ≤ b}.
On the other hand, each join-irreducible element of A singly
generates a prime filter of A. Hence, Spec(A) is isomorphic
with the poset of the join-irreducible elements of A. See Fig. 1
as an example where A is the free 1-generated Gödel algebra.
A forest F is a poset such that the downset ↓ q of every q ∈ F

is a chain, that is ↓ q is totally ordered. A forest with a bottom
element is called a tree. Such bottom element is called the root

of the tree. A subforest of a forest F is the downset of some
Q ⊆ F . Finite forests and open maps form a category FF.
Given two forests F, F ′ we denote F ⊔ F ′ the disjoint union
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Fig. 1. The free Gödel Algebra on one generator and its prime spectrum.

of F and F ′. Since FF is a category, disjoint unions are in fact
coproducts in FF. For our purposes, we need to introduce an
additional operation, called the lifting of a forest F , denoted by
F⊥, and obtained by adding a common root to all trees in F .
Clearly, for every forest F , F⊥ is a tree. A complete account
with proofs on the operations in FF can be found in [11]. The
prime spectrum of a finite Gödel algebra forms a forest, as
shown by Horn in [12]. We can also obtain a Gödel algebra
from a finite forest F in the following way. Let Sub(F ) be
the finite set of subforests of F . We equip Sub(F ) with the
structure of a Gödel algebra 〈Sub(F ),∩,∪,→, ∅, F 〉, where
F ′ → F ′′ = F\ ↑ (F ′ \ F ′′), for all F ′, F ′′ ∈ Sub(F ).
In this way, we can obtain the following isomorphisms
Spec(Sub(F )) ∼= F and Sub(Spec(A)) ∼= A, for a
given finite Gödel algebra A. When F ∼= Spec(A) and
A ∼= Sub(F ), we call such F the dual of A, while A is
the primal of F . It is also possible to define Sub and Spec

over maps, making them functors acting on the category of
finite forests and open maps FF and the category of finite
Gödel algebras and their homomorphisms, extending in this
way the above equivalence to a full categorical duality. These
constructions go beyond the scope of the present paper, and
we refer the interested reader to [13] for further details. With
this machinery in mind we are ready to formally define the
fine spectrum problem for G.

Problem: FineG(k)
Input: k ∈ N

+

Output: m ∈ N
+ such that m = |{[A] ∈ G | k = |A|}|,

where [A] is the class of finite Gödel algebras isomorphic
with A.

To solve this problem, we summarize the recurrence relation
introduced in [8] to generate duals of finite Gödel algebras.
This procedure is based upon the concept of multiplicative

partition of a positive integer k [14], that is

MP(k) := {(n1, . . . , nt) |

k = n1 × · · · × nt, n1 ≤ · · · ≤ nt, t > 1}.

Each t-uple in MP(k) is composed of natural numbers whose
product is equal to k. Note that the usual definition of
multiplicative partition of k includes (k), while our definition
does not. We define recursively the following sets of forests,
which are fundamental for our work:

H1 = {∅} (H1)

Hk = Pk ∪ Zk (Hk)

Pk = {F⊥|F ∈ Hk−1} (Pk)

Zk = {F1 ⊔ · · · ⊔ Ft |

F1 ∈ Pn1
, . . . , Ft ∈ Pnt

, (n1, . . . , nt) ∈ MP(k)} (Zk)

Theorem 1 ([8]): F ∈ Hk if and only if |Sub(F )| =
k. Moreover, 〈Sub(F ),∩,∪,→, ∅, F 〉 is isomorphic to a k-
elements Gödel algebra A such that Spec(A) ∼= F .

Thanks to this recursive definition of the set of duals of k-
elements Gödel algebras Hk, we are also able to compute the
cardinality of Hk, that is the fine spectrum of G.

Corollary 1 ([8]): FineG(k) = f(k) + pr(k)× g(k) with,

pr(k) =

{

0 if k is prime;

1 otherwise.
(pr)

f(1) = 1 (f1)

f(k) = FineG(k − 1) (fk)

g(k) =
∑

(n1,...,nt)∈MP(k)

f(n1)× · · · × f(nt) (gk)

The sequence of numbers generated by FineG(k) was
already contained in the On-Line Encyclopedia of Integer

Sequences as sequence A130841, that counts the number of
ways to express an integer as a sum of so-called oterms. In
[8], the author shows that oterms are a syntactic description
of finite forests. In the next section we show how to obtain a
fast algorithm implementing FineG(k), able to compute such
values for very large k.

III. ALGORITHM

A naive implementation of the recurrences of the previous
Section leads to recursive procedure that runs at exponential
costs by recursively calling FineG(m) for every instance of m
occurring in ML(i) for 1 ≤ i ≤ k. We rewrite the recurrence
in Corollary 1 in a more compact way:

Fine(k) = Fine(k − 1)+

+ pr(k)×
∑

(n1,...,nt)∈MP(k)

Fine(n1 − 1)× · · · × Fine(nt − 1).

We can now obtain a more efficient algorithm just by ap-
plying dynamic programming [15] to this recurrence. Indeed,
for computing Fine(k) we need (potentially all) the values
Fine(i) for 1 ≤ i ≤ k. So, we compute Fine(i) for every
i ∈ (1 ≤ 2 ≤ 3 ≤ · · · ≤ k) following the natural integers
order and storing the computed values in a k-element vector
Fine. The algorithm is outlined in Algorithm 1, and it assumes
that there exists a function multpart that receives a m ∈ N

+

and returns the set of multiplicative partitions ML(m) when m

is composite, otherwise when m is prime multpart returns
the empty set. We show in Section IV how to implement such
a function using Python libraries.

The number of multiplicative partitions MP(k) is less than
or equal to k

log k
for every k ∈ N

+ such that k 6= 144 [16].
Hence, it is straightforward to see that for every k ∈ N

+ such
that k 6= 144, the inner for cycle (Line 8 in Algorithm 1)
makes O( k

log k
) steps to compute G. Then, the computation

of Fine[k] need necessarily (k × k
log k

) steps, but this is not
sufficient. This bound cannot be fruitfully used to study the
cost of the full algorithm. Indeed to compute the multiplicative
partitions MP(n) of each n in {1, . . . , k}, we need to factorize
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Algorithm 1 A function calculating FineG(k)

Fine[1]← 1;
2: if k == 1 then

return Fine[1];
4: end if

for n = 2; n ≤ k; n = n+ 1 do

6: M ← multpart(n)
G← 0

8: for each (n1, . . . , nt) ∈M do

G← G+ (Fine[n1 − 1]× · · · × Fine[nt − 1])
10: end for

Fine[n]← Fine[n− 1] +G;
12: end for

return Fine[k];

n in the function multpart(n) (Line 6 in Algorithm 1). By
now, no efficient integer factorization algorithm can be found
in literature. In the next Section we see that our strategy relies
on the prime factorization of n, and this is essentially an
exponential procedure.

IV. IMPLEMENTATION

Algorithm 1 has been implemented in Python using SymPy
library [17]. The main issue in the implementation is to find
an efficient way to obtain the set of t-uples MP(k) for a given
k ∈ N

+. We have used the sympy.factorint method to
obtain the list of prime factors fact(k) of k. Such method is
particularly useful to our purpose because it uses different al-
gorithms in the library, selecting the most efficient one accord-
ing to the size of k. Now it is easy to realize that each t-uple
MP(k) can be obtained from the multiset partitions of fact(k).
Hence, we have used the method multiset_partitions

in sympy.utilities.iterables to create exactly the
list of t-uples corresponding to elements of MP(k) ∪ (k). As
mentioned above we don’t need the one-block partition (k),
so our code just ignore it.

By slightly modifying Algorithm 1, we have also imple-
mented functions to generate the full set of forests Hk by
building trees using parenthesis representation, and to produce
images of such forests using GraphViz library [18].

Fig. 2. The set of forests H12 generated by our Python code.

Example 4.1: Let k = 12. Then, fact(k) = {2, 3} and
applying multiset_partitions to fact(12) we obtain
[[[2, 2, 3]], [[2, 2], [3]], [[2, 3], [2]], [[2], [2], [3]]]. From this list it
is easy to obtain the t-uples in MP(12)∪ (12) by multiplying
elements in the same blocks, that is [[12], [4, 3], [6, 2], [2, 2, 3]].
Since by definition (12) 6∈ MP(12), the code skip the first
partition [12]. Fig. 2 is the depiction of H12 produced by our
program. As an instance, the parenthesis representation of the
first and second forest on the left in Fig. 2 are [[]], [[[]]] and
[], [[[], []]] respectively.

The following results have been obtained on a GNU/Linux
Debian 4.9.130-2 system with an Intel Core i7-5500U CPU
and 8GB of RAM. The Python implementation, together with
the Mace4 input and output files, can be downloaded from
https://homes.di.unimi.it/~valota/code/finegodel.zip.

To study the effectiveness of our implementation we have
used Mace4 [9] to compute the number of finite Gödel alge-
bras. Mace4 produces the algebraic structures on output files,
then we need to run two tools: interpformat to convert
the outputs in a readable format, and isofilter to get rid of
isomorphic copies of our algebraic structures. Running times,
calculated with the Debian GNU/Linux command-line tool
time are summarized in Table I. The · symbol indicates that
the instance is not meaningful. In fact, Algorithm 1 computes
only the structure of forests in Hi for every i ∈ {2, . . . , k}.

TABLE I
RUNNING TIMES TO COMPUTE FINITE GÖDEL ALGEBRAS (OR THEIR

DUALS) OF CARDINALITY 2 TO 11.

k Running Mace4 interpformat Algorithm 1
Times +isofilter

2 to 9 real 0m49.623s 0m5.427s 0m0.024s
user 0m49.272s 0m5.384s 0m0.024s

10 real 10m58.814s 0m44.284s ·

user 10m56.092s 0m44.148s ·

11 real 191m27.975s 8m28.547s ·

user 190m48.804s 8m26.960s ·

2 to 11 real · · 0m0.024s
user · · 0m0.020s

The huge increase in computing time when passing from
cardinality 10 to cardinality 11 in Mace4 runnings, shows
the unsuitability of brute-force approaches. In fact, inspecting
(Hk) one realizes that to obtain duals of finite Gödel algebras
of cardinality 11, it is sufficient to lift all the forest in H10.
To compare, our Python implementation is able to generate
the parenthesis representation of forests in Hi from i = 2 to
i = 11, our script takes time real: 0m0.024s and user:
0m0.020s (last line in Table I). However, for counting pur-
poses the script runs very fast, as testified by the performances
summarized in Table II.

PIETRO CODARA, GABRIELE MAURINA, DIEGO VALOTA: COMPUTING DUALS OF FINITE GÖDEL ALGEBRAS 33



TABLE II
RUNNING TIMES OF ALGORITHM 1 FOR LARGE VALUES OF k.

k Running Times FineG(k)
2 to 1000 real: 0m0.558s FineG(1000) =

user: 0m0.556s 3316527416

2 to 5000 real: 0m24.486s FineG(5000) =
user: 0m24.476s 772140728313177

2 to 10000 real: 2m2.602s FineG(10000) =
user: 2m2.580s 416184590541943029

V. CONCLUSIONS AND FURTHER WORKS

We should point out that Mace4 generates full models
with tables for each algebraic operation, while our software
only generates the order structure of the duals of finite
algebras. To obtain the algebraic structures, one can appeal
to Theorem 1 and obtain from each forest F produced by
the Python script, the structure of the corresponding Gödel
algebra by considering every subforest in Sub(F ). Then for
instance, the construction of the conjunction operation’s table
amount to consider set-inclusion among the subforests. Such
functionality is not present in our software and is left as
future work. Mace4 is a general-purpose Computer Algebra
System. Another interesting approach to compare with our
work is contained in [19], where authors introduce a brute-
force algorithm with a heuristic test to detect isomorphic lat-
tices, that computes tables operation for classes of residuated
lattices. The counting of such structures is a byproduct of
their work. They count several finite algebras related to many-
valued logics until cardinality 12, including Gödel algebras.
Our algorithm is essentially based on the duality between
finite forests and open maps, and finite Gödel algebras and
their homomorphisms. So, it makes sense to generalize this
duality-based approach to other classes of algebras for which
combinatorial dualities exist. In particular, we need subforest
representations for (at least) finite algebras. Such type of
representations can be found in the literature for locally finite
subvarieties of MTL algebras [20], such as nilpotent minimum
algebras [21], and revised drastic product algebras [22] and
their subvarieties: drastic product algebras and EMTL algebras
[23]. Another interesting duality for finite Gödel∆ algebras is
introduced in [24], and in [25] is shown that the dual category
of this variety is also dual to the variety of drastic product
algebras (studied in [26]). All these varieties are subvarieties
of an interesting algebraic variety related to weak negation
functions over [0, 1], the variety of WNM algebras. In [27]
one can find an extensive study of WNM chains that leads
to a combinatorial representation of finitely generated free
WNM algebras. Free and finite algebras are closely related.
Indeed, every k-generated algebra in a variety V can be
obtained as a quotient of the free k-generated algebra in
V. However, different congruences may generate isomorphic
quotients. Hence, studies on free and fine spectra can be
also used to investigate congruences in varieties. Finally, our
algorithm can be used to obtain additional insight on the
structure of finite Gödel algebras, helping researchers to find
structural properties of such algebraic structures or a bound
for the fine spectrum of G.
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