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Abstract—Many modern computing platforms in the safety-
critical domains are based on heterogeneous Multiprocessor
System-on-Chip (MPSoC). Such computing platforms are ex-
pected to guarantee high-performance within a strict thermal
envelope. This paper introduces a testbed for thermal and
performance analysis. The testbed allows the users to develop
advanced scheduling and resource allocation techniques aiming
at finding an optimal trade-off between the peak temperature
and the achieved performance. This paper presents a new, open-
source Thermobench tool for data collection and analysis of user-
defined workloads. Furthermore, a methodology for shortening
the time needed for the data collection is proposed. Experiments
show that a significant amount of time can be saved. Specifically,
time reduction from 60 minutes to 15 minutes is achieved with
the i.MX8 MPSoC from NXP while running a set of user-defined
benchmarks that stress CPU, GPU, and different levels of the
memory hierarchy.

I. INTRODUCTION

H
IGH-PERFORMANCE computing platforms are com-

posed of heterogeneous Multi-Processor System-on-

Chip (MPSoC). The heterogeneity in the MPSoC is the

key for delivering high-performance as each hardware (HW)

component has its strengths for specific user workloads. Ex-

emplary heterogeneous computing resources in an MPSoC are

various types of Central Processing Units (CPUs), Graphical

Processing Units (GPUs), and Field-Programmable Gate Ar-

rays (FPGAs).

In recent years, safety-critical domains such as automotive

and aerospace have experienced a significant increase in the

Software (SW) complexity and functionality that led to the

gradual adoption of the heterogeneous MPSoCs. Examples

of successfully deployed heterogeneous MPSoCs are infotain-

ment systems and autonomous driving computers in the recent

car generations.

Apart from guaranteeing the high-performance, the safety-

critical systems shall also operate under harsh environmental

conditions such as dust, vibrations, and extended thermal

ranges. In the context of safety and reliability, it is vital to

preserve the MPSoC thermal envelope. Thus, it is necessary

to keep the peak temperature under a predefined threshold.

One of the most popular methods for thermal management is

the active cooling that is commonly implemented by forcing

airflow by CPU fans. The active cooling significantly com-

plicates the mechanical design. In some cases, it might not

be available as electronics are so closely placed that only a

limited airflow is available. An alternative to the active cooling

is the passive cooling, which is commonly implemented by

heat-sinks. The passive cooling is less efficient than the active

cooling and requires additional space and adds additional

weight. Therefore, the safety-critical domains are interested

in complementary techniques to reduce the peak temperatures

in MPSoCs chips.

This paper paves the road towards the development of effi-

cient peak-temperature reduction techniques based on schedul-

ing and resource allocation. We introduce a testbed for

thermal and performance analysis of various user-defined

workloads executed on a selected MPSoC platform, NXP

i.MX8QuadMax [1]. We focus our effort on building the

testbed using a real hardware platform rather than on working

with simulators. As the thermal behavior of the real platform

is rich and influenced by a huge amount of factors like

computer architecture, physical chip and board layout, and

ambient environment, we propose tools and methods that shall

be applicable to a wide-range of real-world conditions and

hardware platforms.

More specifically, in this paper, we look for a reproducible

way to measure platform temperatures while running various

user-defined workloads. The goal is to eliminate various

random temperature-influencing factors as much as possible

without using expensive special-purpose equipment such as

thermal chambers. A part of our study is an investigation

of minimal experiment length that achieves both reproducible

results and good precision. To that end, we derive a thermal

model and try to use its knowledge to shorten the experiments.

The contributions of this paper are as follows:

1) We introduce Thermobench – a new open-source tool

that helps with benchmarking, collection of statistical

(performance and thermal) data, and their analysis. It also

contains multiple ready-to-use user-defined workloads.

2) We propose a method to shorten the length of the mea-

surements needed to predict the steady chip temperature

(from 60 to 15 minutes), and we evaluate the precision

of this method.

3) We present selected results measured on our testbed with

the proposed tooling, showing the relation of thermal and

performance properties.
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The remainder of the paper is organized as follows. In

Section II, we analyze the works most related to ours. Sec-

tion III introduces the components in our hardware setup

and Section IV outlines the functionality of the Thermobench

tool. In Section V, we provide details on the data analytics

and outline the conducted experiments for the model fitting.

Experimental results from the user-defined workloads are

presented in Section VI. The paper concludes with Section VII.

II. RELATED WORK

Many researchers analyze the thermal properties of com-

puter systems. A common approach is to create a model

and examine the thermal behavior using system simulation

[2]–[4]. The disadvantage of such an approach is that the

simulation precision highly depends on the input parameters.

Examples of input parameters are the floor plans of the chip

and details about the computer architecture [2]. However, such

input parameters are rarely available for the modern MPSoC

chips.

An alternative approach, pursued in this paper, is an

experiment-based analysis performed on real hardware. The

experimental approaches can be divided into two groups

based on the physical quantity being measured: i) electrical

power/ energy and ii) temperature. These two quantities are

related and measuring each one of them has its own advantages

and disadvantages. For example, authors of [5]–[9] analyze the

power consumption of various workloads aiming at decreasing

it. The advantage of measuring the power consumption rather

than the temperature is the instantaneous response. Never-

theless, there are also some disadvantages, especially when

temperature is the primary quantity of interest:

• in case the power measurement circuitry is not integrated

into the system, an invasive modification have to be made

to the board [10], which is not always possible. An

alternative is to measure the total input power, but this

way, it is not possible to distinguish between the power

consumers (e.g., MPSoC, displays and communication

interfaces).

• power consumption has fluctuations. Thus, the peaks

in the power consumption have to be captured with

high sampling rate [6]. Execution of such high-frequency

sampling on the target system increases the power con-

sumption and execution on an external system makes it

harder to correlate measurements with activities on the

target system.

In contrast to the availability of power measurements,

almost all modern MPSoCs have on-chip temperature sensors

that are accessible without the need of any special hardware.

Also, thermal measurements allow measuring interesting ef-

fects not visible when only the power is measured [11].

The thermal properties obtained as a result of this work can

be used to optimize scheduling or resource allocation of the

workload. This topic is addressed by other authors [12]–[15],

but in most cases their work is not applicable to our platform

and safety-critical requirements, either because they consider
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Fig. 1. Testbed for thermal measurements.

single-core platforms or because their scheduling model is not

compatible with our target domain – avionics.

The Thermobench tool presented in this work already

includes several ready-to-be-used benchmarks. Still, it is pos-

sible to use our tool with other benchmarks, such as Rodinia

benchmark suite [16].

III. TESTBED HARDWARE SETUP

This section describes the hardware setup in the testbed.

Figure 1 depicts the designed testbed where each label corre-

sponds to one of the following hardware components:

1) i.MX8 Multi-sensory Enablement Kit (MEK) [1];

2) Workswell thermal camera WIC 336 [17];

3) MinnowBoard Turbot (x86 architecture) [18];

4) HTU21D ambient temperature sensor [19];

5) WeMos D1 mini TB6612FNG fan motor controller [20];

6) USB-controlled relay connected to the MinnowBoard;

7) USB-controlled relay connected to the i.MX8 board reset

and power buttons.

The target device for our thermal and performance mea-

surements is the i.MX8 MEK board by NXP [1] (hereafter

referred to as i.MX8 board). We choose this particular MPSoC

because it is the latest generation of the i.MX family, which

has successfully demonstrated itself as a prominent computing

platform for a wide range of applications, including the on-

board infotainment systems in the automotive domain.

The MPSoC in the i.MX8 board is equipped with two CPU

clusters. The first one has four ARM Cortex-A53 cores, while

the second has two ARM Cortex-A72 cores. The MPSoC also

contains two Vivante GC7000 GPUs.

For the convenience of the testbed users and to make the

validation easier with various software stacks and OS kernels,

we choose to boot up the i.MX8 board over the network rather

than from the SD card. The network booting process relies on

the features provided by the U-Boot bootloader. The Linux

kernel is loaded via TFTP protocol, and the root file system
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Fig. 2. Thermocam application – Web interface.

is mounted via the NFS protocol. The network boot process

is automated with the help of the novaboot1 tool.

We employ an external Pulse Width Modulation (PWM)

motor controller to command the Revolutions Per

Minute (RPM) for the on-board CPU fan as the i.MX8

board does not allow us to command the fan speed directly.

The CPU fan speed is controlled from the software in the

i.MX8 board by remotely running (via an SSH session)

a command on the Turbot board. Then, the Turbot board

controls the WeMos minifan controller to which the CPU fan

is attached.

Many of the experiments are executed for prolonged periods

of time. During this time, the ambient temperature changes,

which may negatively impact the thermal benchmarks’ preci-

sion. The temperature deviations caused by the fluctuations

in the ambient temperature has to be compensated for. A

way to achieve such compensation is to record the ambient

temperature and consider its values in the latter analysis.

The ambient temperature sensor is attached to the Turbot

development board. The software on the i.MX8 board may

read the ambient temperature sensor by remotely running a

command on the Turbot board. The command records the

ambient temperature every 10 seconds.

The thermal behavior of the i.MX8 board is monitored

by an external thermal camera. In our testbed, the thermal

camera is attached to the Turbot board and controlled by a

custom application referred to as thermocam. The thermocam

application processes the images from the camera and makes

them available over a web interface (see Figure 2).

1https://github.com/wentasah/novaboot
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process

CSV file

(time-series data)

Temp. sensor
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etc.

exec. stdout
Aux. sensor

processes
CPU fan

Fig. 3. Data flows in the Thermobench tool

Finally, the MinnowBoard Turbot board serves as a “gate-

way” for the i.MX8 board in the testbed. The MinnowBoard

services provide access to the CPU fan, the ambient tempera-

ture sensor, the relays, and the thermal camera.

IV. THERMOBENCH TOOL

The Thermobench tool is an open-source software hosted

on GitHub2. The Thermobench tool is developed to configure

the testbed and capture the execution profiles of user-defined

workloads as depicted in Fig. 3. Its three main components

are designed to be portable and are described as follows:

• A C++ application that captures the execution profile

of user-defined workloads and stores them in a file.

Examples of execution profiles might be thermal and

performance measurements.

• A Julia3 package that has data analytics capabilities (refer

to Section V for further details), and allows the user to

generate various graphs.

• User-defined workloads that expose the thermal and per-

formance profiles of the MPSoC under test. Currently,

we provide the following examples of user-defined work-

loads: CPU micro-benchmarks, CPU memory subsystem

benchmarks, and GPU benchmarks. Further details and

results are provided in Section VI.

Other notable features of the Thermobench tool are:

• inserting a cool-down time between the execution of two

consecutive user-defined workloads,

• controlling the fan speed, and

• the possibility to specify the collected statistics via an

external sensor file. This feature makes it easier to collect

data from all relevant sensors available on a given board.

In a nutshell, the Thermobench tool runs a user-defined

workload and periodically collects its execution profile (most

importantly measured temperatures), which are then stored to

a file for later processing. Examples of recorded statistics are:

• Timestamps,

• Temperatures from Linux thermal-zone sensors,

• CPU clock frequencies,

• CPU load,

• Standard output of the benchmarked program,

• Output (or just selected values) from specific commands

(e.g., reading temperatures from the ambient temperature

sensor and from the thermal camera).

2https://github.com/CTU-IIG/thermobench
3https://julialang.org/
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By default, the Thermobench tool records statistics once per

second. With this setting, we have experimentally verified that

the Thermobench tool’s impact on the system’s thermal and

performance profile is negligible.

V. DATA ANALYTICS

The data analytics in the Thermobench tool allows to

compare the thermal and performance profiles of various user-

defined workloads in the testbed. The thermal profile is based

on the heat flow that is produced during the execution of user-

defined workloads on the MPSoC. The heat flow is the amount

of heat energy passed out of the MPSoC. The heat flow is

denoted by Q̇ and measured in Watts. Unfortunately, the heat

flow cannot be directly measured. Therefore, we do estimate

it by alternative means – namely using the temperature of the

chip. In the rest of the Section, we describe how to estimate

the heat flow and evaluate the estimation’s precision.

It is well known [21] that the heat flow Q̇ produced by a

chip is proportional to the relative temperature ∆Tss:

Q̇ ∝ ∆Tss = Tss − Tamb, (1)

where Tss is the steady-state chip temperature, and Tamb is the

ambient temperature. Therefore, to compare the heat flows of

various user-defined workloads in an MPSoC, it is sufficient to

compare their ∆Tss. However, waiting for the chip temperature

to stabilize may require a prolonged period of time, while the

user may expect quick and precise ∆Tss estimates.

A naïve approach to estimate the ∆Tss is to average multiple

adjacent temperature samples. Unfortunately, the temperature

readings are noisy and may significantly compromise the ∆Tss

precision. A more robust approach is proposed in the sections

to follow, where we also discuss the influence of the ambient

temperature on the ∆Tss estimates. Finally, we conclude the

section by proposing a way to shorten the time necessary for

the data capturing of the temperature readings.

A. Thermal model fitting

Figure 4 visualizes the temperature measurements collected

with the Thermobench tool with sampling period of 1 second

for a 60-minutes experiment running arithmetic CPU compu-

tations. The temperature measurements are captured with a

switched-off CPU fan as required by our target applications.

To overcome the noise in the temperature measurements, the

Tss is estimated by fitting the thermal model to the measured

data and by computing the Tss as T∞ from the thermal model

described by (2). We use least-squares fitting implemented

by Levenberg-Marquardt algorithm. In this paper, the applied

thermal model [21] follows the evolution of the chip temper-

ature as a function of time:

Tn(t) = T∞ +

n∑

i=1

kie
−

t

τi , (2)

where n is the order of the model and τi are the time constants

of the model. The time constants specify “how fast” the

temperature reacts to changes of the heat flow. We selected

such a thermal model because it has the same result as a

solution of a set of linear differential equations that is typically

used in the modeling of thermal systems.

By fitting the thermal model (2) to the temperature data

measured with the Thermobench tool, we manually select n

and discover the constants T∞, ki, and τi.

In Figure 4, we demonstrate how the thermal models of

different orders (n) may fit the data. The first and the second-

order models do not fit well – see their root-mean-square

errors (RMSE). The third and the fourth-order models fit

better. The difference between them is negligible, thus we

conclude that the 3rd order model is sufficient. Numerically,

the models for different orders are as follows:

T1(t) = 54.0− 17.9e
−t

5.2 (3)

T2(t) = 54.5− 13.6e
−t

1.9 − 8.4e
−t

11.6 (4)

T3(t) = 54.8− 7.3e
−t

0.9 − 11.2e
−t

4.1 − 4.6e
−t

20.1 (5)

T4(t) = 54.8− 0.3e
−t

0.02 − 7.3e
−t

0.9 − 11.2e
−t

4.1 − 4.6e
−t

20.3 .

(6)

We observe in (5) that for n = 3, the T∞ = 54.795 ±

0.075 °C (95% confidence intervals are the output of the fitting

algorithm). Depending on the thermal model order, the esti-

mated T∞ differ by approximately one degree. For the third-

order thermal model, the time constants are τ1 = 0.91± 0.08,

τ2 = 4.1 ± 0.3 and τ3 = 20.1 ± 2 minutes. The longest time

constant τ3 is particularly important, because it determines the

experimental time for the temperature to reach a steady-state

– the exponential term reaches 95% of its contribution ki in

3 · τi. In case of τ3, the experimental time is ≈ 60 minutes. In

Section V-C below, we examine how this time can be reduced.

B. Suppression of ambient temperature changes

The ambient temperature influences the on-chip temper-

ature. The experiments may run for prolonged periods of

time, and the ambient temperature may easily vary among the

experiments or even during a single experiment. Such vari-

ations often result in non-reproducible temperature readings.
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Fig. 5. Evolution of the ambient temperature over a period of one week.
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Figure 5 visualizes the evolution of the ambient temperature

as measured by our testbed over a period of one week.

To suppress the effect of ambient temperature changes, it

might be best to have a model that counts the impact of the

ambient temperature on the on-chip temperature readings and

can produce delays of the heat propagation from the ambient

environment to the chip. Such a model is referred to as a

transfer function and can be estimated by system identification

methods based on models such as OE, ARX, and ARMAX4.

It is a well-known fact that for these methods to produce good

results, it is necessary to have a high variation on the system

inputs. Small changes in the ambient temperature over a long

period of time (as in Figure 5), together with relatively high

measurement noise, rendered these methods to be ineffective.

Due to the lack of a better model, we do compensate for

the ambient temperature changes by simply subtracting the

actual ambient temperature Tamb(t) from the other measured

temperatures. As a result, the T∞ in model (2) represents the

estimate of ∆Tss. Figure 6 visualizes the results of the fitting

thermal models with and without the ambient temperature

compensation. The graphs show data from an experiment

4https://www.mathworks.com/help/ident/ug/what-are-polynomial-models.
html
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TABLE I
PARAMETERS OF THE 3RD ORDER THERMAL MODEL WITH

UNCONSTRAINED τ FOR EXPERIMENTS HOT.1 AND HOT.3.

T∞ k1 τ1 k2 τ2 k3 τ3

[°C] [°C] [min] [°C] [min] [°C] [min]

hot.1 54.8 −7.3 0.9 −11.2 4.1 −4.6 20.1

hot.3 54.9 −3.4 0.6 −8.3 1.6 −7.8 7.1

called “sleep”, which was repeated six times. It can be seen

that the standard deviation of T∞ estimates is ≈ 0.6 °C without

the compensation and ≈ 0.1 °C with it.

The proposed compensation for the ambient temperature

changes also helps with the model fitting. The mean value

of the fit errors (RMSE) from the examined experiments is

4% lower after the compensation, and the maximum fit error

is even 12% lower.

C. Reduction of the experimental time

As we have demonstrated, the user-defined workloads have

to run for at least 60 minutes, which turns to be impractical and

time-consuming. In this section, we investigate the possibility

of fitting the thermal model from a shorter experimental data

set and estimating the T∞ afterward. The difference between

the estimates from short and full 60 minute experiments can

be seen in Figure 7.

We compare three ways for the thermal model fitting:

• 3rd order model with known time constants, i.e., τi are

constrained to ±1% of the values estimated from 60

minutes of data.

• 3rd order model with unconstrained time constants, i.e.,

time constants are fully estimated from the shorter data,

• 2nd order model with unconstrained time constants.

In Figure 7, the 3rd order model and the constrained τ is

depicted by curve (A). Curve (A) suggests that the thermal

model is able to predict the chip temperature with unsatisfac-

tory precision (> ±0.5°C) for an experiment executed for less

than 20 minutes. Curve (B) suggests that the same method

applied to the same user-defined workload but executed 2

MICHAL SOJKA ET AL.: TESTBED FOR THERMAL AND PERFORMANCE ANALYSIS IN MPSOC SYSTEMS 687



 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  5  10  15  20  25  30

R
el

. 
te

m
p
er

at
u
re

 [
°C

]

Time [min]

Measured data (hot+fan.2)
Fit: n=1, RMSE=0.32
Fit: n=2, RMSE=0.3
Fit: n=3, RMSE=0.3

Fig. 8. Measured data and fits with the fan switched on. Note that the
ripples in the measured data are caused by the compensation for the ambient

temperature. The second order thermal model is 6.2− 1.5e
−t

0.3 − 0.9e
−t

2.4 .

hours later (hot.3) produces even worse results. A satisfactory

estimate is achieved for an experiment longer than 30 minutes.

In Figure 7, curve (C) shows the results of fitting the

“shortened” data without constraining the time constants close

to the correct value. We observe a high number of outliers and

convergence to the constrained case for experiments longer

than 50 minutes. Also, the time constants have high variation

when the fits of the different runs of the same experiments are

compared – see Table I. We attribute this variation to the fact

that our thermal model presents a lumped-parameter system,

where the spatial distribution of heat production and transfer

is ignored, whereas the thermal model in a real MPSoC is a

distributed-parameter system where spatial dimension matters.

Finally, in Figure 7, curve (D) shows the results of fitting

2nd order model with a systematic estimation error.

To conclude, a satisfactory estimate T∞ is achieved for

experiments longer than 1.5maxi(τi) ≈ 30 minutes. To have

satisfactory temperature estimates for shorter experiments, it is

necessary to decrease the time constants of the tested system.

One of the possible ways is described in the following section.

D. Using the CPU fan to decrease time constants

In thermal models, the time constant τ can be computed

as τ = RC, where R is the thermal resistance between

two objects with different temperatures, and C is the thermal

capacity of the object whose temperature is being measured.

In our case, the object is the MPSoC chip. The time constant

(τi) can be reduced by:

• reducing the thermal resistance R. It can be achieved by

regulating the CPU fan speed – higher RPM of the fan

motor results in lower thermal resistance between the heat

sink and the surrounding environment, or

• reducing the capacity C, e.g., by removing the heat sink

from the MPSoC chip.

We decided to pursue the former alternative with the CPU

fan as it is easy to implement. Figure 8 visualizes the tempera-

ture variations from the same workload as in Figure 4, but with

the fan running at full speed. It can be seen that the steady-

state temperature is only 6.2 °C above ambient temperature and

that the time constants are much lower: 0.3 and 2.4 minutes,

respectively. Also note that in this case, the 3rd order model
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is not necessary as it provides the same result as the 2nd order

model.

When we try to estimate the T∞ from a shorter period

of time, we can see (Figure 9) that satisfactory results are

obtained for experiments longer than 13 minutes with uncon-

strained (un.) τ estimations. Constraining (co.) τ constants

leads to systematic errors for data from different experiments

(curve B). The 1st order model error is slightly below zero even

for x → 30 (curve D). The 3rd order model (curve E) gives

the same results as 2nd order model, but with few outliers.

It may happen that for less CPU/memory intensive user-

defined workloads, the T∞ is even lower than 6 °C. In that

case, the resolution of the temperature sensors might not be

sufficient to provide precise temperature estimates. A possible

mitigation is to lower the CPU fan speed. The results of the 2nd

order thermal model fitting with different CPU fan speeds are

presented in Figure 10. The T∞ temperature clearly decreases
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with increasing fan speed and the same trend can be observed

for time constants τ1 and τ2 except for few outliers (0.35 and

0.8 PWM duty cycle). For some experiments, mostly with high

CPU fan speeds (in Figure 10, it is visible from error bar size

for 0.8 PWM duty cycle) the fitting algorithm is not able to

precisely estimate τ2, because the slow mode is almost not

visible in the measured data, i.e., the 1st order model would

be more appropriate there. From non-outlier experiments, we

observe that τ2 drops from 6 to about 0.8 minutes. The

outliers in τ estimates are the reason why constraining the

time constants to “correct” values during the model fitting, as

described in Section V-C, does not always lead to satisfactory

results.

The results presented in this section follow from laws of

physics and as such, they should apply universally to different

hardware platforms. We validated them on second platform –

NVIDIA Jetson Xavier – and the measured trends were the

same as those described above.

E. Summary

Analyzing the data from the Thermobench measurements is

not fully automatic and may require a few manual steps. These

steps are mainly related to the selection of the thermal model

order, the experiment duration, and the appropriate CPU fan

speed. Additionally, after fitting the thermal model, one has to

check that the model fitting algorithm did not end up in a local

minimum, which may result in imprecise T∞ estimations.

After these manual steps are complete, the methods described

in this section give a reasonably precise estimate for the T∞.

The estimate T∞ is proportional to the heat flow Q̇ generated

by the executed workload.

By fitting the thermal model to the measured data, we obtain

more robust estimates for T∞. Furthermore, we have demon-

strated the role of the CPU fan to shorten the experimental

time. With the CPU fan switched on, it is sufficient to run

the experiments for as short as 15 minutes instead of the

initial 60 minutes. Note that the results obtained from the

fan-enabled testbed are still applicable to fan-less operation

in target applications after scaling the temperatures and time

constants up.

VI. EXPERIMENTAL RESULTS

The Thermobench repository contains multiple user-defined

workloads that might be used to assess the thermal and per-

formance characteristics of the selected MPSoC in the testbed.

In what follows, we introduce three types of user-defined

workloads. Each one of the workloads has been validated on

the i.MX8 board.

A. CPU computation-intensive workloads

The benchmarks/CPU/instr folder contains various

CPU micro-benchmarks that perform mostly arithmetic op-

erations. With these benchmarks, we compare the thermal

efficiency and the performance of the CPUs and the CPU

clusters. Note that by thermal efficiency, we refer to heat flow,

is proportional to steady-state temperature T∞.

In Figure 11, we list the multiplication operations. The top

row compares the single-core performance of A53 and A72

CPUs. The A72 core offers higher performance for non-SIMD

and floating-point SIMD instructions. Surprisingly, the integer

SIMD instructions are faster on A53. The CPU temperature

does not depend significantly on a particular type of operation.

On average, the A72 produces 51.1 ± 5.7% more heat than

the A53, while delivering only 92.9 ± 1.6% of the A53

performance.

The bottom row compares the multi-core performance,

where the same benchmark was running on all CPUs within

a single cluster. For the A53 cores, the comparison between

the single-core and the multi-core execution suggests that the

performance increases four times while the temperature rises

by only 31.9 ± 8.0%. For the A72, the comparison between

the single-core and the multi-core execution suggests that the

performance is increased by 2× while the temperature is raised

by 27.8± 4.4%. The experiments suggest that if all cores in a

cluster are used, the A53 cluster is always faster than the A72

cluster, while the A72 cluster dissipates 46.4 ± 8.6% more

heat.

B. CPU memory-intensive workloads

In the Thermobench repository, the CPU memory-intensive

workloads are referred to as membench benchmark. The

membench benchmark stresses each level of the memory

hierarchy and measures the available memory bandwidth.

The memory bandwidth achieved by various numbers of

CPUs can be seen in Figure 12. As expected, the highest

bandwidth is for L1 cache memory, i.e., for working set

size (WSS) ≤ 32 KiB, followed by the L2 cache bandwidth

(32 KiB < WSS < 1 MiB) and the lowest bandwidth is,

unsurprisingly, available for the DRAM accesses (WSS >

1 MiB). The drops in the performance are aligned with the

size of the caches. The further the cache from the processor

core is, the lower the performance is. One may also observe,

that the DRAM bandwidth available to the 2x A72 cores is

slightly lower than the DRAM bandwidth available to the 4x

A53 cores.

Figure 13 visualizes the temperature effects of accessing

different parts of the memory hierarchy. Clearly, the L1 cache

accesses are the most thermal efficient, whereas the DRAM

accesses are the least thermal efficient.

C. GPU-intensive workloads

User-defined workloads for the GPU are based on OpenCL-

based benchmarks. In OpenCL, the compute work is divided

into work items. The total number of work items is referred

to as the global size. The work items are being worked on

by kernel code running in so-called work groups. Each work

group processes a certain number (called local size) of work

items in parallel. The work groups are executed on the GPU

either sequentially or in parallel, depending on its (local) size

and the size of the GPU.

Figure 14 lists the results from the OpenCL mandelbrot

(compute-bound) benchmark. The left graph shows the results
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Fig. 11. Comparison of relative steady state temperature T∞ and performance of multiplication instructions (number of performed multiplications per second)
on different CPUs.
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Fig. 13. Memory performance and temperature (measured with the fan
switched off).

from the experiments with different global sizes and the same

local size. The maximum performance is reached for a global

size of 512 or higher (with negligible performance loss for a

size of 1024). Smaller global sizes cannot reach the full GPU

parallelism, and hence the computation takes a longer time.

The steady-state temperature T∞ decreases with decreasing

performance.

In Figure 14, the graph on the right side shows that there is

no significant difference in both temperature and performance

when the same amount of work items is divided into differently

sized work groups.

Figure 15 shows the results of the OpenCL memory-bound

benchmark that reads dummy data from the DRAM memory.

The left graph suggests that the increased parallelism (global

size) leads to decreased performance because the memory

bandwidth is the limiting factor. The temperature slightly

decreases with performance reduction. The right graph shows

that varying the local size makes no difference.

VII. CONCLUSIONS

We demonstrated the functionality of our testbed and of

the Thermobench tool for processing the data gathered from

the testbed. Presented experimental results with computation

and memory intensive CPU and GPU benchmarks show which

types of results can be obtained from the testbed.

In the future, we intend to leverage the findings of the

current work and develop advanced scheduling and resource

allocation techniques aiming at finding an optimal trade-offs

between the dissipated heat and the achieved performance.

The currently proposed testbed will be used for assessing the

effectiveness of the proposed techniques.
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Fig. 14. Performance of a compute-bound GPU benchmark.
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