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Abstract—Segmentation is the key computer vision task in
modern medicine applications. Instance segmentation became the
prevalent way to improve segmentation performance in recent
years. This work proposes a novel way to design an instance seg-
mentation model that combines 3 semantic segmentation models
dedicated for foreground, boundary and centroid predictions. It
contains no detector so it is orthogonal to a standard instance
segmentation design and can be used to improve the performance
of a standard design. The presented custom designed model is
verified on the Gland Segmentation in Colon Histology Images
dataset.

I. INTRODUCTION

S
SEMANTIC segmentation is the most important computer
vision task in biomedical applications and any improve-

ment of it may result in saved lives [1], [2]. Combining
multiple models is a well known technique to improve segmen-
tation. Creating an ensemble of the trained models can signifi-
cantly increase the single model performance [3], [4], [5], [6],
[7]. It is a favorite method of many models which helped them
to be placed high in competition leader-boards. The high struc-
tural diversity within an ensemble is very beneficial; therefore,
varied models are usually used within an ensemble [4], [6].
Another standard method is to use a multiple loss function with
at least one element entirely focused on the boundary pixels
[8], [9], [10]. The boundary pixels are harder to correctly
classify and using a part of the loss function focused on them
can significantly improve the overall results. More advanced
method is to use a separate model (or at least a separate
architectural branch) to learn boundary pixels and its results
combined with the standard segmentation model [11], [12].

Instance segmentation is a more complex CV task capable
to differentiate classes and objects within classes on the
pixel level. The advantage of instance segmentation is a
capability to count objects (even objects in contact or partial
occlusion) which is very beneficial in many applications [13].
The standard approach to create an instance segmentation
model is to combine a semantic segmentation model with
a detection model [11], [12]. Joint training of the models
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improves the overall results. It also improves the single model
performance [14] in detection or segmentation tasks. Newer
instance segmentation models combine multiple models. One
model is usually a detector, one is semantic segmentation and
one is dedicated to boundary pixels [15], [16].

Our proposed method is inspired by all the mentioned
techniques. We combined three semantic segmentation models
into a model capable to perform the instance segmentation
task. One model is semantic segmentation of foreground,
one is dedicated for boundary pixels and the last model is
focused on the most internal pixels (near object centroids)
of all segmented objects. Our method is orthogonal to the
standard instance segmentation technique because there is
no detector. It is also orthogonal to the ensemble technique
because the models are dedicated to the different operational
tasks. Our method is tested on the GlaS dataset [17]. It is an
instance segmentation dataset that provides annotations with
the clear differentiation of each object and the background.
The presented results are from our custom designed model
based on the U-Net general structure [18] incorporating Res-
Net [19] blocks with spacial [3], [4] and depth-wise [20]
separable convolutions. The novelty and contribution of our
work is:

• new technique for designing instance segmentation mod-
els composed of three semantic segmentation models,

• the custom designed instance segmentation model,
• verification of our techniques on the GlaS dataset,
• verification that our technique improves semantic seg-

mentation in general.

Our motivation lies in finding a novel way to create instance
segmentation models that is orthogonal to currently used
techniques so it can be used in combination with them to
further improve the state-of-the-art models.

The rest of the paper is organized as follows. The GlaS
dataset and related biomedical models are discussed in section
II, our model is described in section III, training is discussed
in section IV, evaluation of the predicted results are presented
in section V, and section VI concludes the paper.
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II. THE GLAS DATASET AND RELATED BIOMEDICAL

MODELS

Colorectal adenocarcinoma originating in intestinal glandu-
lar structures is the most common form of colon cancer. Patient
prognosis and a treatment plan is devised by pathologists based
on the morphology of intestinal glands, including architectural
appearance and glandular formation. Achieving good inter-
observer as well as intra-observer reproducibility of cancer
grading is still a major challenge. The Gland Segmentation
in Colon Histology Images Challenge Contest (GlaS) held
at MICCAI’2015 has been organized with the goal to find
and improve an automated approach which quantifies the
morphology of glands [17]. The GlaS dataset was made public
as part of this challenge. It consists of 165 images derived
from 16 H&E stained histological sections (each from different
patient) of stage T3 (tumour has grown into the outer lining
of the bowel wall) or T4 (tumour has grown through the
outer lining of the bowel wall) colorectal adenocarcinoma.
The images are divided into 3 parts: training set, test A, test
B containing 85, 60 and 20 images respectively.

Modern biomedical models utilize or are based on some U-
Net [18] like architecture. The work [21] uses a structure learn-
ing approach to segment instances of glandular structures from
colon histopathology images. The authors combined hand-
crafted, multi-scale image features with features computed by
a U-Net like model trained to map images to segmentation
maps. The results are improved with post-processing and they
reached better GlaS challenge rank (combined metric) than the
challenge winner. The work [15] improves the results further.
Authors created their model as a combination of 4 models. The
first one segments foreground, the second one with U-Net like
structure segments edges, the third one is a detector and the
last one fuses these results into the instance segmentation map.

Instance segmentation is very popular in recent years. A
novel hierarchical neural network comprising object detection
and segmentation modules to accurate cell instance segmen-
tation of neural cells is presented in [22]. Another work
oriented to precise instance nuclei segmentation [23] presents
a deep multi-scale neural network, with a novel loss function
that is sensitive to the Hematoxylin intensity. The work [16]
presents an instance segmentation model that segments translu-
cent overlapping objects. Authors combined segmentation and
detection models with multiple branches that allowed output
transformation from 2D to 3D. The work [10] presents an
instance segmentation improvement of cluttered cells by using
a novel multiclass weighted loss function. The work [5] uses
an ensemble of mask R-CNN models to segment polyps in
colonoscopy images.

III. INSTANCE SEGMENTATION MODEL DESIGN

We were working with the very limited computation power
and had to make some compromises. The GlaS dataset
contains images in resolutions 574 × 433, 589 × 453 but
most images are 775 × 522. Using high resolution inputs
is highly computation intensive. Therefore, we transform all
these images to 256 × 256. It is a well known fact that training

TABLE I
EXPERIMENTS WITH DIFFERENT TYPES OF INPUT DATA AUGMENTATIONS

Augmentation types Loss function F1 IoU

None 0.5 0.61 0.61

Rotation 0.38 0.84 0.55

Rotation & crop & shear 0.59 0.73 0.36

All 7 types 0.86 0.71 0.26

with higher resolution improves prediction results in general.
So, we do not expect to reach the state-of-the-art results with
the reduced resolution of inputs. We also made some choices
to select architectures with more efficient computation during
designing of our model. More details will be mentioned later.

Medical datasets rarely contain many images. It is also
true for the GlaS dataset which contains 165 images. It is
a well known fact that using bigger training sets improves
prediction results, allows to use higher capacity models and
reduces overfitting occurrence in general. We opted for data
augmentation which is a standard practice with small datasets.
We designed a custom augmentation scheme that uses random
combination of rotation, crop, salt & pepper noise, blurring
by mean filter, shear deformation in x axis and/or y axis,
horizontal and/or vertical flip, and color channel shift. The
rotation is in 60 degree steps, the crop size is within 20–80%.
We experimented with different combinations. Some results
are in table I. All experiments with different augmentation
improved the results but the effect varies. We found out that
combining many augmentation types in a step is detrimental.
For further experiments, we reduced the probability of multiple
augmentations in a step and reduced the augmentation types
to rotation, crop and salt & pepper noise.

Our design is based on the U-Net plus model. The input
resolution is 256 × 256. The encoder part is composed of 5
blocks. Each block is composed of two 3×3 convolutions and
2×2 max pooling so the input resolution of the next block is
halved. Each convolution is followed by the normalization and
ReLU. The convolutions in the first block have 32 channels
and the number of the channels is doubled with the reduced
resolution. The decoder block is a mirrored image of the en-
coder block. It starts with transposed convolution to two-times
increase the resolution and is followed by concatenation that
adds outputs of the encoder block with the same resolution.
The center block has resolution 8 × 8, 2 convolutions with
1024 channels and no pooling. It is considered as a part of
the encoder. The last encoder block is followed by a 1×1
convolution with the sigmoid. The performance of this model
is shown in the first line of table II.

We made experiments with different types of convolutions
used instead of standard 2D convolutions and the results are
shown in table II. We used space separable convolutions,
depth-wise separable convolutions and space and depth-wise
separable convolutions. Each convolution was transformed
into a sequence of the selected type of separation. There
are no normalization and no activation functions between
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TABLE II
EXPERIMENTAL RESULTS WITH DIFFERENT CONVOLUTION TYPES

Convolution Loss
F1 IoU Time Parameters

types function

Standard 0.58 0.8 0.47 9.04s 31 126 563

Space separable 1.7 0.49 0.02 2.7s 26 923 811

Depth-wise
0.5 0.86 0.66 9.3s 14 386 881

separable

Space and depth-
0.51 0.85 0.6 3.3s 14 386 815

-wise separable

TABLE III
EXPERIMENTAL RESULTS OF INCREASING THE ENCODER CAPACITY

Number of

Convolution Loss
F1 IoU Time Parameters

sequences in the function

encoder block

2 0.5 0.85 0.6 3.3s 14 386 881

4 0.57 0.83 0.58 10.13s 17 200 623

6 0.98 0.8 0.44 10.05s 20 032 431

separated convolutions. Space separable convolution uses a
sequence of 3×1 and 1×3 convolutions. Depth-wise separable
convolution uses a sequence of 3×3 depth-wise (applied to
each channel separately) and 1×1 convolutions. The space
and depth-wise separable convolution uses a sequence of 3×1
depth-wise, 1×3 depth-wise and 1×1 convolutions. The best
results were reached by depth-wise separable convolutions, but
they consume the most computation time to train an epoch.
Therefore, we decided to use space and depth-wise separable
convolution instead which has only slightly worse results but
is significantly faster.

We also experimented with increasing the model capacity by
doubling and tripling the number of convolutions used in the
encoder block. To reduce the computational requirement, we
focused only on the encoder. The results are in table III. The
table shows that increasing the encoder worsened the results.

Our instance segmentation model is composed of a single
encoder and 3 decoders dedicated to segment foreground,
boundaries and centroid pixels of all objects (glands). Its block
architecture is shown in Fig. 1. Segmentation of the boundaries
helps to improve the overall segmentation and allows to
separate the glands that are in a contact. Segmentation of the
centroids allows to filter out the noise and to focus on the true
glands.

IV. TRAINING

Our earlier experiments were done with training from the
scratch. We used default random seeding offered by Ten-
forflow and Keras libraries. It is well known that pretraing
improves the overall results. Due to our limited computation
power, we selected small biomedical datasets for pretrainig. At
the beginning, we used one dataset (95 images) from Nuclei
Segmentation In Microscope Cell Images dataset composition

[24]. Later, we used a combination of Colorectal Adenocar-
cinoma Gland (CRAG) dataset (173 images) [25] and PATH-
DT-MSU dataset (120 images) [26], [27] which both contain
images with the cervical glands. Pretraining slightly improved
the results by approximately 1 % and using slightly bigger and
topically close datasets improved the results slightly further.

We used the weighted binary cross-entropy loss function
for the most of our experiments because it produced the best
results. We experimented with our custom designed loss func-
tion that allowed more precise weight control and focus on the
boundary and centroid pixels, but it was always outperformed
by weighted binary cross-entropy.

Segmentation of the boundary and centroid pixels required
to create extra annotations from the ground truth masks. The
annotation boundaries were separated by canny algorithm and
the centroids were calculated as the center positions of tight
bounding boxes. To improve the imbalance of foreground
and background pixels, we increased the width of boundaries
and centroids by a dilatation filter. We varied the size of the
dilatation filter. The experiments showed that the best predic-
tion results were produced when the width of the annotation
boundaries was approximately 11 pixels and the width of the
annotation centroids was approximately 14 pixels.

As the main metric was selected F1 score and as the
second evaluation score was used Intersection over Union
(IoU). F1 score correlated more with visual quality inspection
of segmentation results in comparison to IoU. F1 and IoU
were also used for the evaluation of boundary and centroid
segmentation results. However, they were calculated from their
respective annotations.

Our instance segmentation model produces 3 separate out-
put maps that have to be combined into the final instance
segmentation map. It is done by simple postprocessing. The
first step uses threshold values to transform predicted values
to binary numbers. The second step tightens the boundary and
centroid prediction by erosion filters. To improve prediction,
the wider annotations were used. The erosion transforms the
prediction into tight boundaries and centroids. The third step
slightly denoises the foregrounds masks by using the dilatation
and erosion filter in a sequence. The fourth step subtracts the
boundaries from foreground masks to find the true separation
between glands in contact. The fifth step removes the objects
that do not have segmented centroids. This step significantly
removes the noise. The thresholds of the first step are set
to lower values (approximately 0.33) so most of the true
foreground pixels are segmented. It can be done this way
because the fifth step removes most of false objects still
present in the mask.

Hyperparameters overview. The combination of grid and
line searches was used to find the optimal parameters. We se-
lected more computation efficient solutions due to the limited
computational power. Selected experiments were discussed in
section III. We used Adam optimizer and the default setting
achieved sufficiently good results in our experiments. The
default setting is represented by beta_1 = 0.9 (the exponential
decay rate for the 1st momentum estimate), beta_2 = 0.999
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Fig. 1. Block architecture of our final instance segmentation model

(the exponential decay rate for the 2nd momentum estimate),
epsilon = 1e-7 (a small constant for numerical stability). Most
of our training is done with default learning rate of 0.001. We
used batch size = 8 and max epochs = 150 but usually training
was stopped sooner. We used early stopping with patience =
20. Input resolution = output resolution = 256 × 256, the main
evaluation metric is F1 score, the additional metric is IoU and
the loss function is weighted binary cross-entropy.

V. EVALUATION OF THE PREDICTED RESULTS

The GlaS dataset was used in Colon Histology Images
Challenge Contest held at MICCAI’2015 and therefore there
are a lot of great performing models listed in the challenge
leader-board, see table IV. Our model reaches the 7th best
place in F1 score while using only 256 × 256 input resolution.
With reduced input resolution we did not expect to improve
the state-of-the-art. Our results prove that precise instance
segmentation can be done with only segmentation models,
no detector is necessary. Our presented instance segmentation
designed technique can be used also with a detector to improve
instance segmentation further and push the state-of-the-art.

Our instance segmentation design technique can be also
used to improve standard semantic segmentation. As was
described in the previous section, the boundaries improve
the object separation and the centroids improve the noise
reduction (in the form of reduction of false predictions). The
comparison of our best instance segmentation model with its
only foreground (mask) segmentation branch is shown in table
V. Adding boundary and centroid segmentation branches can

TABLE IV
COMPARISON THE STATE-OF-THE-ART MODELS

Model name F1

CUMedVision2 0.912

ExB3 0.896

Work [15] 0.893

ExB2 0.892

Work [21] 0.892

ExB1 0.891

Our model 0.874

Freiburg2 0.870

CUMedVision1 0.868

CVIP Dundee 0.863

Xu et al. 0.858

Freiburg1 0.834

LIB 0.777

CVML 0.652

vision4GlaS 0.635

significantly improve the performance of standard semantic
segmentation.

Visual evaluation of predicted results of our best instance
segmentation model and its only foreground segmenting
branch can be seen in Fig. 2, Fig. 3, Fig. 4 and Fig. 5.
Fig. 2 and Fig. 3 show easy samples represented by regular
structure and good contrast. Fig. 4 and Fig. 5 show hard
samples represented by more complex structure (irregularities,
high deformations) and less contrasted texture details. Instance
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TABLE V
EVALUATION OF THE IMPACT OF BOUNDARY AND CENTROID

SEGMENTATION AS AN ADDITION TO THE FOREGROUND PREDICTION

Model F1 IoU

Only foreground

segmentation branch 0.737 0.601

of our best IS model

Our best IS model 0.874 0.784

segmentation model clearly improves the separation between
glands and helps to remove false positives.

VI. CONCLUSION

This work presents a novel way to design an instance seg-
mentation model that is composed of 3 semantic segmentation
models. Because it does not include a detector, it is orthogonal
to standard instance segmentation design methods and can be
used together with them to further improve the state-of-the-
art. The presented results clearly show that adding 2 segmen-
tation branches with foreground segmentation improves the
segmentation results significantly. The boundary and centroid
segmentation branches improve the separation between objects
and remove false positives.

Our best performing instance segmentation model reached
the 7th best result in F1 score when compare to recent works
and the MICCAI’15 contest leader-board while using only 256
× 256 resolution. The model is custom designed with space
and depth-wise separable convolutions and basic U-Net like
structure. The segmentation models share single encoder while
they use their own separate decoders.

Our model can be improved by better postprocessing in the
form of fusing neural network model which we are planing to
add in the future.
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Fig. 2. Visual evaluation of easy samples. From top to bottom: annotation, input, IS prediction, only foreground prediction branch.

Fig. 3. Visual evaluation of easy samples. From top to bottom: annotation, input, IS prediction, only foreground prediction branch.
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Fig. 4. Visual evaluation of hard samples. From top to bottom: annotation, input, IS prediction, only foreground prediction branch.

Fig. 5. Visual evaluation of hard samples. From top to bottom: annotation, input, IS prediction, only foreground prediction branch.
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