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Abstract—Embedded platforms with GPU acceleration, de-
signed for performing machine learning on the edge, enabled
the creation of inexpensive and pervasive computer vision sys-
tems. Smartphones are nowadays widely used for profiling and
tracking in marketing, based on WiFi data or beacon-based
positioning systems. We present the Arahub system, which aims
at integrating world of computer vision systems with smartphone
tracking for delivering data useful in interactive applications,
such as interactive advertisements. In this paper we present the
architecture of the Arahub system and provide insight about its
particular elements. Our preliminary results, obtained from real-
life test environments and scenarios, show that the Arahub system
is able to accurately assign smartphones to their bearers, based
on visual and WiFi/Bluetooth positioning data. We show the
commercial value of such system and its potential applications.

I. INTRODUCTION

W
HILE video monitoring systems are currently found

everywhere, still, most of them are used for security

applications. Systems installed in commercial zones, stores or

cafes, could deliver valuable information to owners of such

places, yet automatic analysis of such data requires advanced

computer vision systems. Embedded platforms with GPUs for

providing machine learning to the edge, enabled the creation

of inexpensive and pervasive devices, that may process high-

level data extracted from video streams.

As virtually every person is equipped with a smartphone

these days, many companies are offering analytic services

based on location tracking and mobile applications. Location-

based marketing, geofencing or predictive analysis are all more

widely used for companies to deliver personalized, targeted

marketing. Yet this source of data has its limitations - it is

difficult to deliver real-time information about a person which

is at a particular place - and this is crucial if one wants

to provide personalization and interaction, e.g. a dedicated

advertisement displayed to a specific person.

In this work we present the Arahub project. It is focused

on combining the world of computer vision systems with

smartphone tracking for delivering data useful in interactive

applications, where both location and profile of a person are

required. The primary use-case for Arahub is digital marketing

system that could be used for marketing campaigns delivered

to specific persons at specific places.

Supported by Innoventure and NCBiR (POIR.01.03.01-00-0022/16)

In this paper the overall architecture of the Arahub system is

described. We provide insights into particular elements of the

system and methods used. We also present preliminary results,

which we were able to obtain in real-life environments.

A. Principle of operation

The primary goal of Arahub is to provide statistical data

about people present near an area of interest. Examples of such

data are: the number of people watching a commercial on a

display withing a specified time period, the gender of a person

currently watching a shop exposition, shopping preferences

of a person moving towards a display, etc. Such statistics

may be based on data gathered from several sources: vision

systems [1], [2], [3], indoor-positioning [4], [5] or mobile apps.

The most interesting (and challenging) is the possibility of

integrating data from multiple sources [6] to gather even more

commercially valuable insight.

Let us consider the following scenario: a person with a

smartphone has a loyalty application installed and running.

This person is shopping in a store that is supported by the

loyalty application. The owner of the store may have access to

data provided by the application, such as the purchase history

of the given customer. The owner, however, cannot directly

match that data with a particular person currently visiting the

store, as localization data may be too coarse. Yet, the owner of

a store has access to a visual monitoring system, which could

be used for precise visual tracking of all customers. Those two

data sources, when properly linked together, could provide

rich data attributed to a particular person currently visiting

the store. Such a link could be established by combining the

position of a person based on visual cues with the position of

the mobile device owned by that person.

B. Motivation

Digital Out Of Home (DOOH) is a segment of marketing

that is based on digital forms of advertising placed outdoors

or in indoor public locations (out-of-home). The set of media

types, including displays, LED screens and similar, used in

DOOH, are referred to as Digital Signage (DS).

As DOOH and DS systems are becoming more common,

there is a need for novel methods of targeting, interaction and

content design, that could use the potential of this new type of
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advertising. A particularly interesting ideas may be borrowed

from the world of online advertising, which after decades of

existence has become a mainstream advertising channel.

Existing DOOH systems are passive in terms of targeting -

marketing content is selected based on long-term demography

statistics or, in the best case, on custom surveys made for a

particular location. It is obvious that such methods of audience

analysis could not be compared to precise on-line targeting

based on browser cookies or shopping history. Yet there is a

high potential for using external data sources in DOOH. Such

cases, using traffic or weather data, are already existing.

The biggest potential is in so-called "programmatic DOOH",

which envisions a novel method of selling DOOH media - not

by air time or by surface area, but by the number of views, or

even views of the specified audience with particular interests

or shopping history. To enable such operation, one needs to

provide real-time data about the audience or particular viewers.

Arahub is meant to provide such functionality and connect the

advertising from online world with digital media existing in

the real world.

Even though real-time, personalized DOOH is the main

motivation behind the development of Arahub, there are many

other, useful applications of such a system. The integration

of multi-modal data sources for more accurate positioning

and profiling may be used in smart-city and smart-home

[7] environments, especially in healthcare or public services

[8]. Also, security systems could benefit from more accurate

analysis methods; facial recognition methods - despite rising

privacy concerns - may also provide valuable insight if used

with respect to legal regulations [9]. Finally, a system such as

Arahub is a source of meta-data that could be used to learn

about general behaviors and trends in the society, which can

be used for making predictive models or inferring rules [10].

II. RELATED WORK

Positioning Systems based on WiFi and Bluetooth signals

have been an active area of research over the last years. The

two most common approaches to device localization based on

a system of multiple WiFi access points or Bluetooth beacons

are triangulation and fingerprinting.

Triangulation methods can be further divided into lateration

and angulation [11]. These methods use the estimated distance

from several transmitters or receivers based on signal attenu-

ation [12], time characteristics of the propagated signal, e.g.

Time of Arrival [13], Time Difference of Arrival [14] or are

based on the direction of the received signal - Angle of Arrival

[15]. Triangulation methods achieve good results in open space

environments. However, they perform significantly worse in

the indoor conditions where the signals may be reflected by

several obstacles and there is no clear line-of-sight between

the transmitting and receiving devices.

Fingerprinting methods work in two phases. In the first

learning phase, a database of the signal characteristics at

known locations is built [16], usually based on the Received

Signal Strength Indicator (RSSI). This reference data set is

then used in the second stage to perform localization, by com-

paring the measured signal characteristics with the fingerprints

stored in the database. Several methods that improve on the

standard fingerprint-based methods have been developed, e.g.

statistical post-processing methods to estimate a continuous

distribution of RSSI values based on Gaussian Process Theory

[17] [18] or parametric estimation of the RSSI distribution

[19]. Moreover, [20] presents a comparison between WiFi

and Bluetooth localization system based on the fingerprinting

approach and shows the advantages of BLE-based localization

In our work, we present a uniform approach for WiFi

and Bluetooth signal modeling and develop two methods

for estimating RSSI distribution along with a probabilistic

Indoor Positioning System. The first approach is based on an

extension of the Log-distance path loss model [21], the second

method is based on a probabilistic fingerprinting-based model.

The two most common approaches for human tracking using

video stream data are neural network based with subsequent

box matching and motion detection. Motion detection can be

further divided into Background Subtraction, Frame Differenc-

ing, Optical Flow and Temporal Differencing [22]. We utilize

both approaches, in the second case merging Background

Subtraction and Frame Differencing with a custom clustering

method. However, multi-camera human tracking generally

focuses on Probabilistic Occupancy Maps [23], developing

a number of color-based or location-based techniques [24],

while we propose a graph-based approach focused on location

path similarity without dividing location space into clusters.

III. ARAHUB SYSTEM OVERVIEW

The architecture of the Arahub system consists of: a)

distributed sensor network, which includes all equipment

installed on-site; b) centralized data aggregation part, which

includes multiple services running in the cloud environment.

The overview of the architecture is presented in figure 1.

The distributed part of Arahub is based on a custom hard-

ware solution - the Arabox, which integrates a vision system,

WiFi monitoring hardware and GPU-enabled computing. In a

typical scenario, several Araboxes are installed in one location

for precise monitoring of a given point of interest. Moreover,

Bluetooth Low Energy (BLE) beacons are also used to enhance

the precision of indoor positioning. Araboxes provide high-

level data about persons visible by the camera, such as their

position on a 2D plane, they also provide the RSSI for WiFi

clients connected to a specified WiFi Access Point (WiFi AP).

The data aggregation part has several functions. First of all,

it provides interfaces for collecting the data from Araboxes

and mobile applications, secondly it runs dedicated algorithms

for filtering and combining multi-modal data, and finally, it

provides services for accessing and interacting with the data.

Arahub system also includes web services for management,

visualization and diagnostics.

Another important elements of Arahub are the mobile

devices carried by people in monitored locations. Arahub

provides two methods for smartphone positioning: a) active

- when the smartphone has a dedicated application running,
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Fig. 1. Arahub architecture overview. A distributed sensor network is based on the Arabox devices installed on-site as well as mobile devices running dedicated
Arahub application. Data from the sensor network is sent to the webserver and processed using a data acquisition module. We use Amazon and Microsoft
Azure face recognition systems to enrich video data with personal attributes such as age and gender. Then, raw signal and location data are processed within
a Data Aggregation system based on Kafka processing engine. We utilize Kafka connectors to save data in a Mongo database for the purpose of business
analysis and model training. Arahub system also provides a number of visualization and diagnostics tools that enable monitoring of raw radio signals and
locations received as well as tracking and signal-based indoor positioning systems.

b) passive - when the smartphone is connected to a dedicated

WiFi network. The details of the operation of those methods

are covered in section IV-E

A. Arabox - embedded platform for video and WiFi analysis

Arabox is a dedicated platform for gathering video streams

and WiFi analysis. The goal of Arabox design was to create a

compact, standalone device, that could locally perform com-

puter vision tasks such as object detection. The device is meant

to be installed in commercial zones, with no requirements as

to existing infrastructure other than internet connectivity.

At the design stage, two main use-cases of Arabox were

taken into consideration: 1) to be installed next to digital

displays, where it could provide contextual information about

the audience, 2) to be installed in passages such as corridors

or stairways in commercial zones, where it would provide in-

formation about people visiting certain points of interests. For

this reason, two versions of Arabox were developed: a large

version (presented in figure 2), with two wide angle cameras

integrated into a single enclosure, and a smaller version, with

a single camera detached from the main enclosure.

In terms of the hardware platform, both versions of Arabox

consist of the same elements. The core is an nvidia’s Jetson

Nano platform, with 4GBs or RAM and an integrated GPU,

capable of CUDA operations. The video stream is provided by

an RGB camera with dedicated optics, capable of recording

full HD video at 30fps with low noise and in low light

conditions. The third part is the WiFi adapter with an antenna

dedicated for WiFi monitoring in 2,4GHz and 5GHz bands.

Each Arabox also has a proper power adapter and ventilation

system included. The enclosure of Arabox in the large version

fits all elements inside and is waterproof, thus is suitable for

outdoor installation. In this version, two cameras are placed

such that their combined field of view angle is not less than

120 degrees. The cameras can be configured for different view

angles if needed. The small version is dedicated for indoor

installation - a single camera and WiFi adapter with an antenna

are enclosed together separately from the Jetson Nano board.

Both versions of Arabox have a dedicated mounting system,

that allows for mounting to a ceiling or a wall.

The Arabox’s embedded system - the Jetson Nano - is

running a Linux system with custom software. The software
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Fig. 2. Arabox prototype - the large version. A custom casing includes all
elements: two cameras, Jetson Nano board, WiFi adapter, power supply and
cables.

consists of three parts: video processing, WiFi processing and

management.

Video processing is done in several steps: first, the raw data

from the camera is normalized and throttled, to obtain a stable

stream of video images. The stream may be then processed by

several algorithms for object detection, such as GPU-based

convolutional neural networks (described in more detail in

section IV-B). The outputs of those algorithms are bounding

boxes, based on which physical 2D positions of objects are

calculated. Finally, the calculated positions are sent to the data

aggregation system. Depending on the configuration, cropped

images of detected objects may be also sent to the data

aggregation system for further analysis, e.g. gender detection.

WiFi processing is based on monitor capabilities of an

IEEE 802.11ac interface. The WiFi interface is configured to

monitor data on channels used by a dedicated Access Point.

The software reads control packets sent between that AP and

all connected clients in range. It provides the RSSI (Received

Signal Strength Indication) of the signal sent by clients,

measured in the point where particular Arabox is installed.

This data, containing the client’s identifier, timestamp and

RSSI is then forwarded to the data aggregation system.

A management system is used to provide software updates,

configuration changes and to monitor the state of an Arabox.

It is based on third-party software, that provides a centralized

system for remote management of multiple devices with

various internet connectivity (e.g. using third-party, NAT or

cellular connections).

Arabox works in a semi-autonomic way - most data process-

ing is done locally, so only high-level data is sent to the data

aggregation system. Arabox needs to have constant internet

connectivity, however as the data footprint is low, even cellular

connections could be used for that purpose.

B. Mobile application

Arahub system uses a custom application developed for

Android and iOS systems. The primary goal of this application

is to enable indoor positioning based on BLE beacons. The

application operates as follows: first, the application listens

for familiar beacons IDs in slow scan mode; when it finds

a beacon that operates in a zone observed by Arahub, the

Fig. 3. A view from camera with calibration data shown. A uniform grid
of points transformed using the calibration matrix is used to enable human
validation of the process.

scanning mode is changed to fast. Now, the beacons are

scanned with a 1 second period. The RSSI values from all

beacons, that are registered to a particular zone, are read

and immediately send to the data aggregation system. When

a particular beacon from the list is not in range, then such

information is also noted. After a long period without any

signal form a known beacon, the application switches back to

slow scan mode. An alternative version of the application is

used in one of the test environments, where the user may also

interact with the application to provide his preference related

to a product being presented on a display connected to the

Arahub system.

C. Calibration

In order to obtain physical positions of objects, a cali-

bration procedure is required upon Arabox installation. The

calibration is required for the purpose of both the visual and

Bluetooth/Wifi positioning systems.

Visual system calibration is done independently for each

camera in a particular location. For that, a dedicated chess-

board pattern is used with the addition of several markers.

The procedure requires placing the pattern and markers in the

field of view of the camera - covering possibly the largest

surface. Then the coordinates of markers and chessboard are

provided to a particular Arabox configuration using a ded-

icated calibration tool, obtaining world-to-image-plane point

correspondences. Using the point correspondences, a projec-

tion transformation from 3D world coordinates to the image

plane can be calculated. In our work we assume the pinhole

camera model. Thus, in order to perform camera calibration,

we estimate both intrinsic and extrinsic parameter matrices

along with radial and tangential distortion coefficients. We

use the calibration method proposed in [25] implemented in

the OpenCV [26] library. An example calibration result is

presented in figure 3.

The camera calibration procedure is followed by an offline

stage of creating a training data set for the purpose of

Beacon/Wifi positioning systems. For this, the operator of the
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Arahub system needs to use the mobile application to gather

data about RSSI levels from BLE beacons in relation to his

position predicted by the visual tracking system. Simultane-

ously, the WiFi signal strength is also recorded using Arabox

WiFi monitors. To achieve the best results, the whole observed

area should be covered multiple times.

Due to the possibility of errors or security concerns, some

areas visible by the video tracking system needs to be excluded

(e.g. areas "behind" mirrors). This is done as the last part of

the calibration process.

IV. DATA SOURCES AND PROCESSING

A. Location and height calculation

To improve the accuracy of location and height estimation

we calculate, using the camera projection matrix, a line

orthogonal to floor surface such that on the image, within some

margin, it fits in the detected bounding box. To be considered

a good prediction, this person candidate’s height has to fit

in a possible range. Moreover, the location has to be in an

acceptable area defined by the union of convex polygons in

spot configuration.

In real-world scenarios, especially in commercial zones,

we find a number of objects partially covering customers

(occlusion) - and it may not be possible or cost-effective to

cover some areas with cameras without dealing with such

obstacles. The most common scenario is people partially

hidden by store shelves, desks or tables, with the upper body

detected by the network and legs invisible, which significantly

affects location predictions, especially when the camera angle

is highly acute. However, if someone goes behind such an

obstacle which cuts off the lower part of the box we are

able to detect it because Intersection over Union (IoU) of

successive boxes should be within the acceptable threshold, but

location difference drastically increases and following three

2-dimensional points should approximately form a straight

line: camera location (without height), expected location in

current time and new location extracted from the cut-off box.

Afterward, if we assume that the head is visible within the

box and we know the height of this person, we can draw

a line in 3-dimensional location coordinate space, such that

it satisfies the following four assumptions forming a linear

equation system: its length is equal to the height, projection

of its start on camera image is equal to head location within

the box, it is orthogonal to the ground and ends there.

B. Human tracking based on video data

Within one Jetson device, there are four stages of process-

ing, each performed using separate thread:

1) Reading frames from camera

2) Human detection is performed using SSD mobilenet lite

[27], fine-tuned on spot-specific data set labeled by full-

size SSD, created using recordings from each camera.

3) Box tracking integrates detected boxes from each frame

into a set of currently tracked persons. Firstly, similarity

matrix between each box and person is calculated, then

one-to-one assignment is performed [28] based on SciPy

Fig. 4. Detecting real location of partially visible person (man on the right).
Since his legs are mostly invisible on the picture, neural network detected
only torso. Algorithm detected it and found an approximate point of his feet
using head position and height.

[29] implementation. Basing on the score used for this

matching, reliability of each person is altered - ones

that were not matched to anything receive a most severe

drop, but if they were previously matched, they will still

be able to survive several frames before they disappear.

A new person with low reliability is created when

unmatched box probability exceeds the given threshold.

The Similarity between box and person is calculated

as a weighted sum of: Intersection over Union of the

proposed box with estimated person box in current time

(calculated using velocity and previous boxes averaged

with momentum), spot location difference and height

difference.

4) Sending locations and cropped frontal images to server

As a result, the algorithm works with a stable speed of about

8 FPS.

As an alternative to the previous method, when it is possible

to place the camera on the ceiling, we propose a tracking

approach based on motion detection. This is suitable especially

on narrow or crowded passages, where it is hard for people

not to cover each other, looking from the side camera.

The first step is image processing to get points that will

later be used for clustering. To initially remove noise we use

manually implemented Sobel edge detector due to its fast

computation on GPU. Afterward, for motion detection, instead

of subtracting subsequent frames or saved background image,

we use subtracting background computed as the average of

previous frames with momentum. With the right parameters,

this approach is both resistant to temporarily motionless people

(contrary to subtracting subsequent frames) and changing

environment i.e. in the form of objects left on the ground

(contrary to subtracting saved background). Finally, we choose

pixels meeting the given threshold and remove isolated ones

that gives us noiseless image.

We tried multiple clustering algorithms using scikit-learn li-

brary [30], including hierarchical, OPTICS, Birtch, DBSCAN,

K-means and a combination of the last two, however each

failed to suit the task. DBSCAN was the closest match, but

JAN LUDZIEJEWSKI ET AL.: INTEGRATED HUMAN TRACKING BASED ON VIDEO AND SMARTPHONE SIGNAL PROCESSING 109



failed to separate people walking literally side by side. The

need was for an algorithm that does not know the number

of clusters, is fast with many points (not necessarily many

clusters), with the only assumption about the distribution that

clusters are denser in the middle, where clusters can touch with

a local structure comparable to some clusters interior, however

having approximately constant, circular size. Therefore we

propose a simple custom approach to clustering based on

these assumptions, with the only important parameter being

the radius of the cluster and computational complexity O(n2),
also benefiting from distributed vectorized operations. We

calculate the distance matrix between each pair of points, then

check for each distance if it is smaller then radius, creating a

connectivity matrix for a graph. Then, we iterate over vertices

by descending degree and greedily assign a new cluster to

check if it does not intersect with any previous (contain vertex

already assigned to the cluster). Note that we want that greed

because it fulfills the assumption that cluster centers are local

maxima of density and without it, if we rewrite the problem

into maximizing the number of non-intersecting clusters, two

persons side by side are sometimes clustered as three.

To track these clusters, we use the same algorithm as with

a neural network based approach, however, instead of IoU of

boxes, the similarity of clusters is calculated as symmetric

Kullback Leibler divergence, assuming that points form 2-

dimensional normal distribution.

C. Merger - connecting the same person’s paths from different

cameras

To track a person for a longer period of time, we need to

merge paths of the same person from different cameras. This is

especially desirable in the context of person-device matching,

since the longer the path we have, the easier it is to distinguish

whether a person has a given device.

The state of the merger algorithm can be represented as a

graph, where each path is a vertex and each edge represents

the possibility of merging two paths. Within this set, when

a new location is added to the path, we only need to update

all edges connected to the corresponding vertex, performing

computation with complexity independent of their length,

unless this triggers merging paths. Managing merges of these

vertices is handled using fast Find-Union algorithm [31].

In order to simplify the calculation and comparison of paths,

locations in the paths are linearly interpolated so that the

subsequent timestamps match fixed intervals. Note that the

path is processed using the Kalman Filter, so it is enriched with

information about the variance, interpreted as the certainty of

location prediction. There are three events that can happen

after receiving a new location:

1) Initialization: Initialization of a new path after receiving

an unknown identifier. Assuming the local camera tracker does

not already track this person with a different identifier, edges

are added to each vertex, except the ones originating from the

same camera.

2) Reject: Rejects are removals of edge from the graph.

This happens, when corresponding locations (in time, with

their variance) from different paths do not pass Two-Sample

t-Test for Equal Means [32], so that within a certain confidence

interval, we know that these locations do not originate from

the same distribution.

3) Merge: Merges have lesser priority then Rejects, as

we only take into consideration current, not removed edges.

Therefore edges of a merged vertex are the intersection of

component vertices neighborhood. This is intuitive and helpful

because if given two paths were simultaneously tracked on

the same camera in the past or separated significantly, we

remember that they cannot originate from the same person also

after merge with another path. In practice, in most cases we

merge vertices connected by only edge left by Rejects, how-

ever this is not the case, when pair of people walks together

tracked with two cameras, always maintaining close distance.

When two paths coexist for a given time without Reject,

similarity of paths X and Y is calculated as (‖D(X,Y)‖
2
)−1,

where D(X,Y) is a vector of euclidean distances between

corresponding in time path locations. When the value meets

the given threshold, the edge is put on Merge priority queue

with calculated similarity. The queue is resolved each several

iterations, maximizing summed similarity of merged edges.

Note that in general, it is MAXIMUM WEIGHTED CLIQUE

COVER problem with weights on edges, which is at least

NP-hard (as a generalization of CLIQUE COVER). However,

since practical instances are generally small and without any

complex structures, we found out that greedy heuristic, trying

to merge priority queue starting from most similar edges is

good enough.

D. Bluetooth / WiFi signal modeling

We propose two methods for WiFi and Bluetooth sig-

nal modeling based on Received Signal Strength Indication

(RSSI). The first method is a parametric approach based on the

Log-distance path loss model. The second approach is a novel

non-parametric method similar to the existing probabilistic

fingerprinting-based methods.

Since the received signal power generally decreases as the

distance between the receiver and the transmitter increases,

it is a valid source of information about the current location

of the device of interest. However, RSSI values are heavily

dependent on the surrounding environment and other factors

such as the relative position of the device or the line of sight

between the transmitting and receiving devices. Therefore, in

both methods, we adopt a probabilistic approach to explicitly

model the aforementioned uncertainty, where we are interested

in the likelihood of observing an RSSI value conditioned on

a current device location. It is important to note that the roles

of the transmitter and the receiver in our models are switched

when modeling WiFi and Bluetooth signals. For WiFi signals,

we model the RSSI at one of our APs that is being transmitted

from the person’s device. Here, we know the position of the

receiving AP, but the location of the transmitting mobile device

is unknown. On the other hand, in case of Bluetooth, we model

the RSSI value at the mobile device that is being transmitted

from one of the BLE beacons. This way, we know the location

110 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



Fig. 5. Heatmap of estimated expected values of the RSSI distribution based
on our non-parametric fingerprinting method.

of the transmitting beacon, but the location of the receiving

device remains unknown. Another key difference in WiFi and

Bluetooth modeling is the fact that in the case of the WiFi

the transmitting power of the mobile device is unknown and

can vary in time, whereas the transmitting power of the BLE

beacon is known and does not change in time. In this work,

however, in both cases, we assume that the transmitting power

is constant. Thus, we lose on the quality of our WiFI models

at the cost of a unified and more transparent approach.

Log-distance path loss model is a radio propagation model

that predicts the loss in the signal strength, measured in

decibels (dB), inside a building or densely populated areas

over distance. We extend the standard log-distance model with

the information about the cosine of the angle between the

direction the person is facing and the direction of the AP or

BLE beacon of interest. This way we can take into account

the loss in the signal strength due to the body occlusion,

assuming that the device is located at the front of a person.

With a further assumption of homoscedasticity of variance and

gaussian errors, the log-distance path loss model is a standard

log-linear regression model:

f(s|x) = N (s;β + γlog(d(x)) + w cos(α(x)), σ2)

where s is the RSSI value, x is the device location, d(x) is

the distance between the transmitter and the receiver, α(x)
is the above-mentioned angle, γ is the estimated path loss

exponent that depends on the environment and σ2 is the

estimated variance based on residuals from the fitted model.

The key advantage of this method over the second approach is

its generalizability. Once we estimate the path loss exponent

for a certain environment, we can reuse the fitted model in a

different spot location with similar environmental properties,

without the offline stage of model training.

Our second approach is similar to the existing

fingerprinting-based methods. Here, we assume that we

are given a training data set {(xi, si)}
n
i=1

of locations xi and

corresponding RSSI values si that where gathered during the

offline stage for each AP/BLE beacon in the spot. This data

can be gathered efficiently with the help of the video tracking

system described in section IV-B. We define a dense grid of

point G = {xi,j} locations for which we will estimate locally

the distribution of RSSI values. In our experiments, the grid

had a size of 100 × 100 with a resolution of less than 0.5
meters. For each point in the grid xi, we create the set of its

nearest neighbors in a given radius r based on the euclidean

distance. We define the reliability of each neighbor xj using

the squared exponential kernel with a fixed length scale l -

wi,j = exp−‖xi−xj |
2

2

2l2 . Next we define unbiased weighted

estimators for the mean and variance using the computed

reliability weights:

µ̂i =
1

V1

∑

j

wi,jsj

ŝ2i =
1

V1 − (V2/V1)

∑

j

wi,j(sj − µ̂i)
2

where V 1 =
∑

j wi,j and V2 =
∑

j w
2

i,j . Finally, the likeli-

hood of observing a given RSSI value s for a new location x
is estimated using the gaussian model with mean and variance

of the closest grid point xi = argmin
xj

‖xj − x|2

f(s|x) = N (s; µ̂i, ŝ2i )

Alternatively, when the spot area is substantially larger and

the corresponding grid resolution is lower we can perform

linear interpolation of the computed first and second moment

estimators prior to likelihood calculation.

E. Human tracking based on radio data

Equipped with a probabilistic signal model we can effi-

ciently tackle the problem of device localization and tracking

using either WiFi or Bluetooth signal. We again adopt a

probabilistic view of position estimation, i.e. we are interested

in computing:

x∗
1:n = argmax

x1:n

p(x1:n|s1:n)

where each si is a set of RSSI measurements observed in

a given time window and x∗
i is the estimated location. For

notational brevity, we do not distinguish between the AP that

received the signal or the transmitting BLE beacon, assuming

that for each device we use the corresponding model.

Firstly we focus on estimating position for a single time

window. Putting a uniform prior on location π(x) ∝ 1 we

calculate

p(x|s) ∝ f(s|x)π(x) = f(s|x) = Πif(si|x)

where si is a single RSSI measurement. Therefore as the most

probable location we simply take x∗ = argmax
x

Πif(si|x).

To account for spatio-temporal correlations in device local-

ization we use a first-order Kalman Filter, where the underly-

ing noise process models the acceleration of the tracked object.
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As a result, for each time step, we obtain the estimated mean

and variance of the device position as well as its velocity.

F. Person - device matching

Person - device matching is a key component of the Arahub

system, as it enables combining the information extracted

from visual cues, e.g. using face recognition systems, with

a rich user history based on the advertising identifier or MAC

address. We distinguish two tasks for the person - device

matching. Local matching is focused on correctly assigning

a device, from a pool of visible devices, to the user at the

moment of entering a spot of interest, e.g. a LED panel.

Global matching is a continuous process of performing global

assignments of all visible devices to all persons currently

tracked within a single spot.

Irrespective of the matching task being performed, we first

focus on processing video tracking data together with the

incoming signal data. To minimize the computation overhead

when performing local matching, the process of combining

the information about the location of a person at a given

time with the incoming signal value is performed in an online

fashion. We match a readout about the location with a given

RSSI value if their corresponding time difference is less than a

specified threshold, usually half a second. When a new signal

readout from a device is received, we try to match it with

all currently visible tracks. Similarly, when a new location

readout is received, we try to match it with all active devices.

After successfully matching a location x to a signal value s,

the likelihood f(s|x) is computed using one of the models

described in section IV-D. The matching system also handles

track merges, by taking the union of the location readouts for

each track and computing new location-to-signal matches if

necessary. Moreover, to provide stable performance over time,

we clean up information about inactive tracks and devices.

To solve the Local matching task we once again refer to

the probabilistic approach. Assigning a device to a person can

be formulated as taking a device with the highest conditional

probability of observing its signal conditioned on a given

track f(si
1:ni

|x1:m). However, to account for a varying number

of received signal readout for each device ni, we focus on

maximizing the geometric mean of the total likelihood instead:

s = argmax
si

f(si
1:ni

|x1:m)1/ni

To solve the global matching problem, we first define a

cost matrix C, where each entry ci,j represents the cost of

assigning a device i to a person j and is equal to the average

log-likelihood of observing a total signal si conditioned on the

tracking locations xj . We assume independence between each

device signal readouts, conditioned on the location, obtaining

C = [ci,j ]i,j =
1

ni

∑

k

log(f(sik|x
j
1:m))

Finally, we solve the linear assignment problem [28] using

the matrix C to obtain person-device matching. In both local

and global matching, if the resulting average log-likelihood

of observing a given device signal conditioned on a track is

lower than a predefined threshold, we omit this pair in the

final assignment.

V. EVALUATION

To provide automated testing for algorithms and adjust

parameters, we created a simple video tagging procedure. We

define convex polygons covering locations space and count

for every person where it started and ended its walk and

compare its path with manually annotated. This is suitable

for both tracking methods. Also using this procedure, we

can count how many people entered some room or provide

statistical information on people flow around different areas

in the commercial area or even shelves.

To reliably test the difficult cases of counting people en-

tering and leaving the room using the motion-based camera

mounted on the ceiling, we created a test at a hallway with

three exits. In each pass, two people walked touching shoulder

to shoulder and either diverted, or walked close together to one

exit. The metric was, as described above, how many people

passed between each pair of areas, creating a total of 28

manually tagged passes. The algorithm achieved an accuracy

around 0.93. The test was carried out in this way because for

an analogous, non-directed test in which people naturally and

independently entered rooms with 35 passes, the effectiveness

was errorless.

A. Use-cases and applications

In order to test the Arahub system in real-life scenarios, we

installed it in two sites, that were similar to our target installa-

tion environments. Both sites were closed, private spaces yet

a substantial number of different people were moving around,

thus we could test the system without having control over the

environment and people involved.

1) Office Lab: The first location was placed in an office

space, that included about 30 persons. Arahub system was

installed along a L-shaped corridor that connected all offices,

conference rooms, reception, kitchen and utility rooms. The

map of the location is presented in figure 6. In total, we used

5 Araboxes - two in each branch of the corridor and one on the

bend. They were placed such that it was possible to observe

a person entering through the main entrance in the reception

and then moving along the corridor, passing all the offices and

rooms till the end of the office space. Moreover, two digital

displays were installed in the corridor: one at the entrance

near the reception desk and the second one at the end of the

corridor near a bathroom. In addition, 7 BLE beacons were

installed in the corridor in order to uniformly cover it with

BLE signal.

The office lab was used for our initial tests and tuning of

the system. Our goal was to enable the following minimum

requirements for the system:

1) track continuously three persons moving together with

spacing between them not less than 3m.

2) track continuously three smartphones that have our cus-

tom application installed and running
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Fig. 6. A map of the office lab. The circles indicate places in which the
Arahub system performed an action when human was present - in this case
the information about that person was shown on a digital display.

3) be able to assign a smartphone to a person when it

approaches a digital display, with accuracy of 80%, after

each person walked the distance of the whole corridor

length.

Eventually, Arahub system was able to perform according

to those three requirements. However, the final accuracy

depended heavily on the type of smartphones used in the

test. Android-based devices were tracked accurately in about

70% of cases, while for iOS-based devices the accuracy was

over 90%. The accuracy was calculated based on 30 trials -

separately for both types of devices.

2) Showroom Lab: The second test location was placed in

a showroom of one of our business partners. The showroom is

a space dedicated to presenting new products to customers; it

consists of a large hall with different displays on the walls and

conference room. Arahub was deployed to cover the main hall

were customers were guided by the showroom’s employee. In

total 7 Araboxes were installed in addition to 10 BLE beacons.

Moreover, one extra Arabox was placed on the ceiling in a

narrow part of the showroom - it was used for testing the

person counting functionality. The showroom was occupied by

1-2 employees all the time and several times a day, a group

consisting of up to 8 people was guided by them. Two digital

displays already installed in the showroom were used for the

needs of Arahub. Moreover, an alternative mobile application

was created - in this version the user could choose one of three

products in the application, then a video material, related to

this product, was played as this person moved near one of the

selected displays.

B. Experiments

The showroom lab was used for testing the performance

of Arahub’s person tracking capabilities (without person re-

identification). In the test, the lab was divided into three sub-

areas observed by seven araboxes with overlapping fields of

TABLE I
EVALUATION RESULTS - CONTINUOUS TRACKING OF PERSONS MOVING

BETWEEN PREDEFINED LOCATIONS IN AN AREA OBSERVED BY 7
ARABOXES WITHOUT PERSON RE-IDENTIFICATION

test no. case transitions
transition

errors
number

of persons
accuracy

1 joined 4 3 2 0,25
2 joined 8 3 2 0,63
3 joined 9 3 2 0,67
4 separated 4 1 4 0,75
5 separated 4 0 1 1,00
6 separated 9 0 2 1,00
7 separated 11 1 2 0,91

view: 1) narrow corridor - visible by 2 araboxes, 2) large

hall with multiple obstacles - visible by 4 araboxes, 3) small

hall with one obstacle - visible by 3 araboxes. The goal was

to continuously track persons moving between sub-areas. We

performed tests in which from 2 to 4 persons were moving

across the whole lab using different paths. Moving between

sub-areas was counted as a transition. If the system was not

able to track a person during a transition, it was counted as

a tracking error. Additionally two cases were tested: persons

moving separately (not touching each other) and persons

moving jointly (without visible separation between them). The

results are presented in table I. We may conclude that the

arahub system is able to track separately moving persons with

high accuracy. However, as re-identification functions were not

used, it had difficulties to track persons moving in very close

proximity.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have provided a comprehensive description

of the Arahub system. We have shown that it is possible to

successfully integrate tracking data from video system and

smartphones and use it for commercial purposes. Our work

was tested in real-life environments, and however it is still

at an advanced prototype level, we are able to deploy it in

commercial applications. In our work we developed several

novel methods for improving tracking and integration of multi-

modal signals, we also focused heavily on optimization to

provide a solution that is cost-efficient.

The Arahub system needs to be developed towards more

versatile usage capabilities e.g. in outdoor environments, or

for high-density crowd scenarios. Moreover, the biggest issues

are connected to incompatibility between different smartphone

brands and systems. Our tests show that even covering 80%

of the smartphone brands currently available on the market,

requires a substantial amount of fine-tuning. In order to scale

the system, a more granular approach of data analysis could

be introduced, e.g. person tracking could be done at the crowd

level initially, but at a single-person level when more details

are needed [33], [34], [35].

We are also developing methods for improving privacy con-

cerns. The current version of Arahub is meant to be deployed

in controlled environments, where users have may opt-in

freely. There is a need to provide anonymization methods [36],
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[37], which would ensure that even the system operator is not

able to use the system for other means than statistical analysis

of visitors. We are researching the possibility of using novel

cryptography methods, that allows one to use data for machine

learning purposes without revealing private information.

ACKNOWLEDGMENT
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P. Turcza, and T. P. Zieliński, “Data processing tasks in wireless
gi endoscopy: Image-based capsule localization navigation and video
compression,” in 2007 29th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, 2007, pp. 2815–
2818.

[6] H. Lu and M. A. Cheema, “Indoor data management,” in 2016 IEEE

32nd International Conference on Data Engineering (ICDE), 2016, pp.
1414–1417.

[7] J. Domaszewicz, S. Lalis, A. Pruszkowski, M. Koutsoubelias, T. Tajma-
jer, N. Grigoropoulos, M. Nati, and A. Gluhak, “Soft actuation: Smart
home and office with human-in-the-loop,” IEEE Pervasive Computing,
vol. 15, no. 1, pp. 48–56, 2016.

[8] A. Krasuski, A. Jankowski, A. Skowron, and D. Ślęzak, “From sensory
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[34] M. Świechowski and D. Ślęzak, “Granular games in real-time envi-

ronment,” in 2018 IEEE International Conference on Data Mining

Workshops (ICDMW), 2018, pp. 462–469.
[35] M. Przyborowski, T. Tajmajer, L. Grad, A. Janusz, P. Biczyk, and
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