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Abstract—Computerized adaptive testing (CAT) is a modern
alternative to classical paper and pencil testing. CAT is based
on an automated selection of optimal item corresponding to
current estimate of test-taker’s ability, which is in contrast to
fixed predefined items assigned in linear test. Advantages of CAT
include lowered test anxiety and shortened test length, increased
precision of estimates of test-takers’ abilities, and lowered level of
item exposure thus better security. Challenges are high technical
demands on the whole test work-flow and need of large item
banks.

In this study, we analyze feasibility and advantages of comput-
erized adaptive testing using a Monte-Carlo simulation and post-
hoc analysis based on a real linear admission test administrated
at a medical college. We compare various settings of the adaptive
test in terms of precision of ability estimates and test length.

We find out that with adaptive item selection, the test length
can be reduced to 40 out of 100 items while keeping the precision
of ability estimates within the prescribed range and obtaining
ability estimates highly correlated to estimates based on complete
linear test (Pearson’s ρ

.
= 0.96). We also demonstrate positive

effect of content balancing and item exposure rate control on
item composition.

I. INTRODUCTION

M
ULTI-ITEM assessment instruments find their use in
number of areas including admission or other educa-

tional tests, psychological measurement, health-related ques-
tionnaires, and other behavioral measurements. A usual way
to perform achievement testing is by assigning a fixed set of
items which are supposed to measure construct of interest,
such as knowledge of biology, level of depression, fatigue, or
respondent’s quality of life.

Given that the abilities may greatly differ across test-takers,
the respondents with higher levels of ability may be bored by
easier items, while those with lower levels of ability might
experience inconvenient stress. An effective and appropriate
selection of items which suit the best the test-takers of a given
ability can thus be more convenient for respondents, may save
time and moreover provide estimates of better precision than
fixed tests of the same length.

Adaptive tests [1], [2] have been an alternative to linear
tests for decades. The most complex version of adaptive
tests is the one in which the item selection is done after
each item administration depending on the current estimate
of test-taker’s ability which is iteratively updated. Multistage

tests [3] on the other hand involve assigning blocks of items
adaptively depending on the ability estimate from the previous
test section.

Basic principles of computerized adaptive test are presented
in Figure 1.

select and show
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test-taker’s response

their ability estimation select the next item

termination criteria
met?

exit and output the
final ability estimate

yes

no

Fig. 1. Computerized adaptive testing flowchart

An adaptive test is initialized by the selection and adminis-
tration of the first item. The first item can be selected randomly
or based on prior ability estimate of the respondent. Average
ability can be used as an uninformed estimate, alternatively,
initial estimate may be based on respondent’s answers to one
or a small number of pre-test items.

Depending on the answer to the first item, the test-taker
ability estimate is updated. If the termination criterion (such
as number of administered items or precision of the estimate)
is not met, the updated ability estimate is used to select the
next optimal item. This cycle is repeated until the a priori
specified termination criterion is met; then, eventually, the test
is stopped and final estimate of the test-taker ability is provided
as an output.

A. Comparison of linear and adaptive testing

Both the linear and adaptive test scenario have their advan-
tages and disadvantages, respectively. Advantages of adaptive
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tests have been demonstrated in areas of educational testing
[4], testing of psychological distress [5], [6], as well as
health-related measurements such as in mobility surveys [7],
and testing general disability [8]. While the adaptive tests
are usually shorter in terms of number of items and overall
time needed to complete the test, they also enable to estimate
test-taker’s ability with better precision than linear tests of sim-
ilar length. The lower level of item exposure usually implies
also better security when items are administered adaptively.

However, since the adaptive testing is more complex it re-
quires higher technical facility and support of trained experts.
The initial setting of the adaptive test may provide number
of options which may have crucial impact on functioning of
the adaptive test. Therefore, feasibility and optimal setting of
CAT with respect to the given item bank and population of
test takers need to be analyzed in order to apply the adaptive
test effectively and profitably.

In this work, we use Monte Carlo simulations and post-hoc
analysis based on real data of admission test administrated at
a medical college with the aim to derive the optimal setting
of adaptive test. We also compare the precision of different
settings and estimate the correlation between the adaptively
estimated ability and estimates based on answers to complete
set of 100 items. We discuss results for different levels
of precision, and various test termination criteria. We also
implement content balancing and item exposure rate control to
see how it affects performance and properties of the adaptive
test. We discuss the findings in context of the admission testing
and other educational testing at medical faculties.

The paper proceeds as follows. We firstly describe the
data and introduce all necessary background theory, including
underlying models, settings of adaptive tests and design of
the simulation studies in the Research Methodology section.
We then present results of the post-hoc analysis and Monte
Carlo simulation in Section Results. Finally, discussion and
final remarks are provided in Conclusion section.

II. RESEARCH METHODOLOGY

A. Data and item calibration

We used data from a real fixed admission test administrated
to 2372 test-takers (applicants) at First Faculty of Medicine,
Charles University, Prague in 2015 [9], also see [10]. Interac-
tive presentation of psychometric properties of the admission
test is available in R package ShinyItemAnalysis [11].

The test consisted of 100 dichotomously scored items
covering different Biology topics. For the purpose of this
analysis, items were classified into three general domains
– genetics, taxonomy, and human biology, respectively. The
mutual proportions of these three domains were of nearly equal
size.

To evaluate psychometric properties of the items, unidi-
mensional two-parameter logistic (2PL) item-response theory

(IRT) model was fitted to describe the probability of a correct
answer given applicant’s ability [12],

pi (θp) = Pr (Upi = 1|θp, ξi) = Ψ [ai (θp − bi)]

=
exp [ai (θp − bi)]

1 + exp [ai (θp − bi)]
, (1)

where θp is the ability of subject p ∈ {1, 2, . . . , N}, vector
ξi = (ai, bi)

T stands for set of item parameters (discrimination
and difficulty, respectively) for item i ∈ {1, 2, . . . , I}, and
Ψ(•) is the logistic function.

In the item calibration phase, the item parameters (ai, bi)
T

were estimated. To estimate the item parameters, we used
marginal maximum likelihood (MML) as follows [13]. Let
us assume local independence, i. e. independence of item
responses for the same subject given their ability θp (within
subject). Then the probability Pr (up|θp, ξ) of response pattern
up of subject p follows the form

Pr (up|θp, ξ) =
I
∏

i=1

Pr (Upi = upi|θp, ξi) . (2)

Supposing there is no cooperation between subjects, we
can also assume independence between subjects (in-between).
Let’s further denote ξ = (ξ

1
, . . . , ξI) the matrix of parameters

for all items i. Then the marginal likelihood function takes
form

L (ξ, µ, σ;U) =

N
∏

p=1

Pr (up|ξ, µ, σ) (3)

with

Pr (up|ξ, µ, σ) =

=

∫

. . .

∫

Pr (up|θp, ξ) g (θp|µ, σ) dθp,

where µ and σ are the expected value and the variance
of respondent ability θp. With this approach, abilities θp
are treated as stochastic variables with normal distribution,
θp ∼ N (µ, σ) and are integrated out [14].

The first-order derivatives with respect to ability parameters
θp result into the likelihood equations [15] that could be
numerically estimated using Expectation-Maximization (EM)
algorithm [16], producing the desired estimates of item pa-
rameters ξ̂ =

(

ξ̂
1
, . . . , ξ̂I

)

.

B. Settings of adaptive tests

Initialization. Initial item was selected as the one maximiz-
ing observed Fisher information at ability θ0 = 0, see [17].

Ability estimation. Test-taker’s ability is iteratively updated
whenever the respondent answers to a given item and the
answer is collected. Beginning with the equation (2), the
likelihood is as follows

L (θ;up) =
I
∏

i=1

P (Upi = upi|θ, ξi) (4)

and is maximized with respect to θ. Then, the first-order
and second-order partial derivatives are needed to compute
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the maximum likelihood estimates (MLE) and their standard
errors [18].

While we used MLE to estimate ability in most results
shown here, other methods are available. In case the ability is
only unidimensional, a popular approach is the weighted like-
lihood estimator (WLE) [19]; which maximizes equation (4)
weighted by a function w(θ), thus

L (θ;up) = w(θ)L (θ|up) . (5)

Finally, Bayesian ability estimation [20] specifies prior
ability distribution p (θp|µ, σ) and maximizes posterior dis-
tribution of θp given up of the following form:

p (θp|up, ξ, µ, σ) =
Pr (up|θp, ξ) p (θp|µ, σ)

∫

. . .
∫

Pr (up|θp, ξ) p (θp|µ, σ) dθp
.

Item selection. We used likelihood-based item selec-
tion [17], i. e. in each step, the next (k-th) item was selected
to maximize the observed Fisher information

ik ≡ argmax
j

{

IUk−1,Uj

(

θ̂k−1

)}

(6)

at θp = θ̂p,k−1 given a subject p, where Uk−1 is an answer
pattern up to the (k−1)-th item [17]. This rule is also known
as the maximum-information rule in adaptive testing.

Other item selection procedures include naive approach
such as Urry’s criterion picking always an item with diffi-
culty closest to the current ability estimate [21]. In Bayesian
framework, the posterior distribution of θp after the preceding
item serves as the prior distribution for the selection of the
next item. If the posterior distribution after k − 1 items has
density p (θ|uk−1), then the k-th item is selected such that the
posterior distribution

p (θ|uk−1, Uik) ∝ p (θ|uk−1) p (Uik = uik |θ)

is optimized in some sense [20].
Termination criteria. In our simulation studies, we used

ability estimate precision as a stopping rule. Assuming the
IUp,k−1

(θ̂p,k−1) is observed Fisher information [17] at θ̂p,k−1

where Uk−1 is an answer pattern until the (k − 1)-th item
(inclusively) given a subject p, then standard error of ability
θ̂p,k−1 is

SE(θ̂p,k−1) =
1

√

IUp,k−1

(

θ̂p,k−1

)

. (7)

For the adaptive test, we specified the maximal allowed
standard error SE(θ)max of the ability estimate based on the
distribution of standard errors of the ability estimates from the
full 100-item test. For subject p, the test was terminated just
after administration of the k-th item if SE(θ̂p,k) ≤ SE(θ)max

and SE(θ̂p,k−1) > SE(θ)max. Otherwise, the test was stopped
if the length of 100 items was reached and all available items
were used.

Whenever the termination (stopping) criterion is met, the
adaptive test is ended and final estimate of test-taker’s ability
is provided.

Content balancing. Balancing of an adaptive test content
is usually treated as a combinatorial constrained optimization
problem [22]. Alternatively, it is based on a shadow-test
approach by projection of rest of the test at the current moment
(after k − 1 items are administrated), which is a nonlinear
program using maximum-information rule and constrained by
domain attributes and other conditions [22].

In the post-hoc analysis described in this paper, we used one
of the combinatorial designs, where we initially set desired
proportions of expected administration rate to each of the
three domains (genetics, taxonomy, human biology). The items
were selected in a way to minimize differences between the
currently observed and initially set proportions.

Item exposure rate control. The rates of how many times
each item is administrated to one or more of test-takers
throughout one adaptive test session may be controlled to
minimize their unwanted leakage outside the tested population.
Hetter-Sympson experiment is commonly applied to face this
problem and was also used in our simulation study [23].
The algorithm was run before the optimally selected item
was administrated, output of which was a decision either to
administer the item, or to pass and select the next best item
at the current estimate of ability θ̂p,k. The administered items
were removed from the item pool. Hetter-Symspon experiment
is based on evaluation of joint conditional probabilities of
item administration; thus cumbersome and usually must be
numerically simulated.

There are also some alternatives – an experiment determin-
ing which items are eligible for subjects and which not [24].
If an item is eligible, it remains in the pool for the subject
p; otherwise it is removed. This works as a principle of
"self-adjustment"; when an item was highly exposed within
previous p − 1 subjects, it is likely not to be eligible for the
p-th subject.

C. Post-hoc analysis

In post-hoc analysis, the item parameters and the response
patterns of the respondents were used to rerun the test under
adaptive conditions. By doing this, the properties of the
adaptive test (such as the test length, precision of estimated
abilities etc.) were "post-hoc" evaluated and compared to the
original linear test.

Considering the dataset of test-takers taking the real test,
we varied the maximal allowed standard error of the ability
estimates and ran the adaptive version of the test for each
of the test-takers investigating how many items were needed
to complete the test. The pseudocode of this simulation is
provided in Algorithm 1.

Similarly, we calculated the z-score for each subject using
the test scores from the real test,

z-score =
xp − x̄

sx
,

where xp is a test score of a subject p, x̄ is an average test score
and sx is a standard deviation of all test scores. All test-takers
having their z-scores in the interval of |z − z∗| ≤ δ, where
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Algorithm 1: Investigation of adaptive test length
depending on the precision of ability estimate

Data: data of the real test
Result: boxplots of test lengths for CAT with different

standard errors of ability estimates

1 {S} // set or subset of respondents;
2 // of the real test;
3 {A} = ∅ // list of vectors of lengths;
4 // for different standard;
5 // errors;
6 {E} = ∅ // list of standard errors;

7 for j = 1 : 7 do

8 SE = 0.15 + 0.05 · j;
9 {E} = {E} ∪ {SE};

10 {D} = ∅ ;
11 for p ∈ S do

12 run an adaptive test for subject p with stopping
criterion SE(θ)max = SE and save its length
as d;

13 {D} = {D} ∪ {d};
14 end

15 {A} = {A} ∪ {D};
16 end

17 make a boxplot of {A} vs. {E} ;

δ = 0.05 and z∗ ∈ {−2.00,−1.75,−1.50, . . . ,+1.75,+2.00}
were supposed to virtually take the adaptive test, keeping the
SE(θ)max = 0.30 for equation (7) constant. The z∗ neighbour-
hood δ = 0.05 was chosen empirically, but consequently, one
can realize that δ = 0.125 would cover continuously the entire
range of all z-scores. For each z∗, a vector of all the adaptive
tests’ lengths was displayed in the final boxplot. The schema
of the simulation is provided in Algorithm 2.

Similarly, the effect of content balancing and item exposure
rate control was analyzed. When an adaptive test was admin-
istered to each test-taker from a randomly selected subset, we
counted how many times individual items occur in the tests.
Absolute numbers of the items’ occurrences were then counted
up for different scenarios – besides the situation when neither
the content balancing nor the item exposure was applied,
the case of (only) the content balancing and (only) the item
exposure rate controlling was taken into account. Eventually,
using the fact, the items were classified into three domains
(Genetics, Taxonomy, Human Biology), their counts could be
clearly plotted using boxes in a boxplot.

Finally, to study the impact of adaptive test with different
settings on the admission process, we enumerated the
admission mismatch rate between linear and adaptive tests.
We assumed the best fifth of all the applicants would be
admitted and we calculated the mismatch rate as the ratio
of students who would be admitted based on their score
in the linear test but not based on the score in adaptive
test and vice versa. We then compared the admission

Algorithm 2: Investigation of average adaptive test
length depending on the z-score from the original
linear test
Data: data of the real test
Result: boxplots of average test lengths for groups

based on z-scores from the original linear test

1 δ = 0.05 // neighbourhood around z∗;
2 {A} = ∅ // list of vectors of lengths;
3 // for different z-scores;
4 {Z} // list of original z-scores;
5 {Z∗} = ∅ // list of z∗-scores;

6 for j = 1 : 17 do

7 z∗ = −2.00 + 0.25 · j;
8 {Z∗} = {Z∗} ∪ {z∗};
9 {D} = ∅ ;

10 for all subjects with z ∈ Z such that |z − z∗| ≤ δ

do

11 run an adaptive test for the subject with
stopping criterion SE(θ)max = 0.30 and save
its length as d;

12 {D} = {D} ∪ {d};
13 end

14 {A} = {A} ∪ {D};
15 end

16 make a boxplot of {A} vs. {Z∗} ;

mismatch rate for adaptive tests with stopping criteria
SE(θ)max ∈ {0.20, 0.30, 0.40, 0.50}. While the best fifth for
the linear test was calculated using the z-scores, the MML
ability estimates were used for the adaptive test.

D. Monte Carlo simulation studies

Whereas the post-hoc analysis requires real data from an
administrated test, the Monte-Carlo simulation study starts
from the scratch – it generates abilities of "virtual" test-takers
usually following normal distribution and responses based on
selected model (e. g. the 2PL IRT model) with given item
parameters. We first simulated the linear test, then, based on
the simulated answers, the adaptive scenario was simulated.
We then correlated ability estimates from the adaptive test
with the true ability values. Finally, we displayed lengths
of adaptive test and we correlated the ability estimate with
the true ability. Other comparisons and analyses are possible
(length with respect to the true ability score, etc.), but not
presented here. The algorithm of the simulation is technically
described in Algorithm 3.

Analyses were performed in R programming language and
environment [25] using the package mirtCAT [26].

III. RESULTS

All items of the linear test were calibrated using the 2PL
IRT model as described by equation (1). Item characteristic
curves and item information curves are plotted in Fig. 2 and
Fig. 3. All items have positive discrimination ai > 0 for
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Algorithm 3: Investigation of ability estimates based
on adaptive tests using a Monte-Carlo simulation

Data: generated abilities following N (0, 12),
item parameters (estimated from real data), adaptive
test’s stopping criterion SE(θ)max = 0.30, item
selection using maximum-information rule
Result: a list of ability estimates based on adaptive test

1 n = 300 // number of generated;
2 // abilities;
3 {S} // list of n generated;
4 // abilities;
5 // following N (0, 12);
6 {A} = ∅ // list of adaptive-based;
7 // ability estimates;
8 {D} = ∅ // list of lengths;
9 // of adaptive tests;

10 for p = 1 : n do

11 apply 2PL IRT model on p-th ability of {S} and
simulate an answer pattern ;

12 use the answer pattern and run an adaptive test for
p-th ability and save its length as d and ability
estimate as θ̂p ;

13 {A} = {A} ∪ θ̂p;
14 {D} = {D} ∪ {d};
15 end

16 make a boxplot of {D} ;
17 make a scatterplot of {A} vs. {S}, calculate

a correlation of {A} and {S} ;

∀i ∈ {1, 2, . . . , 100}, resulting in a spectrum of the item
information curves.
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Fig. 2. Item characteristic curves of the linear test estimated using 2PL IRT
model.

When applying the 2PL IRT model on the data from the
linear test, we get, besides other, also standard errors of
the ability estimates for each test-taker. Histogram of these
standard errors in in Fig. 4. Range of the standard errors of
the ability estimates is between 0.20 to 0.50, with majority of
values within the interval 〈0.20, 0.30〉.
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Fig. 3. Item information curves of the linear test estimated using 2PL IRT
model.
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Fig. 4. Histogram of standard errors of the ability estimates.

A. Post-hoc analysis

Post-hoc analysis used the real test-takers data to simulate
the results under scenario of an adaptive test with selected
parameters. As an example, Fig. 5 demonstrates iteratively
estimated ability estimates and order of items in which they
would be administered to the 1-st subject under adaptive
scenario with terminating criterion SE(θ)max = 0.30. We can
see that the initial item would be item number 81, the last
item would be item number 70. The width of the grey belt
stands for precision of the ability estimate at each step k,
equal to two standard errors 2SE(θ̂)p,k of the ability estimate
of person p. The belt becomes more narrow as the test-taker
answers more and more items. Note that the standard error
after 18 administered items is SE(θ̂)1,18 ≤ 0.30 while after
17 administered items it is SE(θ̂)1,17 > 0.30.

As a result of Algorithm 1, Fig. 6 presents how the number
of items needed to stop the adaptive test depends on the
termination criterion. We can see that the higher the maximal
standard error is applied as the termination criterion, the lower
the number of items is needed to terminate the adaptive test.

As a result of simulation described with Algorithm 2,
Fig. 7 illustrates how the respondent ability (estimated with
a z-score) affects the number of items needed to stop the
adaptive test. The size of maximal allowed standard error
of the ability estimates as the stopping criterion was set to
SE(θ)max = 0.30 based on the distribution of the standard
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CAT Standard Errors
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Fig. 5. A plot of progress of 1-st subject in an adaptive test with the
terminating criterion set to maximal allowable standard error of the ability
estimates of SE(θ)max = 0.30.
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Fig. 6. Number of items needed to stop the adaptive test versus a size of
standard error of the ability estimate as the stopping criterion.

errors, displayed in Fig. 4. We can see that the closer the
z-score is to zero, the lower number of items is needed
to complete the adaptive test while meeting the required
ability estimate precision defined by SE(θ)max = 0.30. This
corresponds to the fact that the information functions for
majority of items have the maxima for ability around zero as
demonstrated in Fig. 3. Contrary, for z-scores far from zero,
the observed Fisher information is small for most of the items,
thus a larger number of items is needed to meet the stopping
criterion, and often not even meeting it using all 100 items
available.

In Fig. 8, we plot numbers of occurrences of items in all
individual adaptive tests for randomly selected 50 test-takers,
considering that each item belongs to one of the following
three domains – either to genetics, taxonomy, or human biol-
ogy, respectively. While the proportions of the three domains
of items as they were administrated vary a lot in Fig. 8 where
neither the content balancing nor the item exposure rate control
is applied, these numbers are near equal when the content
balancing is applied. When the item exposure rate control
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Fig. 7. Number of items needed to stop the adaptive test in respondents of
different ability levels.

is employed, there is no visible change in comparison to no
application of the exposure control.
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Fig. 8. Number of items belonging to the domains genetics, taxonomy, human

biology, respectively, as were administrated with application of neither content
balancing nor item exposure control, with application of content balancing,
and with application of item exposure rate control only.

Table I provides mismatch matrices for linear and adaptive
tests with different stopping criteria SE(θ)max. As expected,
the mismatch rate increases with increased allowed standard
error applied as a stopping criterion in the adaptive test. The
mismatch rate is 0.036, 0.083, 0.102 and 0.118 for adaptive
tests with stopping rules SE(θ)max = 0.20, 0.30, 0.40 and
0.50, respectively.

B. Monte-Carlo simulation study

As a result of the Monte-Carlo simulation study described
by Algorithm 3, Fig. 9 provides a boxplot illustrating the
mean length of the adaptive test for the set of test-takers with
the generated abilities. While each test-taker has to answer
to all (100) items within the linear fashion, they would only
have to answer about 25 % of items to finish the simulated
adaptive test with the termination criterion SE(θ)max = 0.30.
The length of the test using this adaptive scenario provides
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TABLE I
MISMATCH MATRICES OF ADMITTED TEST-TAKERS BY LINEAR AND

ADAPTIVE TEST WITH STOPPING CRITERION

SE(θ)max ∈ {0.20, 0.30, 0.40, 0.50}.

SE(θ)max = 0.20 admitted by adaptive test
no yes

admitted by linear test
no 1842 38
yes 48 435

SE(θ)max = 0.30 admitted by adaptive test
no yes

admitted by linear test
no 1787 93
yes 103 380

SE(θ)max = 0.40 admitted by adaptive test
no yes

admitted by linear test
no 1762 118
yes 123 360

SE(θ)max = 0.50 admitted by adaptive test
no yes

admitted by linear test
no 1737 143
yes 136 347

75% shortening as compared to the linear test, while keeping
the same precision of ability estimates for most respondents.
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Fig. 9. A boxplot of number of items needed to be answered to complete the
adaptive test based on Monte-Carlo simulated test-takers’ abilities. The blue
dashed line shows a length of the linear test (100 items).

Pearson’s correlation between the generated abilities and
their estimates based on the adaptive tests is about ρ

.
= 0.960,

which is depicted also in Fig. 10.

IV. CONCLUSION

Both the post-hoc analysis and Monte-Carlo simulation
study showed that average test lengths can be shortened with
adaptive tests, while keeping the standard error of the ability
estimates at the same level for most of the respondents. The
shortening of the test within the adaptive test with SE(θ̂)max =
0.30 was by about 75 % percent, i. e. while the original linear
test had 100 items, the adaptive one was ended on average
after answering 25 items only.
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Fig. 10. A scatterplot of the generated abilities and their estimates based on
the adaptive tests. The blue line stands for an axis of the first quadrant of the
plot.

When even larger standard errors of the ability estimates
are tolerated, the length of the test could be reduced even
more, e. g. to only 10 items per one test, as was shown in
the post-hoc analysis of the average adaptive test length with
varying stopping criterion.

The post-hoc simulation also demonstrated that an average
length for adaptive tests is shorter for average ability levels.

While the content balancing with the combinatorial ap-
proach showed a significant improvement in test domain
equalizing, an effect of the item exposure rate did not seem
to be so eminent under our setting.

The lower the tolerated standard error as a stopping criterion
of the adaptive test is, the lower is the mismatch error rate
when using an adaptive test instead of the linear one. The
mismatch rate was less than 10% for adaptive test with
stopping criterion of SE(θ̂)max = 0.30.

The Monte-Carlo simulation study also indicated that abil-
ity estimates provided by the adaptive tests can be tightly
correlated with their true (generated) values; thus, although
the shortened length, the adaptive test can provide precise
estimates of the respondent abilities.

To conclude, usage of adaptive testing seems to be a promis-
ing alternative to classic linear tests and offers many advan-
tages as showed by the simulations.
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