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Abstract—The effects of air pollution on people, the envi-
ronment, and the global economy are profound - and often
under-recognized. Air pollution is becoming a global problem.
Urban areas have dense populations and a high concentration of
emission sources: vehicles, buildings, industrial activity, waste,
and wastewater. Tackling air pollution is an immediate problem
in developing countries, such as North Macedonia, especially
in larger urban areas. This paper exploits Recurrent Neural
Network (RNN) models with Long Short-Term Memory units
to predict the level of PM10 particles in the near future (+3
hours), measured with sensors deployed in different locations
in the city of Skopje. Historical air quality measurements data
were used to train the models. In order to capture the relation of
air pollution and seasonal changes in meteorological conditions,
we introduced temperature and humidity data to improve the
performance. The accuracy of the models is compared to PM10
concentration forecast using an Autoregressive Integrated Moving
Average (ARIMA) model. The obtained results show that specific
deep learning models consistently outperform the ARIMA model,
particularly when combining meteorological and air pollution
historical data. The benefit of the proposed models for reliable
predictions of only 0.01 MSE could facilitate preemptive actions
to reduce air pollution, such as temporarily shutting main
polluters, or issuing warnings so the citizens can go to a safer
environment and minimize exposure.

Index Terms—RNN, LSTM, deep learning, air pollution

I. INTRODUCTION

A
IR pollutants exert a wide range of impacts on biological

and socio-economic systems. Their effects on human

health are of great interest. In particular, PM2.5 and PM10

(Particulate Matter) have been proven to have a significant im-

pact on human respiratory efficiency. A number of studies have

shown that the increase of respiratory diseases is correlated

by a high concentration of air pollutants [1]. [2] represents a

useful review of the emerging challenges and requirements for

understanding adverse health outcomes from ambient particles.

Consequently, it has become an important task to accurately

track and analyze ambient air pollution in order to adjust

public policies and health protection measures. The ability

to predict exceeding of critical air quality thresholds is of

particular importance. The potential for alert management sys-

tems that will provide warning communication to authorities

and the population of health and environmental risks is high.

Such systems have already been developed and deployed [3].

Studies such as [4], have shown that the data of ambient air

quality can be modelled as stochastic time series, thereby

making it possible to make a short-term forecast based on

historical data. There are successful approaches relying on

successful forecasting models over large multi-sensor data sets,

based on sliding-window-based feature extraction and feature

subset ensemble selection [5]–[9]. The latter approaches also

show that it is feasible to use short-term predictions of danger-

ous concentrations in coal mines to reduce the workload, so

preventing to reach the dangerous thresholds. The air pollution

forecast in cities can be employed in a similar manner, such as

temporarily shutting main polluters, or issuing warnings so the

citizens can go to a safer environment and minimize exposure.

Long short-term memory (LSTM) [10] is an artificial recur-

rent neural network (RNN) [11] architecture used in the field

of deep learning. Due to their chain-like nature, LSTMs are

considered to be the typical architecture of neural networks to

be used with sequences and lists. LSTM networks have already

been used for time series multistep forecasting in multiple

studies [12] [13] [14] [15] [16]. In [17] a similar approach is

described, where convolutional neural networks are combined

with LSTM to classify PM10 levels. In [18], an approach for

air pollution forecasting using RNN with LSTM is presented.

Alternative studies in the literature exploit feature extraction

as a pre-processing step for the predictive task [19] [20] [21]

[22] [23].

The widespread adoption of LSTM across different do-

mains shows the effectiveness and reliability of this model

in multistep forecasting task. The reason for their effective-

ness is the ability to extract time-variant dependencies and

correlations that are inherently present in real-life scenarios,

and exploit them to predict future time steps. Differently

than ARIMA models, which are autoregressive and capable to

analyze exclusively univariate time series, LSTM models can

exploit multiple time series in a combined manner. Potentially,

leveraging the existing correlations between them can lead to

obtain more accurate predictions.
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In this paper, we performed experiments with air quality

measurements data from the area of Skopje, North Macedonia.

We used PM10 level measurements of the pollution combined

with meteorological parameters to predict the PM10 level at

point +3 hours in the future. The main contribution of this

paper is that it combines different data sources to perform

forecasting and compares the results to predictions when only

air quality data is used. Our approach was to train the models

with a data set from a single sensor, then gradually increase the

number of air quality sensors used. A graphical representation

of the workflow is shown in Figure 1. The results were

then compared with the performance of the models trained

using air quality and meteorological sensor data combined.

Additionally, we used the data to examine the performance

of different RNN architectures. For this purpose, we used the

Keras framework, a high-level neural networks API capable

of running on top of Tensorflow.

II. METHODS

A. Dataset

The dataset consists of air quality sensor measurements

from sensors deployed to different locations in the city of

Skopje. Variety of parameters are monitored by the sensors,

including PM10 and PM2.5 particles, as well as the presence

of NO2, CO, O3, and SO2. Measurements are done in intervals

of one hour. This dataset was also enriched with meteorologi-

cal parameters, namely temperature and atmospheric pressure,

measured at the Skopje-Petrovec meteorological station. For

the purpose of this research, 12 consecutive measurements

from the air pollution measurement points and from the me-

teorological station are used. In some of the models, we used

a set of 24 consecutive measurements, but no considerable

improvement was observed.

The dataset in this form has not been studied and published

before. However, a subset of the data has been used in a previ-

ous study. In [17] a similar approach is described, where subset

of the data is used to classify future values using a combination

of LSTM and convolutional neural networks. Repository with

the source code used, as well as the preprocessed dataset, is

available at https://gitlab.com/magix.ai/air-pollution-skopje.

Fig. 2 shows the seasonality and trend in the data set. It

is clearly noticeable that disturbances and irregularities are

present in the air quality sensor data. Due to these reasons,

to train the recurrent neural network models, we used data in

the range from December 2011 to December 2019. In order

to model possible malfunctions in the sensors, we introduced

a Dropout layer in some of the architectures.

The used measurements are listed bellow, grouped by loca-

tion:

• Municipality of Karposh, North Macedonia

– PM10 concentration

• Municipality of Centar, North Macedonia

– Measurement station Centar - PM10 concentration

– Measurement station Rektorat - PM10 concentration

• Municipality of Miladinovci, North Macedonia

– PM10 concentration

• Municipality of Petrovec, North Macedonia

– Temperature (in Degrees Celsius)

– Atmospheric Pressure at station level

The sampling frequency of the meteorological parameters

differs from the one used in the air quality sensors. A pre-

processing phase was needed to fit the data set for training

and validation purposes. The pre-processing consists of the

following steps:

• Missing data interpolation

• Min-Max normalization

• 12 samples data window preparation

The data was divided into train, validation and test data sets.

For training, we used data in the time interval 01.12.2011 -

31.12.2019. This dataset consists of 70129 samples. Validation

samples were taken dynamically as 1 per cent from the training

data points (709 samples). Before the training process, we

used a smaller two-year subset of the data for hyperparameter

optimization. Data points for optimization were taken from

the interval from 01.08.2014 to 01.08.2016 (17534 samples).

Hyper-parameter tuning was validated using a small two-

months data set in the time frame 01.11.2016 - 31.12.2016

(1430 samples).

For testing the performance of the different architectures, a

test data set was used. This data set consists of the data points

in January 2020.

B. Baseline model: ARIMA

Among many available methods for time series regression,

one of the most popular and broadly used are Autoregressive

integrated moving average (ARIMA) model [24]. Results

obtained in this study confirmed that the ARIMA has a strong

potential for short-term spot prediction. ARIMA form a class

of time series models that are widely applicable in the field

of time series forecasting. In the ARIMA model, the future

value of a variable is a linear combination of past values and

errors after removing the trend – by differencing.

C. Deep learning models architecture

In this paper, we wanted to compare several different

architectures and see how they perform in comparison to the

ARIMA model. We used LSTM, SimpleRNN and GRU layers.

In some of the architectures, we added a dropout layer to

mitigate temporary failures of some sensors.

RNN mainly deals with the processing of sequence data,

such as text, speech, and time series. This type of data exists

in an orderly relationship with each other; each piece of data is

associated with the previous piece. Another example is climate

data, where, for example, the temperature of a day is related to

the temperature of the previous day. Therefore, we can form

many sets of sequences from the data using time from a set

of continuous data, and the correlation between sequences can

be observed from multiple sets of sequences.

Our approach was to build a simple model using LSTM and

Dense layers and then gradually increase the complexity of the
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Fig. 1: Graphical representation of the proposed method for pollution forecasting.

architecture. An overview of the models is given in Table I-II.

We started with the simplest architecture, one LSTM layers

with optimized number of units and one Dense layer. Then,

we trained the network using a univariate data set, values from

one air quality sensor, and we validated the ability to make

short-term predictions, +3 hours in the future.

This simple architecture performed slightly better than the

ARIMA model. 3 shows the loss function for the training and

validation phases while 4 show the performance of this model

compared to the performance of the ARIMA model.

In order to improve the performance, we added data from

a second sensor to treat the problem as a multivariate series

and compared the performance of the architecture. Then we

increased the data set to include data from 4 sensors on

different locations (Table I, approach number 3 and 4). This

caused a small decrease in the performance of the LSTM

model. One of the main ideas of this paper was to investigate

the influence of meteorological data. Therefore as a final

test, we added temperature and air pressure parameters to the

training data set (Table I, approach number 5). The result was

an increase in accuracy and performance. Figure 4 shows the

performance compared to the ARIMA model in the first week

of the test data. This architecture showed the best performance

when we compared the models using MSE as a performance

metric. The simple LSTM model seems to outperform all other

models described in this paper.

As a second approach in this paper, we increased the

complexity of the architecture and the number of hidden

layers. A second layer of optimized LSTM was added with

a Dropout layer in between (Table I-II, approach number 6).

This model showed a slightly decreased accuracy.

As a next step, we introduced a SimpleRNN layer in two

variants. In [25], it is shown that RNN can be used for

time series forecasting. SimpleRNN is a fully-connected RNN

layer where the output is to be fed back to the input. As

a first experiment, we replaced the first LSTM layer with a

SimpleRNN, and in the second the RNN layer was added as

an input to the first LSTM followed by a Dropout layer (Table

I approach number 8 and 9). The latter approach exhibited a

better performance than the first.

As an additional attempt to improve the results, the data

set was extended to 24 hours history data window (Table

I approach number 10). This did not bring any significant

improvement. Gated Recurrent Unit or GRU [26] modifies the

LSTM by fusing the forget and input gates into an update gate.

Additionally, the cell states and hidden states are merged. The

resulting model is simpler than standard LSTM models, and

has been growing increasingly popular in the past few years.

Due to sensor failures, the data set, as most of the real-life time

series data, is characterized by a variety of missing values. It

has been noted that missing values and their missing patterns

are often correlated with the target labels. There are studies

[27] that examine architectures based on GRU to time series

data analysis. An experiment with a GRU layer was made. We

extended the RNN architecture with a GRU layer followed by

a SimpleRNN + LSTM, and a Dense layer as an output. This

architecture showed a decreased performance in comparison

to ARIMA and the previous architectures (Table I, approach

number 7). During training and validation, the model showed

improvements, such as faster learning (steeper decline in the

loss function in the first couple of epochs). For the test data

set, the accuracy decreased, which was an indicator that this

architecture was overfitting to the training data set.

Due to the small number of features, we expected that addi-

tional layers could only increase the probability of overfitting

on the data, although further research is experimentation is

necessary to prove this.

For this particular experiment, we use mean squared er-

ror loss function, and for the model optimization, we used

the Adam optimizer [28]. The implementation is done with

Keras [29].

D. Parameter tuning

We used parameter tuning in order to obtain the best

predictive model. For hyperparameter optimization, a smaller

subset of the training data was used. Data points were taken in

the interval from 01.08.2014 to 01.08.2016 (17534 samples).

Hyper-parameter tuning was validated using a two-months

validation data set in the time frame 01.11.2016 - 31.12.2016

(1430 samples). Table III presents the parameters that are

tuned with the ranging values. Optimization was done using

the Keras-Tuner library1.

The following parameters were tuned in order to obtain the

best architecture:

• Dropout - Deep neural networks with a large number of

parameters can be powerful tools. However, overfitting

1https://keras-team.github.io/keras-tuner/
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Fig. 2: Exploration of seasonality and trend in the dataset
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TABLE I: Summary of evaluated approaches with achieved average forecasting performance in terms of Mean Square Error

(MSE), Root Mean Square Error (RMSE), and percentage of improvement in terms of reduction in RMSE with respect to

ARIMA.

# Input Data Architecture MSE RMSE % Impr.

1 1 x 12 PM10 LSTM + Dense 0.0140 0.1185 6.02
2 1 x 12 PM10 ARIMA (12) 0.0159 0.1261 /
3 2 x 12 2 x PM10 LSTM + Dense 0.0143 0.1198 4.90
4 4 x 12 4 x PM10 LSTM + Dense 0.0124 0.1114 11.60
5 6 x 12 4 x PM10 + Temp. + Pressure LSTM + Dense 0.0109 0.1043 17.28
6 6 x 12 4 x PM10 + Temp. + Pressure LSTM + Dropout + LSTM + Dense 0.0115 0.1072 14.90
7 6 x 12 4 x PM10 + Temp. + Pressure GRU + SimpleRNN + LSTM + Dense 0.0428 0.2069 -6.40
8 6 x 12 4 x PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0150 0.1224 2.93
9 6 x 12 4 x PM10 + Temp. + Pressure SimpleRNN + LSTM + Dropout + LSTM + Dense 0.0125 0.1118 11.34
10 6 x 24 4 x PM10 + Temp. + Pressure SimpleRNN + LSTM + Dropout + LSTM + Dense 0.0127 0.1126 10.70

TABLE II: Summary of evaluated approaches with different configurations in terms of number of units in the LSTM layer

(U), Learning Rate (LR), Dropout rates (D).

# Architecture Parameters optimized

1 LSTM + Dense U: 2-128 + LR [0.01, 01]
2 ARIMA (12) None
3 LSTM + Dense U: 2-124 + Learning rates [0.01, 01]
4 LSTM + Dense U: 2-124 + LR [0.01, 01]
5 LSTM + Dense U: 2-124 + LR [0.01, 01]
6 LSTM + Dropout + LSTM + Dense LSTM (2-24) + D [0.3, 0.2, 0.1] + LSTM (2-124) + LR [0.01, 01]
7 GRU + SimpleRNN + LSTM + Dense GRU (12-256) + RNN (1-128) + LSTM (2-124) + LR [0.01, 01]
8 SimpleRNN + LSTM + Dense RNN (1-128) + LSTM (2-124) + LR [0.01, 01]
9 SimpleRNN + LSTM + Dropout + LSTM + Dense RNN (1-128) + LSTM (2-24) + D [0.3, 0.2, 0.1] + LSTM (2-124) + LR [0.01, 01]
10 SimpleRNN + LSTM + Dropout + LSTM + Dense RNN (1-128) + LSTM (2-24) + D [0.3, 0.2, 0.1] + LSTM (2-124) + LR [0.01, 01]

Fig. 3: Train and validation MSE of the single layer LSTM

model tested

can be a problem in such networks. This often happens

when neural nets are trained on relatively small datasets.

The lack of control over the learning process often leads

to cases where the neural network can not generalize and

make forecasts for new data. Dropout is a technique for

addressing this problem. The idea is to randomly drop

Fig. 4: Performance comparison to ARIMA model in the first

week of the test data set

units from the neural network in the training phase in

order to prevent units from co-adapting too much.

• Learning rate - The learning rate is a hyperparameter

that controls how much to change the model in response

to the estimated error each time the model weights are

updated. Choosing the learning rate is challenging as a

value too small may result in a lengthy training process

that could get stuck, whereas a value too large may result

in learning a sub-optimal set of weights too fast or an

unstable training process. The learning rate controls how

MIRCHE ARSOV ET AL.: SHORT-TERM AIR POLLUTION FORECASTING BASED ON ENVIRONMENTAL FACTORS AND DEEP LEARNING MODELS 19



Fig. 5: Performance comparison to ARIMA model in the first

week of the test data set. Training data includes meteorological

parameters

Fig. 6: Performance comparison of the SimpleRNN+LSTM

architecture to the ARIMA model in the first week of the test

data set. Training data includes meteorological parameters

quickly the model is adapted to the problem.

• LSTM layer units - the number of LSTM cells in the layer

is a parameter that we used in our model optimization.

The number of units determines the dimensionality of the

output space.

• RNN units - the number of RNN cells in the layer. By

default, the output of an RNN layer contains a single

vector per sample. This vector is the RNN cell output

corresponding to the last timestep, containing information

about the entire input sequence. The units parameter

determines the shape of this output. A RNN layer can

also return the entire sequence of outputs for each sample

(one vector per timestep per sample).

• GRU units - parameter that determines the dimensionality

TABLE III: Parameters used for tuning the neural network

Parameter name Min Value Max Value Step

Learning rate 32 128 2

Dropout rate 0.1 0.3 0.1

LSTM 1 layer units 2 128 2

LSTM 2 layer units 2 124 4

RNN layer units 1 128 4

GRU layer units 12 256 4

Fig. 7: Train and validation MSE of the RNN+LSTM model

with 24 hours training data samples

Fig. 8: Performance comparison of the RNN+LSTM architec-

ture trained with extended 24 hours data sequence

of the output vector.

We performed a grid search through the parameter space,

trying every possible combination of the parameters.

Fig. 9: Performance of the LSTM model with data from two

sensors
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Fig. 10: Performance of the LSTM model with data extended

with meteorological parameters

III. CONCLUSION

All architectures, except for the model with GRU layer,

outperformed the ARIMA model in forecasting near-term

future values (+3 hours). Models based on simple LSTM archi-

tecture exhibited the best results, leading to an improvement

of up to 17.28% in terms of RMSE reduction with respect

to ARIMA. Table I shows a summary of the results obtained

in the experiments. More complex architectures can lead to

overfitting. Further research is needed to solve this problem.

We concluded that the combination of meteorological and

air pollution measurements data improves the performance

of LSTM and RNN+LSTM neural networks as a near-term

predictive models over the performance of the same archi-

tectures used with air quality data alone. Additionally, the

results show that the combination of meteorological and air

pollution measurements data with LSTM and RNN + LSTM

neural networks leads to good short-term predictive models.

It is important to note that our approach can be used to

analyze different pollution datasets, as well as time series data

in other domains. In fact, the possibility to query weather

stations through web services allows to easily complement

on-site sensor measurements of pollutants with historical and

predicted weather data.

Further experiments are needed to examine the existing

models by introducing additional data of air quality as well

as of meteorological nature. Other experiments should also

be performed to examine the model’s accuracy for extended

near-term future forecasts, for example, +6 and +9 hours in

the future.
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ronmental and meteorological forecasting and alert system (siam) for
air quality applications over different regions of the iberian penin-
sula,” in Proceedings of HARMO15 Congress. Madrid. http://www.

harmo. org/Conferences/Proceedings/ Madrid/publishedSections/H15-

70. pdf, 2013.

[4] G. Fronza and P. Melli, Mathematical Models for Planning and Con-

trolling Air Quality: Proceedings of an October 1979 IIASA Workshop.
Elsevier, 2014.

[5] D. Slezak, M. Grzegorowski, A. Janusz, M. Kozielski, S. H. Nguyen,
M. Sikora, S. Stawicki, and L. Wrobel, “A framework for learning and
embedding multi-sensor forecasting models into a decision support sys-
tem: A case study of methane concentration in coal mines,” Information

Sciences, vol. 451-452, pp. 112 – 133, 2018.

[6] A. Janusz, M. Grzegorowski, M. Michalak, L. Wrobel, M. Sikora, and
D. Slezak, “Predicting seismic events in coal mines based on under-
ground sensor measurements,” Engineering Applications of Artificial

Intelligence, vol. 64, pp. 83–94, 2017.

[7] E. Zdravevski, P. Lameski, R. Mingov, A. Kulakov, and D. Gjorgjevikj,
“Robust histogram-based feature engineering of time series data,” in
2015 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2015, pp. 381–388.

[8] A. Janusz, D. Slezak, M. Sikora, and L. Wrobel, “Predicting dangerous
seismic events: Aaia’16 data mining challenge,” in 2016 Federated

Conference on Computer Science and Information Systems (FedCSIS),
2016, pp. 205–211.

[9] E. Zdravevski, P. Lameski, and A. Kulakov, “Automatic feature engi-
neering for prediction of dangerous seismic activities in coal mines,”
in 2016 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2016, pp. 245–248.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] A. C. Tsoi and A. Back, “Discrete time recurrent neural network
architectures: A unifying review,” Neurocomputing, vol. 15, no. 3-4,
pp. 183–223, 1997.

[12] L. Yunpeng, H. Di, B. Junpeng, and Q. Yong, “Multi-step ahead time
series forecasting for different data patterns based on lstm recurrent
neural network,” in 2017 14th Web Information Systems and Applications

Conference (WISA). IEEE, 2017, pp. 305–310.

[13] M. Ceci, R. Corizzo, D. Malerba, and A. Rashkovska, “Spatial auto-
correlation and entropy for renewable energy forecasting,” Data Mining

and Knowledge Discovery, vol. 33, no. 3, pp. 698–729, 2019.
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