s

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 401-412 ISSN 2300-5963 ACSIS, Vol. 21

DOI: 10.15439/2020F3

15 Years Later: A Historic Look Back at
"Quake 3: Ray Traced"

Daniel Pohl
Intel Corporation,
Konrad-Zuse-Bogen 4,
Krailling, Germany
daniel.pohl@intel.com

Deepak S. Vembar
Intel Corporation,
2111 NE 25th Ave,
Hillsboro, OR, USA
deepak.s.vembar@intel.com

Abstract—Real-time ray tracing has been a goal and a chal-
lenge in the graphics field for many decades. With recent
advances in the hardware and software domains, this is becoming
a reality today. In this work, we describe how we got to this
point by taking a look back at one of the first fully ray
traced games: ""Quake 3: Ray Traced''. We provide insight into
the development steps of the project with unreleased internal
details and images. From a historical perspective, we look at the
challenges pioneering in this area in the year 2004 and highlight
the learnings in implementing the system, many of which are
relevant today. We start by going from a blank screen to the full
ray traced gaming experience with dynamic animations, lighting,
rendered special effects and a simplistic implementation of the
gameplay with basic AI enemies. We describe the challenges
encountered with aliasing and the methods used to alleviate it.
Lastly, we describe for the first time the unofficial continuation
of the project, code named ""Quake 3: Team Arena Ray Traced'’,
and provide an overview of the changes over the past 15 years
that made it possible to generate fully ray-traced interactive
gaming experiences with mass market hardware and an open
software stack.

Index Terms—ray tracing, computer

I. INTRODUCTION

Real-time ray tracing has been a dream for computer graphics
programmers for many decades. By physically simulating how
light interacts with surfaces, ray tracing can produce outputs
that can closely resemble how light illuminates surfaces in the
real world. The key challenges that were faced in bringing
ray tracing to real-time was the need for enormous data
parallel computing power and memory bandwidth combined
with advances on the algorithmic side. While GPUs were
primarily designed to accelerate rasterization, many explored
re-purposing the thousands of general-purpose execution units
in GPUs to perform ray tracing in real-time. The introduction
of highly parallel programming languages like CUDA, OpenCL
and Direct Compute enabled developers to explore a sub-set of
real-time ray tracing techniques on the GPU such as indirect
lighting, approximated global illumination and environment

IEEE Catalog Number: CFP2085N-ART ©2020, PTI

Selvakumar Panneer
Intel Corporation,
2111 NE 25th Ave,
Hillsboro, OR, USA
selvakumar.panneer@intel.com

Carl S. Marshall
Intel Corporation,
2111 NE 25th Ave,
Hillsboro, OR, USA
carl.s.marshall@intel.com

effects. In 2018, Microsoft officially announced the graphics
API DirectX Raytracing (DXR) [1] which unified GPU vendors
to support a dedicated GPU-accelerated ray tracing pipeline.
This led to games taking advantage of GPU-accelerated ray
tracing to perform real-time global illumination, environment
effects such as reflections, refractions and shadows at a quality
level which is much closer to realism than mimicking these
effects using the rasterization pipeline.

Figure 1. A blue light source is placed inside the quad damage item. Pixel-
accurate real-time shadows are ray traced.

We want to use this moment to take a look back at the origins
of ray tracing in games. We do this by going through a project
which one of the authors of this paper developed during a
bachelor’s thesis at the University of Erlangen together with the
Saarland University in 2004. At this time, we used the Quake 3
game content from id Software in a novel game engine written
from scratch together with a newly available real-time ray
tracing library. The project was named "Quake 3: Ray Traced",
or Q3RT in short. A rendered image from it is shown in
Figure 1. We share the challenges, learnings and benefits with
many previously unreleased details, images and benchmarks.

401

402

Besides the historical documentation, we provide insights into
what researchers and developers might encounter today in a
similar matter with DirectX Raytracing as we did already one
and a half decades ago. Furthermore, we disclose details about
an unofficial and so far undocumented continuation of the
project code named "Quake 3: Team Arena Ray Traced".

In the following sections, we will start with the related
work up until 2004 which was required to have the Q3RT
project started. In chapter III, we give a short overview of
the used OpenRT ray tracing library. This is followed by a
description of our single PC hardware and a clustered network
setup that were used during development. Chapter V outlines
the motivation for starting this project. We continue with the
first steps that describe the initial software setup and how
rendered images were displayed. In chapter VII, we add static
geometry from the game level into the engine. Following,
different types of light sources with hard and soft shadows
are discussed. In chapter IX, we add dynamics like texture
animations, decals and player models to the ray traced game.
In the section afterwards, we describe special effects like
reflections, refractions, camera portals, ground fog and colored
shadows and how they were enabled with ray tracing. We
move on to chapter XI and describe the encountered issues with
aliasing and which methods we applied against it. Next, we give
details about the, so far, undocumented project continuation
"Quake 3: Team Arena Ray Traced" with a ray traced water
implementation and a test setup with one million reflecting
spheres. Chapter XIII describes the achieved performance with
the setup from 2004. After this, we share our learnings from
the project. Before we finish with the conclusion, we provide
a quick summary of what happened after the project until

today and give a short outlook on potential future rendering °

architectures.

II. RELATED WORK BEFORE Q3RT

The question of who invented ray tracing has been analyzed
in an article by Hofmann [2] in 1990: going back to even before
computers existed, famous artists like Leonardo da Vinci and
Albrecht Diirer used between the years of 1480 and 1528 true
perspective projections in their drawing. While this was done
with paint instead of pixels in a frame buffer, these paintings
could be seen as the first renderings with ray tracing.

Moving over to the electronic form of rendering, Appel [3]
used in 1968 rays in the domain of computer graphics. In 1979,
Whitted [4] used ray tracing for colorful renderings including

simulations of rendered glass. Creating a single image with a ,

resolution of 640 x 480 pixels and a total color depth of nine
bits took between 45 and 120 minutes at that time.

In 1984, Cook et al. [5] described distributed ray tracing,
allowing effects like blurred reflections, translucency, depth

of field and motion blur. Glassner [6] optimized ray tracing ‘:

for animations by using modified bounding volume hierarchies
(BVH). Starting in 1995 with the military work from Muuss
and Lorenzo [7], networked computers were used together to
speed up ray tracing calculations. Parker et al. [8] scaled their
isosurface rendering system across multiple shared-memory

TS

PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

processors. Wald et al. [9] optimized ray tracing in 2001 for the
usage of CPU-based SIMD vector extensions, offering another
dimension of parallelization. A combination of scalable ray
tracing across processors, SIMD and networked computers
with flexibility in the rendering pipeline for different primitives
and animated content was wrapped around the OpenRT ray
tracing API [10], [11].

In 2004, the OpenRT rendering library was made available
to us for the "Quake 3: Ray Traced" (Q3RT) project. During
that time, the student Tim Dahmen was also exploring the
usage of ray tracing in games with a newly created game
named "Oasen"” [12] in which an outdoor environment could
be explored using a virtual magical flying carpet.

Parts of the work on the "Quake 3: Ray Traced" project have
been written up in the bachelor’s thesis of the student [13] in
2004, followed by a short summary in Schmittler et. al [12].
For our paper, we go in deeper with more details and with a
retrospective look on that work with today’s knowledge.

III. OPENRT

In 2002, OpenRT ray tracing library development was
started at the Saarland University. At this time, OpenGL [14]
programming was very commonly taught at universities and
was the only available cross-platform low-level graphics API
for the most common desktop and server computer systems.
To let developers quickly adapt, one of the goals of OpenRT
was to make the API as similar to OpenGL as possible.

OpenGL, at this time available in the version 1.5, had the
option of using an immediate rendering mode. A triangle could
be drawn as simple as in this code snippet:

5| glEnd () ;

7| glSwapBuffers () ;

glBegin (GL_TRIANGLES) ;
glVertex3f(0, 0, 0);
glVertex3f(0, 1, 0);
glVertex3f(l, 1, 0);

Listing 1. Drawing a triangle in OpenGL 1.5

Many ray tracers, including OpenRT, were using acceleration
structures like kd-trees or bounding volume hierarchies to store
geometry. Therefore, the immediate rendering mode was not
an available design option. Instead, a system comparable to
OpenGL’s display list was used where an object is described
once and can later be instantiated.

»| rtNewObject(triangleObjID , RT_COMPILE) ;

int triangleObjID = rtGenObjects(1);

rtBegin (RT_TRIANGLES) ;
rtVertex3f (0, 0, 0);

rtVertex3f(0, 1, 0);
rtVertex3f(l, 1, 0);
rtEnd () ;

rtEndObject () ;

int instID rtInstantiateObject (triangleObjID);
rtSwapBuffers () ;

Listing 2. Drawing a triangle in OpenRT

For programmable shading, the OpenRTS ray tracing shading
language was provided. It used a C++ interface with the

DANIEL POHL ET AL.: 15 YEARS LATER: A HISTORIC LOOK BACK AT ‘QUAKE 3: RAY TRACED’

possibility of creating new rays during shading, e.g. for tests
regarding shadows or for tracing reflections.

IV. DEVELOPMENT SYSTEM

The main development system used at that time was a PC
with a single-core Pentium 4 (code named "Northwood"),
clocked at 2.66 GHz with 768 MB memory. Due to the
relatively low performance of that system, many parts of the
interactive development were done in a rendering resolution
of either 64 x 64 or 128 x 128 pixels as shown in in Figure 2.
By just pressing a key on the numpad, it was possible to
decrease or increase that resolution on the fly. For analysis of
correctness in higher resolutions, an offline-calculated rendering
in higher resolution with supersampling was created through
a key shortcut. To test animations, videos were rendered over
night in higher resolution. While the work was targeting future
interactive ray tracing in games, the development on a single-
core machine was sometimes rather limited.

Figure 2. To give an understanding about the size of the interactive rendering
resolution of 128 x 128 pixels, we show on the left such an image on a CRT
monitor with a screen resolution of 1024 x 768 pixels. On the right, that
image is enlarged and shows the pixelated content.

The true interactivity at higher resolutions came when using
the PC cluster network at the Saarland University: 20 nodes
with a dual processor system equipped with AMD MP 1800+
CPUgs, clocked at 1.533 GHz, interconnected with 100 Mbit
Ethernet. Due to the distance between the Q3RT development
location and the cluster, this system was only used twice.

V. QUAKE 3: RAY TRACED

The idea for researching the applicability of ray tracing for
games emerged during a guest lecture from Professor Slusallek
from the Saarland University. He presented recent advances
in bringing ray tracing from an offline algorithm to real-time.
The vision of getting this rendering fidelity combined with one
of the most popular first-person shooters at that time led to the
previously mentioned bachelor’s thesis to research real-time
ray tracing for games.

In 2004, Quake 3 was still one of the best-looking computer
games. It had an advanced shading system, offered vertex
animation for player models, curved surfaces, decals, volumet-
ric fog, portals and many more features. It came with level
editors and some of the internal file formats were unofficially

documented on the Internet. This made it an exciting choice
to investigate its applicability to real-time ray tracing.

The full game offered 30 levels. For the relatively short
time frame of nine month for the bachelor’s thesis, it made
sense to limit the complexity by focusing on one of the levels
exclusively. The level "q3dm7", short for "Quake 3 Deathmatch
level number 7", was used. It is one of the larger levels with
different interesting areas. Some experiments were still done
with other levels which are shown in the Appendix.

VI. FIRST STEPS

Because the source code of the original Quake 3 game
was not available in 2004 yet, the Q3RT project was created
from scratch in an empty Visual Studio 6.0 project. Libraries
were used to quickly make progress: most importantly OpenRT
for ray tracing as described before. For creating the display
window, key inputs and mouse interactions 1ibSDL was used.

The ray tracing frame buffer itself was an array in local
PC memory, consisting of 32-bit RGBA data per pixel. The
alpha channel was not used, but provided CPU-friendly data
alignment. To display the frame buffer on the screen, for every
rendered frame an OpenGL texture was created (or an existing
one was modified with glTexSublmage2D). In 2004, many
GPUs still had the limitations that textures had to be in a
resolution of 2" x 2™. While with workarounds different aspect
ratios could have been used as well, it was the easiest way to
use resolutions like 128 x 128 in a 1:1 aspect ratio for this
work. Once the texture has been updated, it was displayed on
an OpenGL quad on the screen.

We learned that HUD, cross hair, and overlays in general
were of higher quality and faster rendered on top of the image
through the traditional OpenGL pipeline. They were never
present in the ray traced world description where as 3D objects
they might have interfered with ray intersections.

VII. STATIC CONTENT

The first geometry to test if rendering works was just a single
triangle. Once this was ray traced and showed up correctly
through the OpenGL texture, the next step was to include a
player camera model to simulate the WASD-movement known
from first-person shooters. After completion, loading of the
static Quake 3 geometry was addressed. The level files are
stored in a .bsp file format which was unofficially documented
on the Internet. The file extension .bsp hints at the usage of a
binary space partitioning (BSP) tree [15] to optimize rendering
on the GPU. The tree nodes contain information on the splitting
plane within this volume, the bounding box of this volume and
indices to the children. In the tree leaf nodes, information about
the potentially visible sets [16] (PVS) were stored. The original
rasterized rendering algorithm would determine in which leave
node it currently is and then know which other nodes need to be
rendered to not miss any geometry. The generation of the BSP
tree with the PVS was done in a compiling step during level
creation. To optimize performance further, professional level
designers needed to place manually brushes into the scene in

403

404

Figure 3. Top left shows the beziér patch at a resolution of 32 triangles. Top
right uses 128, while bottom left has 512 and bottom right 7200 triangles.

the level editor with a hint for the PVS system to not continue
to render beyond this volume.

Here is already an interesting difference between the original
version for rasterization and engines using ray tracing. For
Q3RT, we were not using any of the PVS data. It would even
have been wrong to try to use it. For global effects like a
reflection that bounces around, the PVS would not provide the
full geometry that might be required to trace this ray.

Instead, we put the full level geometry into a single object
for OpenRT. It internally built its acceleration structure for ray
tracing on it. No further hints were required as the culling of
other geometry happens implicitly on a per-ray level through
the acceleration structure.

The number of triangles for the level g3dm7 is 20,000 which
15 years later appears very small and it surprises how much

detail artists were getting out of this given the constraints.

Besides the geometry we extracted so far, there is one more
area which can increase the number of triangles. Quake 3
was one of the first games that supported rendering of beziér
patches. Through changing parameters in the original game in
the internal console, a different number of triangles were used
for creating smoother curved surfaces. There are a total of 189
beziér patches in the level q3dm7.

For rendering curved surfaces like beziér patches, ray tracing
has usually a great advantage [17]. A hit volume can be
defined specifically for these patches. When tracing a ray
inside such a volume, the mathematical equation can be used
to calculate the exact hit point. This means that the visualization
is always as smooth as possible and no single triangle-based
surface becomes visible when looking very closely at these
objects. However, this functionality was not yet supported
by OpenRT in 2004. Therefore, we fell back to manually

calculating the patches as triangle meshes during level loading.

We tried various detail levels and measured the impact on
the performance by adding additional geometry for the beziér
patches on top of the 20K triangles of the level. We discuss
the performance results in detail in section XIII. Renderings of

the different beziér patch resolutions can be seen in Figure 3.
If a ray did not hit any target, the color was set to black.

In DXR, this is now known as a miss shader. In game levels
there is often a surrounding of a large skybox with cubical
texture mapping on it. While the player moves through the

PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Figure 4. Level q3dm7 with all textures and the red, cloudy sky sphere. At
this initial stage, there was only ambient lighting used.

scene, the sky is so far away that it appears fixed. In our case,
if a ray hits outside the level, we used a sky sphere shader
from OpenRT. Given the direction of the ray that does not hit
any geometry, we calculate a texture offset into a spherical
texture. The result is comparable to a skybox and shown in
the red, cloudy area in Figure 4.

VIII. LIGHTING

Enabling dynamic lighting through ray tracing and having
accurate shadows was one of our key goals. To achieve this,
OpenRT and Quake 3: Ray Traced supported different types
of light sources. The most relevant ones with their adjustable
parameters were:

° point lights: position, RGB intensity, attenuation

° directional lights: direction, RGB intensity, attenua-
tion

° spot lights: position, direction, RGB intensity, attenu-

ation, falloff angle

The original Quake 3 game uses hundreds of point light
sources in the level g3dm7. However, during compile time of
the map, the illumination of these is baked into static light
maps [18]. While this looks reasonably well, it does not allow
for fully flexible dynamic illumination. Therefore, in Q3RT,
we did not use the light map data, but enabled some of the
point lights manually in the scene.

The directional light fits very well for simulating a distant
light source on top of the level like the sun.

Quake 3 in its original form does not use spot lights.
However, we added a flash light option for the player. From the
estimated hand position, a spot light was used facing forward
into the viewing direction of the player. At this time, such

DANIEL POHL ET AL.: 15 YEARS LATER: A HISTORIC LOOK BACK AT ‘QUAKE 3: RAY TRACED’

Figure 5. Left: flash light including casted hard shadows. Right: soft shadows.

an effect of dynamically lighting the scene with a flash light
including real-time shadows casted from it was not available
to gamers yet. An example rendering is given in Figure 5 left.
Such an effect was becoming available to gamers shortly after
this work finished: in August 2004, the game Doom 3 was
released. In it, the shadow volume [19] algorithm was used to
enable such a flash light effect including real-time shadows.

"Where there is light, there must be shadow" is a quote
from Haruki Murakami [20]. One very interesting aspect of ray
tracing is the shadow generation. When we shade a surface, we
can shoot a shadow ray to a light source and check if the ray
reaches there or if it is blocked. In the first case, we illuminate
the surface with the light properties, in the second we do
not change the lighting at his point, which leads to a shadow.
The implementations used at this time were not optimized
well for supporting a multitude of lights. Even if one light
was very far away and clearly out of reach to illuminate a
surface, the shadow ray was still cast to the distant light source.
The previously mentioned project "Oasen” solved this more
elegantly by defining a bounding volume for the light source
on which it can impact other geometry. By doing a check first
against this bounding volume, hundreds of local light sources
were efficiently used.

Shooting a single shadow ray to a light source leads to a
hard shadow with a pixel-exact border at the surface. However,
in the real world, most scenarios do not have such a hard
shadow. Still, in 2004, this was a desirable result and equals
the hard shadows that Doom 3 did in the same year with the
shadow volume algorithm. One experiment in the Q3RT project
involved shooting six shadow rays with an offset around the
center of the light instead of a single one for a point light source.
While this had certainly a much higher impact on performance,
the results looked visually more pleasing compared to hard
shadows. Soft shadows are shown in Figure 5 right.

As easy as it was to get shadows working in ray tracing
compared to implementing various shadow mapping algo-
rithms [21]-[23] with their specific optimizations or using
shadow volumes, there is also a drawback. When the shadow
ray is cast from the surface to be shaded, it needs to be offset
by a certain epsilon value in its ray direction to avoid hitting
the same surface again due to floating point inaccuracies. As
the q3dm7 level spans from very large geometry to smaller
models with their own internal acceleration structures, it did

Figure 6. Epsilon issues during casting a shadow ray. The ray self-intersects
with the surface to be shaded and produces a flickering moiré pattern.

happen that the chosen epsilon value worked in one case but not
another. We show this in Figure 6. While it seems this issue has
in practice often been tweaked and afterwards ignored as a real
problem, there is now in 2019 a publication on avoiding self-
intersection during ray tracing from Wichter and Binder [24].
Another elegant way to avoid these issues would have been to
store in the shadow ray the surface ID of the previous hit and
exclude it during intersection tests later.

IX. DYNAMIC CONTENT

In 2004, the thoughts on real-time ray tracing were that it
is not suited for dynamics. While the term "dynamics" goes
into different dimensions, as we will show in this chapter, the
reference was made towards dynamically updating geometry as
this would require a costly rebuild of the acceleration structures
used for ray tracing.

The way Q3RT was setup as described up until here is
having static geometry and some light sources, most of them
fixed except the flash light. At this stage, the impressions of
the renderings are a lifeless scenario like being the only person
in a virtual environment with no changes at all over time. To
counter this and make a lifelike impression as in the original
Quake 3 game, various stages are involved in adding dynamics.

Quake 3 was one of the first games with its own shading
language [25]. This allowed various effects on otherwise flat
textures. For example, with just a few lines of shading code
texture animations were created. Often, the texture coordinates
were modified over time before sampling. This could be
combined with blending multiple textures together to create
the perception of a dynamically changing environment. For
the level q3dm7, we ported these effects over into the shading
language OpenRTS.

Next, we added support for decals. These are used in the
game to dynamically add sprites or animation effects into the
scene. One example is when shooting the virtual machine gun
and hit decals show up at the environment. Those stay for a few
seconds and then disappear, to not overload the rendering over
time. The implementation is often in the form of a textured
quad with transparencies around the effect area.

One interesting property of OpenRT is that once geometric
objects are instantiated, they will remain automatically in all
future frames unless they are manually removed. As shown in

405

406

the Appendix in Figure 18, one can easily "paint" the level
by adding decals and never remove them. Of course, deletion
of old objects was added afterwards into the rendering engine.
From the ray tracing side, if a ray hits the quad with some
transparent areas in it, it will shoot another ray behind that quad
into the same direction. This can again lead to the previously
mentioned epsilon issues regarding self-intersection.

The next dynamic objects are player models. In Quake 3,
the animation for these are stored as pre-calculated keyframes.
During rendering in the original game, the closest key frame
according to the in-game time index is determined. The next
closest is taken as well and the geometry is linear interpolated
between those. In Q3RT, we tried this as well, but the frequent
rebuilding of the acceleration structure of the player model
was too costly and lowered the frame rate by a factor of 7 to
10. Therefore, during loading of Q3RT, we created a separate
object for all possible keyframes of the player model. These
were between 200 and 300 poses with around 1500 triangles.
The acceleration structures were built during loading. In-game,
we determined the closest key frame and instantiated it. In
the next frame, we deleted the old instance and created the
updated one. Figure 19 in the Appendix shows what happens
if that deletion step is not used.

Using this method for player models meant that our ani-
mations were not as smooth as in the original game if both
would be compared side-by-side at high frame rates. Newer
approaches in the years afterwards provided much faster BVH
buildings and therefore the option to just rebuild the interpolated
player model at anytime. Other research was going towards
mapping skeletal animation technologies directly into the
acceleration structures [26]. Furthermore, refitting of BVHs
became a viable method instead of a full rebuild [27], [28].

While the original Quake 3 game has a complex Al [29]
system for moving the player models around, we took a simpler
approach for Q3RT. Pre-defined way points were used for player
models to move around in the levels. When a player model
came too close to an Al-driven agent, the Al agent started firing
into the direction of our own player. A basic game play logic
was added with player health and damage given by various
weapons and their projectiles.

X. SPECIAL EFFECTS

With the combination of static and dynamic geometry,
animation support and proper lighting, we explored several
new special effects that were not in the original game and
would be very hard to achieve without using ray tracing.

Reflections are very easy to use in a renderer with ray tracing.
When a ray hits a reflecting surface, a new ray will be cast into
the reflected direction, depending on the incoming angle and
the normal of the hit surface. Besides showing the reflected
color on the object like on a perfect mirror, there can also be
a texture on the reflecting object which gets mixed together
with the reflection. One of these examples is shown in Figure 7
left with the ammunition box for which we added reflecting
properties, but also kept the original yellow-colored texture.

PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Figure 8.

A glass shader on an orange sphere with reflections of the
environment and refractions. Colored shadows on the wall on the right are
cast through the glass using ray tracing.

As ray tracing works recursively through the shaders, there
is no extra effort to be made by the developer to enable effects
like a mirror inside a mirror including the multiple-bounced
reflections that occur. While the concern might arise that these
increase rendering time too much, it shall be noted that the
impact is smaller than what people might expect. Because
the reflection in the reflection is already decreasing in size
compared to the original object, there are only very few rays
that do a higher amount of multiple reflection bounces. Only
these will require more performance, while the other ones are
reasonably fast done with tracing. Other effects like lighting
and shadows naturally work in the reflections as well without
any additional development effort. An example of reflections
in reflections can be seen in Figure 7 right.

Refractions and reflections together are found in glass. Ray
tracers are known for the ability of rendering glass highly
realistic. Besides the reflection ray on objects, a second ray
for refraction gets traced as well, depending on the incoming
angle and the refraction index of the surface or volume. An
example is shown in Figure 8.

Camera portals are very easy to achieve with ray tracing.
Once a ray hits the surface of the portal, another ray is set
up. The new ray will have a positional offset and optionally a
change in direction. It is traced from there and its shaded color
value is used for the surface of the portal. This is shown in
Figure 9 left. Even advancing to recursive effects showing
portals in portals is possible with ray tracing at no extra
development effort. Sample code for portals in OpenRTS:

DANIEL POHL ET AL.: 15 YEARS LATER: A HISTORIC LOOK BACK AT ‘QUAKE 3: RAY TRACED’

Figure 9. Left: camera portal. Right: Ground fog through ray tracing.

Vec3D newOrigin = ray. hitPosition + portalOffset;

// shooting a new ray with the added offset
color = traceNewRay(newOrigin, ray.direction);

Listing 3. Creating the portal effect with the OpenRTS shading language

Ground fog is used in the original Quake 3 game. With ray
tracing, there is also an easy method of enabling this. The
ground fog is modeled in a non-visible volume. Once a ray
hits this volume, it will prepare another ray. That second ray
continues with a small offset into the same direction. After its
shading color has been determined, the length of this ray will
be used. It is put into an exponential function which determines
a blending value between a fog color, like orange in Figure 9
right, and the original shaded color. This way, the further the
ray traveled, the more fog will be applied.

Colored shadows cast by partially transparent objects can be
done in ray tracing as well. In the regular, single-colored
shadow casting with ray tracing, we test with a shadow
ray if any object is blocking the path from the surface to
be illuminated towards the light source. In case of decals
with quads that have partially transparent pixels, we must
already execute shading code on it to gather the information
of transparency or opaqueness. In a scenario like shown in
Figure 8, we give the shadow ray that tests the glass surface
a color offset if it can reach to the light source through the
medium. Even though the direct light from the surface to shade
to the light source is blocked, the indirect light going through
the glass will now contribute the new shadow color.

It shall be noted that for many of the described effects that
require shooting a secondary ray like an additional reflection
or refraction ray, the previously mentioned issues of self-
intersection can happen. Two examples are shown in Figure 10.

XI. ALIASING AND IMAGE QUALITY

As typical for rendered content, aliasing can happen - this is
the same if a ray tracer or a rasterizer is used. In the original
Quake 3, trilinear texture filtering is used. Full scene anti-
aliasing (FSAA) could be enforced through the graphics driver.

The version of OpenRT that was provided to us at the
given time was limited to bilinear texture filtering. As a result,
textured objects farther away were flickering much more com-
pared to the original version. As a workaround, we implement
shader-based trilinear filtering. First, the mipmaps [30] were
created and made available as different textures into the shader.

[d NG

Figure 10. Self-intersection issues with a glass shader on the left and on
reflections on the right.

Figure 11. Visualization of mipmap levels based on distance.

Second, based on the distance of the original camera ray
to the primary hit point, we determined the mipmap level.
This is visualized with a color-coding in Figure 11. Last,
with interpolation between the two closest mipmap levels, we
achieved trilinear filtering. While this improved overall image
quality, it shall be noted that this should usually be handled
by the underlying ray tracing system instead of cluttering up
the shading code. Furthermore, this way of using mipmaps is
only a rough approximation. In the implemented form, it does
not consider how large the surface is on which the texture is
and what the texture and rendering resolution is. The correct
way would be to use ray differentials [31] for this.

Full scene anti-aliasing was a commonly offered option in
2004 for rasterized games. It samples geometry in higher resolu-
tion, but shading is applied in the original rendering resolution.
This is of course a trade-off between performance and image
quality. For Q3RT, we experimented with supersampling [32]:
multiple rays are shot instead of a single one for the virtual
rendering camera. All rays will intersect the corresponding
geometry and be shaded individually. The resulting color is
then divided to create an average color between these samples.
Multiple methods of how to sample the rays within a pixel
are possible, e.g. using a regular grid, a rotated grid, random
selections and various other stochastic methods. In Q3RT, we

407

408

gt

Loy TR

Figure 12. The top image shows the scene with 8x supersampling. The
images on the bottom show a close-up of the marked green area from the top
image. From left to right, these images use 1, 2, 4 and 8 samples per pixel.

used a randomized sampling pattern. The resulting renderings
with different settings for 1, 2, 4 and 8 samples per pixel can
be seen in Figure 12.

XII. QUAKE 3: TEAM ARENA RAY TRACED

Quake 3: Team Arena was an official expansion pack to the
original Quake 3 games. From the graphics side, the interesting
change was that much larger outdoor levels were supported
in this release. After the official work on Q3RT ended with
the handover of the student’s bachelor’s thesis, the student
continued behind closed doors on the research on ray tracing
on games. While a few screenshots of this continued work
have been released, there was never an official mentioning on
the details of this work.

The continuation did look at the next available content from

id Software, which was the Team Arena pack for Quake 3.

In the continued work, one of the large outdoor levels named
"mpterra2" has been chosen for ray tracing. A look from high
above the level with visualization for the triangle edges and
other in-game views are shown in Figure 13. The size of the
level spans multiple kilometers in each dimension, which was
not very common for first-person shooters at this time.

Ray traced water was a new special effects added to the
ray traced version of Quake 3: Team Arena. The code was
derived from the glass shader. The similarities are that both

need an additional reflection and an additional refraction ray.

The refraction index for the water shader was changed to 1.33
instead of 1.5 for glass. Just applying the shader on a flat

PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Figure 13. Team Arena level "mpterra2". Top left visualizes the triangle mesh.
The other images show an initial implementation of a water shader, reflections
in reflections and colored shadows from translucent objects.

Figure 14. Ray traced water shader with a normal map for a ripple effect.

surface in the world did not look very convincing. We added
a normal map to the surface which simulated small ripples in
the water. The normal map was animated over time, so the
perception of ripples moving from wind was given. A small
artistic fine tuning was done which increased the intensity of
the blue color channel a bit more. An example with player
models in the water is shown in Figure 14.

Having a million reflecting spheres in the level was the
last test. The goal was to have a scenario in which ray
tracing is the only feasible technology for rendering. At a
certain distance to each other, about one million spheres where
added into the level. As expected with ray tracing, reflections
from other reflecting objects work naturally and there was
no extra development required to have this working. Given
the added complexity, interactivity was heavily reduced and
only reasonably possible at a very low rendering resolution of
16 x 16 pixels. Nevertheless, we provide two offline-rendered
images in higher resolution with supersampling in Figure 15.

XIII. PERFORMANCE

The ray tracing performance is dependent on different factors:
acceleration structure build time, the actual tracing of rays and

DANIEL POHL ET AL.: 15 YEARS LATER: A HISTORIC LOOK BACK AT ‘QUAKE 3: RAY TRACED’

Figure 15. One million reflecting spheres in the Team Arena map

shading calculations including texturing.

The Quake 3: Ray Traced project was optimized to avoid
the building of complex acceleration structures during run-
time. The static geometry is only initialized once. The dynamic
player models use pre-calculated acceleration structures for
every animation step. The only change from frame to frame
is instancing and deletion of dynamic objects like players and
decals. This was implemented in OpenRT so efficiently, that
no performance penalty was measurable from this.

For the tracing of rays, it was observed that, as an approx-
imation, the number of computed rays had a linear impact
on performance. However, not all rays perform equally. The
primary rays shot from the camera shader showed a sub-
linear impact due to cache coherency. As a rule of thumb,
when increasing the rendering resolution by a factor of 4, the
performance impact was a reduction factor of about 3.6 to
3.8. Using supersampling and increasing the samples per pixel
from 1 to 4 was also around that area with a performance
reduction of about 3.4 to 3.7. The achieved frame rates on the
single-core Pentium 4 system are shown in Table L.

Resolution | spp 1 | spp2 | spp 4 | spp 8

128 x 128 41.5 22.9 12.2 6.3

256 X 256 11.9 6.1 33 1.7

512 x 512 3.1 1.6 <l <l
Table 1

PERFORMANCE USING A DIFFERENT NUMBER OF SAMPLES PER PIXEL (SPP).
VALUES IN FRAMES PER SECOND ON A SINGLE-CORE INTEL PENTIUM 4.

In the network cluster with 20 nodes, each equipped with a
dual-core CPU, the frame rate was at 20 frames per second
for a resolution of 512 x 512 pixels at 4x supersampling.

As outlined in section VII, we investigated the impact of the
different static, pre-calculated beziér geometry. This is again
on the single-core PC. The frame rate was averaged over a
walk through the level. We show the results in Table II.

As we can interpret from these measurements, there is
of course an impact from increasing the overall geometric
complexity. However, specifically the step going from a total
of 117K to 1380K triangles had the impact of lowering the
frame rate only by a relatively low 13%. The acceleration
structures that are used for each tracing of a ray pay off very
well: as the beziér patches are not fully visible all the time

32A/p 128A/p | 512A/p | 7200A/p
20KA+ | 20KA+ | 20KA+ | 20KA+
6KA 24KA 97KA 1361KA
128x128 53.1 46.4 43.6 38.1
Table IT

THE MAIN STATIC GEOMETRY OF THE LEVEL Q3DM7 HAS 20K TRIANGLES.
DEPENDING ON THE DETAIL LEVEL OF THE PRE-CALCULATED BEZIER
PATCHES, WE SHOW THE PERFORMANCE IN FRAMES PER SECOND. FOR

EXAMPLE, HAVING 32 TRIANGLES PER PATCH, WE HAVE THE MAIN

GEOMETRY OF 20K TRIANGLES ADDED WITH 6K TRIANGLES FOR PATCHES,

RESULTING IN AN AVERAGE RENDERING FRAME RATE OF 53.1.

during the walk through, only the rays that cast into the highly
detailed beziér patches cause a higher performance cost. The
per ray geometry culling with such structures has a logarithmic
performance impact depending on the number of triangles [33].
While rasterized games can use these structures as well, they
are usually not down to a per-pixel culling level, but still
require some larger chunks which might turn out to not be
fully visible.

XIV. LEARNINGS

Now that we described all aspects of the Q3RT project, we
want to discuss our learnings and impressions from it. One of
the realizations during the project was that just because ray
tracing is used, it does not magically improve the overall image
quality by default as one might expect when previously viewing
ray traced images from offline-rendered content only. The
problems of aliasing still happen the same as with a rasterizer.
In fact, rendering only the primary rays from the virtual ray
tracing camera results in the same image as using rasterization.
However, once specific effects like reflections, refractions and
shadows are added, it became clear where the strengths of ray
tracing are. Those effects are done with only a small amount of
development effort and provide great, physically-based results.
Furthermore, they are always per-pixel efficient. If only very
few pixels of a reflecting object are visible, only those add an
extra cost during rendering. This is in contrast with approaches
like shadow mapping or reflection mapping, where the map
needs to be created at a certain resolution even if only one
pixel shows up in the final image using it. The combination of
multiple effects, like reflections in reflections with the correct
translucent colored shadowing worked flawless. No ordering
of which effect to calculate first needs to be provided by the
developer. It was also impressive to see the scaling of the
ray traced rendering when more compute nodes were added.
Ray tracing has been described before as an embarrassingly
parallel algorithm [34]. Calculations of tracing one ray are
completely independent of the other rays. Therefore, adding
more computing nodes, more CPUs and other hardware units
provides a great performance improvement.

The two most difficult aspects during the development
of Q3RT were the low rendering resolution on a single-
core PC. However, with the workarounds of quickly creating
higher resolution screenshots offline and training of the human
perception to this lower level of detail, this became less of
an issue after a while. The other aspect that required tedious

409

410

tuning of epsilon values were the self-intersection issues as
described in the chapters before.

Overall, for the student working on the Q3RT project, it was
clear afterwards that ray tracing will play an important role in
the future of interactive games. The development of hardware
was already going to multi-core CPU architectures and highly
parallel GPUs, which would help in scaling ray tracing up to
real-time for consumers eventually. The open question was
therefore not if it will happen, but when it would happen and
be available to consumers.

XV. FAST FORWARD TO 2019 AND OUTLOOK

Today, 15 years later from our original real-time ray tracing
project, there has been a tremendous amount of advancement
in algorithms, software APIs and hardware for enabling real-
time ray tracing. Through the years, we have seen many
research projects on bringing ray tracing to modern game
content: Quake 4 [35], Enemy Territory: Quake Wars [36]
and the Wolfenstein [37] (2009) game were changed to use
ray tracing. Bikker [38] looked into advanced effects like
ambient occlusion with ray tracing and provided performance
optimizations. McGuire and Mara [39] used screen-space ray
tracing in 2014 as an approximation for rasterized content.

Developers targeting the professional rendering market were
able to apply ray tracing into their engines by using highly
optimized libraries like Inte]l Embree [40] or Nvidia OptiX [41].

With the release of DirectX Raytracing (DXR) in 2018, real-
time ray tracing became available to the consumer and gaming
world. In conjunction with that release, samples starting with
ray tracing a simple triangle up to building a small game engine
using DXR have been released [42]. We are starting to see
many popular gaming titles using this technology in a hybrid
mixture between ray tracing and rasterization. For example,
Battlefield V, Metro Exodus, Shadow of the Tomb Raider and
Wolfenstein: Youngblood all have some features that can utilize
ray tracing in real-time. A next step to expect would be the
development of games using additional global illumination
features, similar to the Quake 2 Vulkan Path Tracing [43]
project. Further along, we might be heading towards fully ray
traced games with full real-time global illumination. However,
there is still a need for more advances in algorithms and
hardware before this can be achieved.

Recently, we have seen how machine learning being applied
to interactive ray-tracing can denoise an image [44], [45] at
similar quality to a highly sampled ray traced image with far
fewer ray samples per pixel. Today’s graphics architectures have
compute cores for general purpose, rasterization, ray tracing,
and Al. A combination using those can provide additional
benefits for rendering like a rasterized image with ray traced
special effects, where the lighting gets denoised through Al
and the final image gets upsampled with Al to a higher display
resolution. For future work, we could see more areas where Al
can impact the rendering pipeline to help accelerate ray tracing
like guiding importance sampling, applying super-resolution
across frames, and enhancing acceleration structures.

PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

XVI. CONCLUSION

We have shown how in the year 2004 we created a full
ray traced game in the research project Quake 3: Ray Traced.
We described the first footsteps of applying ray tracing to
gaming. We demonstrated how we handled multiple light types,
shadows, dynamics, and special effects. A look at aliasing and
ray length-based mipmapping with supersampling was provided.
We shared our learnings from the Q3RT project. We gave an
overview to what happened after it until today with an outlook
on future rendering architectures. Although we were limited by
processing power and, in turn, screen resolution and features
at the time, this provided validation that as algorithms and
hardware advanced that real-time ray tracing was possible.
Today, it is even included in several AAA game titles.

XVII. ACKNOWLEDGMENT

Many thanks to Jorg Schmittler for supervising the Quake 3:
Ray Traced project together with Prof. Marc Stamminger and
Prof. Philipp Slusallek. Additional thanks to Tim Dahmen and
the whole OpenRT team for providing the ray tracing library.

REFERENCES

[1] C. Wyman and A. Marrs, “Introduction to DirectX
Raytracing”, in Ray Tracing Gems, Springer, 2019,
pp- 21-47.

[2] G.R. Hofmann, “Who invented ray tracing?”’, The Visual
Computer, vol. 6, no. 3, pp. 120-124, 1990.

[31 A. Appel, “Some techniques for shading machine
renderings of solids”, in Proceedings of the April 30—
May 2, 1968, spring joint computer conference, ACM,
1968, pp. 37-45.

[4] T. Whitted, “An improved illumination model for shaded
display”, in ACM SIGGRAPH Computer Graphics,
ACM, vol. 13, 1979, p. 14.

[51 R. L. Cook, T. Porter, and L. Carpenter, ‘“Distributed
ray tracing”, in ACM SIGGRAPH computer graphics,
ACM, vol. 18, 1984, pp. 137-145.

[6] A.S. Glassner, “Spacetime ray tracing for animation”,
IEEE Computer Graphics and Applications, vol. 8, no. 2,
pp. 60-70, 1988.

[71 M. J. Muuss and M. Lorenzo, “High-resolution inter-
active multispectral missile sensor simulation for ATR
and DIS”, in Proceedings of BRL-CAD Symposium’95,
vol. 2, 1995.

[81 S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P.
Sloan, “Interactive ray tracing for isosurface rendering”,
in Proceedings Visualization’98 (Cat. No. 98CB36276),
IEEE, 1998, pp. 233-238.

[9] 1. Wald, P. Slusallek, C. Benthin, and M. Wagner,

“Interactive rendering with coherent ray tracing”, in

Computer graphics forum, Wiley Online Library, vol. 20,

2001, pp. 153-165.

I. Wald and C. Benthin, “OpenRT-A flexible and scalable

rendering engine for interactive 3D graphics”, 2002.

DANIEL POHL ET AL.: 15 YEARS LATER: A HISTORIC LOOK BACK AT ‘QUAKE 3: RAY TRACED’

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

A. Dietrich, I. Wald, C. Benthin, and P. Slusallek, “The
OpenRT application programming interface—towards a
common API for interactive ray tracing”, in Proceedings
of the 2003 OpenSG Symposium, Citeseer, 2003, pp. 23—
31.

J. Schmittler, D. Pohl, T. Dahmen, C. Vogelgesang, and
P. Slusallek, “Realtime ray tracing for current and future
games”, in ACM SIGGRAPH 2005 Courses, 2005, p. 23.
D. Pohl, “Applying Ray Tracing to the Quake 3
Computer Game”, University of Erlangen, 2004.

M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL
programming guide: the official guide to learning
OpenGL, version 1.2. Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

H. Fuchs, Z. M. Kedem, and B. F. Naylor, “On visible
surface generation by a priori tree structures”, in ACM
Siggraph Computer Graphics, vol. 14, 1980, pp. 124—
133.

D. P. Luebke and C. Georges, “Portals and mirrors:
Simple, fast evaluation of potentially visible sets.”, SI3D,
vol. 95, p. 105, 1995.

C. Benthin, I. Wald, and P. Slusallek, “Interactive ray
tracing of free-form surfaces”, in Proceedings of the 3rd
international conference on Computer graphics, virtual
reality, visualisation and interaction in Africa, ACM,
2004, pp. 99-106.

M. Abrash, “Quake’s lighting model: Surface caching”,
Graphic Programming Black Book, 2000.

J. Carmack, John Carmack on shadow volumes,
http : // fabiensanglard . net / doom3 _ documentation /
CarmackOnShadow Volumes.txt, 2000.

H. Murakami, /Q84. Random House, 2012.

C. Everitt, A. Rege, and C. Cebenoyan, “Hardware
shadow mapping”, White paper, nVIDIA, vol. 2, 2001.
R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg,
“Adaptive shadow maps”, in Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, ACM, 2001, pp. 387-390.

M. Stamminger and G. Drettakis, “Perspective shadow
maps”, in ACM transactions on graphics (TOG), vol. 21,
2002, pp. 557-562.

C. Wichter and N. Binder, “A fast and robust method
for avoiding self-intersection”, in Ray Tracing Gems,
Springer, 2019, pp. 77-85.

P. Jaquays and B. Hook, “Quake 3: Arena shader manual,
revision 10”, in Game Developer’s Conference Hardcore
Technical Seminar Notes, 1999.

J. Giinther, H. Friedrich, H.-P. Seidel, and P. Slusallek,
“Interactive ray tracing of skinned animations”, The
Visual Computer, vol. 22, no. 9-11, pp. 785-792, 2006.
C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,
and D. Manocha, “Fast BVH construction on GPUs”,
in Computer Graphics Forum, Wiley Online Library,
vol. 28, 2009, pp. 375-384.

D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and
A. Kensler, “Fast, effective BVH updates for animated

(32]

(33]

[40]
[41]
[42]

scenes”, in Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, ACM,
2012, pp. 197-204.

J. Van Waveren, “The Quake III Arena Bot”, University
of Technology Delft, 2001.

P. S. Heckbert et al., “Texture mapping polygons in
perspective”, Citeseer, Tech. Rep., 1983.

H. Igehy, “Tracing ray differentials”, in Proceedings
of the 26th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 179-186.

E. C. Crow, “A comparison of antialiasing techniques”,
IEEE Computer Graphics and Applications, no. 1,
pp. 40-48, 1981.

J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and
P. Slusallek, “Realtime ray tracing of dynamic scenes
on an FPGA chip”, in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, 2004, pp. 95-106.

B. Freisleben, D. Hartmann, and T. Kielmann, “Parallel
raytracing: A case study on partitioning and scheduling
on workstation clusters”, in Proceedings of the thirtieth
hawaii international conference on system sciences,
IEEE, vol. 1, 1997, pp. 596-605.

Quake 4: Ray Traced, http://www.q4rt.de.

Quake Wars: Ray Traced, http://[www.qwrt.de.
Wolfenstein: Ray Traced, http://www.wolfrt.de.

J. Bikker, “Real-time ray tracing through the eyes
of a game developer”, in 2007 IEEE Symposium on
Interactive Ray Tracing, IEEE, 2007, pp. 1-10.

M. McGuire and M. Mara, “Efficient GPU screen-space
ray tracing”, Journal of Computer Graphics Techniques
(JCGT), vol. 3, no. 4, pp. 73-85, 2014.

Intel embree, http://www.embree.org.

Nvidia OptiX, http://developer.nvidia.com/optix.
DirectX Raytracing samples, http://github.com/microsoft/
DirectX - Graphics - Samples / tree / master / Samples /
Desktop/D3D12Raytracing.

Quake 2 Vulkan Path Tracer, http://brechpunkt.de/
q2vkpt.

C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M.
Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila,
“Interactive reconstruction of monte carlo image se-
quences using a recurrent denoising autoencoder”, ACM
Transactions on Graphics (TOG), vol. 36, no. 4, p. 98,
2017.

Intel Open Image Denoise, http://openimagedenoise.
github.io.

APPENDIX

As an appendix, we provide more images that were created
during the development. Not always everything worked on the
first try or was fully implemented when taking these images.
Furthermore, we show unreleased images from other levels of
Quake 3, Quake 2 and the classic Wolfenstein game that were
used for experimentation with ray tracing during the project.

411

412 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Figure 16. Left: invalid texture access for the Quake 3 model "Orbb". The Figure 20. Both images show experiments replacing the original flat geometry
texture visualizes random parts of the memory. Right: too large offset between with highly detailed meshes. The performance difference was only small.
the lower and upper body model.

Figure 17. Left: something went wrong during the mesh setup of the Figure 21. Left: the white pixels show areas where not enough ray tracing
ammunition box. Right: during rendering the glass of the health sphere, rays recursion depth was set for multiple bounced reflections. Right: the Quake 3
got stuck inside due to self-intersection problems. map q3dm17, ray traced.

Figure 18. Left: shooting decals on the wall that last forever. Right: shooting ~ Figure 22. Both images show renderings of an enhanced level of
rings of the virtual rail gun weapon without deletion. Wolfenstein 3D (1992) with ray tracing.

Figure 19. Left: moving character animations if they are not manually deleted. ~ Figure 23. Both images show a modified version of the Quake 2 level q2dm1
Right: visualizing surface normals through added geometry on models. using ray tracing.

