
On Finding the Optimal Tree of a Complete

Weighted Graph

Seyed Soheil Hosseini, Nick Wormald, Tianhai Tian

School of Mathematics,

Monash University,

Victoria 3800, Australia

Email: {soheil.hosseini, nick.wormald, tianhai.tian}@monash.edu

Abstract—We want to find a tree where the path length
between any two vertices on this tree is as close as possible
to their corresponding distance in the complete weighted graph
of vertices upon which the tree is built. We use the residual sum
of squares as the optimality criterion to formulate this problem,
and use the Cholesky decomposition to solve the system of linear
equations to optimize weights of a given tree. We also use two
metaheuristics, namely Simulated Annealing (SA) and Iterated
Local Search (ILS) to optimize the tree structure. Our results
suggest that SA and ILS both perform well at finding the optimal
tree structure when the dispersion of distances in the complete
graph is large. However, when the dispersion of distances is small,
only ILS has a solid performance.

I. INTRODUCTION

W
E WANT to find an edge-weighted tree that best

estimates the complete weighted graph of distances

between vertices such that the discrepancy between the path

length between any two vertices in the tree, and their distance

in the complete graph, is minimized. To this end, we use the

residual sum of squares (RSS) as it is a typical optimality

criterion for these types of problems. We call the resulting

tree, the residual sum of squares optimal tree (RSSOT).

The underlying idea for this problem originates from three

areas: stock-correlation networks, phylogenetic trees [1] and

t-spanners [2] in graph theory. In the first two areas, several

algorithms have been proposed to build a network based on

the complete weighted graph of distances between stocks [3]–

[10] or species information [11]. In the third area, the problem

is similar to estimating the t-spanner tree of Kn.

We take an approach similar to some investigations in

phylogenetic trees [11], but we have a different treatment of a

basic improvement step used in local search heuristics. Also, in

contrast to phylogenetic trees, we consider distances between

all vertices of the tree, not just leaves. We investigate two

metaheuristics—Simulated Annealing (SA) and Iterated Local

Search (ILS)—for this problem.

In Section II, we discuss how to optimize edge weights

of a given tree. In Section III, we use the aforementioned

metaheuristics to optimize the tree structure—find RSSOT—

and ultimately, Sections IV and V include our results and

conclusion respectively.

II. SUB-PROBLEM: TREE WEIGHT OPTIMIZATION

For the complete weighted graph Kn = (V,E, d), we want

to come up with a weighted spanning tree T = (V,E,w)
where E ⊂ E such that the path length between any two

vertices on the tree best estimates the distance between them

in Kn. To be precise, we want to minimize the RSS between

path lengths in T and their corresponding edge distances in

Kn such that

RSS (T,Kn) =
∑

m,k
m<k

(S (Pm,k)− dmk)
2
. (1)

In the equation above, Pm,k denotes the path connecting

vertices vm and vk, and S(Pm,k) denotes the sum of edge

weights on this path. For example, for the path Pm,k =
(ema, eab, ebc, . . . , edk), S(Pm,k) = wma+wab+wbc+ . . .+
wdk. Thus, equation (1) can be reformulated as

RSS (T,Kn) =
∑

m,k
m<k

∑

i,j
eij∈Pm,k

wij − dmk

2

. (2)

In order to find the edge weights for a given spanning tree,

we take the derivative of RSS with respect to the wij’s, so

that ∂RSS

∂wij
= 0. It gives us

∂RSS

∂wij

= 2

∑

m,k: eij∈Pm,k

m<k

wij +

∑

ers∈Pm,k

ers 6=eij

wrs

−
∑

m,k: eij∈Pm,k

m<k

dmk

= 0 ∀eij ∈ E.

(3)

The equation above can be written as

∂RSS

∂wij

= 2

αijwij +
∑

ers 6=eij

βrsijwrs

−
∑

m,k: eij∈Pm,k

m<k

dmk

= 0 ∀eij ∈ E

(4)

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 271–275

DOI: 10.15439/2020F4

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 271

Fig. 1: An example of what matrix A and vector d look on

this tree

where αij denotes the number of paths that edge eij is on, and

βrsij denotes the number of paths on which both edges eij and

ers are. The reason being each term (.)2 in RSS denotes the

square error between a path length in T and its corresponding

edge distance in Kn. We have
(
n
2

)
—equal to the number of

paths between each two vertices in T—of these terms. Taking

the derivative with respect to a wij , we are considering only

the terms (.)2 that include the edge eij which correspond to

the paths that include edge eij . From equations (3) and (4),

we have the following n− 1 equations

∂RSS

∂wij

= αijwij +
∑

ers 6=eij

βrsijwrs =

∑

m,k: eij∈Pm,k

m<k

dmk ∀eij ∈ E.
(5)

The above linear system can be expressed in matrix form as

Aw = d, where the entries of matrix A are as follows. aij
denotes the number of paths including the edge corresponding

to the i-th entry of the vector w where i = j, and where

i 6= j, it denotes the number of paths including the edges

corresponding to the i-th and the j-th entries of the vector

w. Let us go through the following example to make it more

clear.

For the tree in Fig. 1, the system of equations is as below.

4 1 2 1
1 4 2 1
2 2 6 3
1 1 3 4

︸ ︷︷ ︸

A

w01

w02

w03

w34

︸ ︷︷ ︸

w

=

d01 + d12 + d13 + d14
d02 + d12 + d23 + d24

d03 + d04 + d23 + d13 + d14 + d24
d34 + d04 + d24 + d14

︸ ︷︷ ︸

d

(6)

In the linear system above, the diagonal entries of A—a11,

a22, a33 and a44—are the number of paths passing respectively

through the edges e01, e02, e03 and e34. Also, for example, a12
is the number of paths passing through both edges e01 and e02,

and a34 is the number of paths passing through both edges e03
and e34. In vector d, in the first entry—d01+d12+d13+d14—

the indices correspond to the beginning vertex and end vertex

of the paths that the edge e01 is on, and dij is the distance

between the vertices vi and vj in the complete graph.

The question is how do we count the number of paths

passing through one specific edge or two specific edges in

a tree effectively? Let us take one vertex of the tree as the

root vertex and consider the tree directed based on that vertex

where Di denotes the descendants of vertex vi. Also, αij and

βijrs are as defined in equation (4). To answer the first part of

the question—the number of paths passing through eij where

vj ∈ Di—αij = (|Dj |+ 1) (n− (|Dj |+ 1)). To answer the

second part of the question—to count the number of edges

passing through two edges—say, eij and ers where vj ∈ Di

and vs ∈ Dr,

βijrs =

(|Dj |+ 1)(|Ds|+ 1) Dj ∩Ds = ∅

(|Dj |+ 1) (n− (|Ds|+ 1)) Dj ⊂ Ds

(|Ds|+ 1) (n− (|Dj |+ 1)) Ds ⊂ Dj .

(7)

It can be seen that only the number of descendants of the

bottom vertices of the edges eij and eijrs is factored in αij

and βijrs.

After finding all entries of A, we can find the edge weights

by solving Aw = d. Yet, is the matrix A necessarily

invertible? In the following, we prove that not only is A

invertible, but positive-definite.

Lemma 1. A is a positive-definite matrix.

Proof. We define the function Z on a spanning tree T as

follows. For each edge eij , we assign a variable vij . Then we

define Z =
∑

m,k
m<k

∑

i,j
eij∈Pm,k

vij

2

. We can see that the terms

(.)2 in Z are the same as those in RSS (equation (2)). The

only difference being the variables wij are replaced with vij
and the constants dij are replaced with 0. Z can be written as

Z = v
⊤Bv > 0 where v is the vector of variables vij , and B

is a matrix whose entries are as follows. bpq is the number of

terms (.)2 in Z including the variable vij assigned to the p-th

entry of vector v for p = q, and for p 6= q, bpq is the number

of terms (.)2 including both variables vij and vrs assigned

to the p-th and q-th entries of vector v. Since each term (.)2

denotes a path in T , we can say that bpq is the number of paths

including the edge eij assigned the p-th entry of vector v for

p = q, and for p 6= q, bpq is the number of paths including

both edges eij and ers assigned the p-th and q-th entries of

vector v. Thus, B = A, and since B is positive-definite, A is

also a positive definite matrix.

Since A is positive-definite, we can use the Cholesky

decomposition of A in the form A = LL⊤ where L is a

unique lower triangular matrix whose entries are computed

by equations (8) and (9). From there, we can solve Ly = d,

and then L⊤
w = y to find the weights. In the following, we

discuss how to optimize the tree structure—find RSSOT.

272 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Lii =

√
√
√
√Aii −

i−1∑

k=1

L2
ik (8)

Lij =
1

Ljj

(

Aij −

j−1
∑

k=1

LikLjk

)

(9)

III. PROBLEM: TREE STRUCTURE OPTIMIZATION

So far, we discussed how we can find the edge weights for

a given tree based on the distances in the complete graph.

The question is, how can we find the tree with minimum

RSS? In other words, how can we optimize the tree structure

to find RSSOT? We can build nn−2 spanning trees on any

n number of labeled vertices. That means for as few as 50

labeled vertices, we can have roughly as many spanning trees

as the number of atoms in the known universe. Due to the large

scale of the problem, we make use of two metaheuristics—in

this case, Simulated Annealing (SA) and Iterated Local Search

(ILS)—to approximate the optimal tree. These are two of the

typical metaheuristics applied to such difficult optimization

problems. Below, we explain how to make a structure change

in a tree, and how to use SA and ILS to optimize the tree

structure based on the structure change.

A. Tree structure change for optimization

Before discussing SA and ILS on a tree, let us explain

how we make a change in the structure of a given tree in

order ot accept or reject the transition between two states. Let

Tt be the tree at time t and let us denote its corresponding

structure by T (V,E). Let us also denote the structure after

change by T ′(V,E′)—the structure that we want to accept

or reject. For vi ∈ V , we denote the neighbours of vi by

N(vi). We pick one edge eij ∈ E. Then we define set C as

C = N(vi) ∪N(vj) \ {vi, vj}. We pick vk ∈ C uniformly at

random. If vk ∈ N(i), then E′ = E∪{ejk}\{eik}; otherwise,

if vk ∈ N(j), then E′ = E ∪ {eik} \ {ejk}. We denote the

former structure change by SC(T, eij , ejk, eik) and the latter

by SC(T, eij , eik, ejk). In SC(T, . , . , .), the second, third, and

forth terms are respectively the picked edge, the edge that is

added to, and the edge that is removed from the tree.

The other thing we investigate before discussing SA and

ILS algorithms on a tree is the change in matrix A and

vector d following the structure change in T (V,E). Should

we recompute every entry of A and d after every structure

change? Let us define A′ and d
′ as the matrix and vector

corresponding to T ′(V,E′).

Lemma 2. Suppose we have the structure change

SC(T, eij , ., .) resulting in tree T ′(V,E′). All the entries

of A and A′ are the same except the rows and columns

corresponding to eij . So are all the entries in d and d
′

except the entry corresponding to eij . Thus, we only need to

recompute the entry in d, and the rows and columns in A

corresponding to eij , to obtain A′ and d
′.

Fig. 2: Tree T (V,E) before the structure change with picked

edge eij connecting components C1 and C2, and randomly

picked vertex vk ∈ C

(a) Tree before structure change

(b) Tree after structure change

Fig. 3: Demonstration of the structure change

SC(T, eij , eik, ejk). Only vj has a different number of

descendants in T ′ than it has in T .

Proof. Consider the tree T (V,E) in Fig. 2 on which we want

to make the structure change based on the picked edge eij
and vk ∈ C—C as defined above. α and β are as defined

in equation (4) for T (V,E), and the equivalents of them are

α′ and β′ for T ′(V,E′). If vk ∈ N(vj) \ {vi}, the structure

change is SC (T, eij , eik, ejk).

Let us look at T (V,E) as a directed tree with the root vertex

vi—Fig. 3a. This tree before and after the structure change is

illustrated in Fig. 3. Consider the subgraph S = G(V,E′′) in

T ′(V,E′)—Fig. 3b—where E′′ = E′ \ {eij , eik} . It can be

seen that every vertex but vj in this subgraph has the exact

same descendants in T ′ as they have in T . Thus, since E′′ ⊂
E′ and E′′ ⊂ E and based on the calculation of α and β

in Setion II, we can say that the number of paths that pass

through any edge or any two edges in E′′ is the same in T

and T ′. Similarly, regarding eik ∈ E′ and ejk ∈ E, α′
ik = αjk

and β′
ikrs = βjkrs for all ers ∈ E′′. Hence, we see that eij is

the only edge for which α′
ij 6= αij and β′

ijrs 6= βijrs where

ers ∈ E ∩ E′ \ eij .

SEYED SOHEIL HOSSEINI ET AL.: ON FINDING THE OPTIMAL TREE OF A COMPLETE WEIGHTED GRAPH 273

B. Simulated Annealing (SA)

As mentioned above, let us say the structure of the tree

at time t is T (V,E)—Tt ← T (V,E). Let us also denote

RSS(T ′,Kn) and RSS(T,Kn) by RSS′ and RSS respec-

tively. Starting from a random initial tree structure T0, we

make the transition from Tt ← T (V,E) to Tt+1 ← T ′(V,E′)
in either of the following two cases:

1) RSS′ < RSS

2) P
(

RSS′−RSS
RSS

, t
)

< random(0, 1) if RSS′ > RSS .

Otherwise, Tt+1 ← T . In the above, random(0, 1) denotes

a number picked uniformly at random in the interval (0, 1).
The second case accepts the new tree structure with a worse

RSS value with a certain probability. P (RSS′, RSS, t) =

a1e
−a2(ln t)a3 RSS′

−RSS

RSS′ , and it can be seen that the probability

of accepting RSS′ > RSS decreases with time t. The

parameters a1, a2 and a3 are tuned according to how often

we are willing to accept a transition with a larger RSS′ than

RSS, and such that accepted RSS′ values roughly converge

for a large t.

C. Iterated Local Search (ILS)

In ILS, we make the transition from Tt ← T to Tt+1 ← T ′

only if RSS′ < RSS—so far, it is a descent-only algorithm.

However, in contrast to a descent-only algorithm, when we

get stuck in a local minimum, we restart the algorithm—by

modification of the current local minimum—to a new tree

structure. Basically, ILS consists of the following two steps:

1) Modification of the current local minimum by kicking

it far enough from its current basin

2) Descent to get to a new local minimum.

We want to try every possible structure change to make sure

the function RSS is stuck at a local minimum. To this end,

for any picked edge eij , the number of structure changes

that we can make depends on |Ci| = |N(vi) \ {vj}| and

|Cj | = |N(vj) \ {vi}|. If we remove the edge eij from T ,

the resulting graph G(V,E \ {eij}) consists of two trees Ti

and Tj where vi ∈ Ti and vj ∈ Tj . We assume the average

degree of a tree to be two; thus, we assume the degree of both

vi and vj to be 2. With this assumption, the number of possible

structure changes based on the picked edge eij is four, so for

the whole tree, we estimate the number of possible structure

changes at 4n. If we try structure changes on a tree uniformly

at random, the average number of times that we need to try

all possible structure changes is 4nH4n—based on the well-

known Coupon collector’s problem—where H4n is the 4n-th

harmonic number defined as Hk =
∑k

i=1
1
i
. That is why we

set 4nH4n as the threshold to determine the algorithm is stuck

at a local minimum.

IV. RESULTS

We applied SA and ILS as described in Section III to

evaluate the performance of these two metaheuristics in dif-

ferent scenarios. We evaluated whether bias towards smaller

edges—picking an edge eij with a smaller weight for the tree

structure change SC(T, eij , . , .) with higher probability—has

Fig. 4: Dispersion of sample of size 50 in Tables I and II

any advantage in SA over no bias—picking eij uniformly at

random—in SA. After extensive experiments, we found that

biased SA in general has a slight advantage over unbiased SA,

so in the following, SA refers to biased SA.

We compared the performance of SA and ILS based on

running each of them ten times over the complete graph—

where the distances in Kn are derived from stock-correlation

data. See Tables I and II for a performance comparison of SA

and ILS. In these tables, in each of the 10 runs, we ran each

algorithm—SA and ILS—on trees with sizes of 20, 30, and

50 respectively for 10 minutes, two hours, and 18 hours. The

values in the tables are for the minimum RSS value found

in its corresponding run—according to which we evaluate the

performance of the algorithm. In Table I, it can be seen that the

performance of ILS is much better than that of SA. However,

in Table II, we can see that there is no apparent difference

between SA and ILS performance.

The reason for performance inconsistency of SA in Tables I

and II seems to be the dispersion in distances of the complete

weighted graph used in each of them. For example, for tree of

size 50 in each table, dispersion of distances in the complete

weighted graph is illustrated in Fig. 4 with a histogram.

It can be seen that for distances with high dispersion, SA

and ILS have a similar performance while for distances with

low dispersion, ILS maintains a solid performance, but SA

performance sharply decreases. We got the same result by

running SA and ILS on the trees of many other complete

weighted graphs of distances. It is noteworthy that for distance

values with low dispersion, both the biased and unbiased SA,

where the biased SA picks lightweight edges with a higher

probability, have a poor performance. The reason possibly

being, when distance values are close to each other, smaller

distance values are not considerably smaller than the large

distance values—giving no edge to biased over unbiased.

V. CONCLUSION

We have presented a scheme to optimize the edges weights

and structure of a tree to approximate a complete weighted

graph using a measure involving the path distances in the tree.

274 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

TABLE I: SA vs ILS on a complete weighted graph with low dispersion of distances. For each tree, the metaheuristic with a

better performance has been highlighted.

Tree size

20 30 50

Run SA ILS SA ILS SA ILS

1 5.291951597 4.84414153 9.501749529 8.4082242 24.8579367 16.8823573

2 8.21566953 4.84414153 11.66835384 8.4082242 26.7081655 16.8823573

3 7.797470793 4.84414153 11.16650355 7.97443788 19.6536142 16.8823573

4 6.875995126 4.84414153 11.66835384 7.97443788 25.5941918 16.8823573

5 6.875995126 4.84414153 8.408224203 7.97443788 26.284257 16.8823573

6 6.019906558 4.84414153 12.98953771 7.97443788 30.2829294 16.8823573

7 7.016393465 4.84414153 10.3933439 7.97443788 34.8261135 16.8823573

8 7.016393465 4.84414153 11.80185307 7.97443788 31.0322914 16.8823573

9 4.844141529 5.2919516 13.02265027 7.97443788 31.1982311 16.8823573

10 7.016393465 4.84414153 10.58531443 7.97443788 26.265805 16.8823573

Average 6.697031065 4.88892254 11.12058844 8.06119515 27.6703536 16.8823573

TABLE II: SA vs ILS on a complete weighted graph with high dispersion of distances. For each tree, the metaheuristic with

a better performance has been highlighted.

Tree size

20 30 50

Run SA ILS SA ILS SA ILS

1 5.75665216 5.75665216 12.7055242 12.8162316 32.18863674 31.8890846

2 5.75665216 5.75665216 12.7055242 12.7495148 31.78033885 31.8140415

3 5.75665216 5.75665216 12.7464911 12.8550396 31.68615883 31.8986455

4 5.75665216 5.75665216 12.7055242 12.8345686 32.0511834 31.9636283

5 5.75665216 5.75665216 12.7055242 13.0379292 31.65783212 31.6641679

6 5.75665216 5.75665216 12.7055242 12.832506 32.07947769 31.7900896

7 5.75665216 5.75665216 12.7615612 12.8750193 31.91069847 32.0325964

8 5.75665216 5.75665216 12.7055242 12.8785592 32.00314739 32.2380063

9 5.75665216 5.75665216 12.7055242 12.7207733 31.96688445 31.9796543

10 5.93707406 5.75665216 12.7207733 12.8472376 31.93720134 31.792651

Average 5.77469435 5.75665216 12.7167495 12.8447379 31.92615593 31.9062565

We have proposed a very efficient way of computing modifi-

cations to the tree that assist with local search metaheuristics,

and evaluate the performance of two of these: SA and ILS.

REFERENCES

[1] J. Felsenstein and J. Felenstein, Inferring phylogenies. Sinauer asso-
ciates Sunderland, MA, 2004, vol. 2.

[2] G. Narasimhan and M. Smid, Geometric spanner networks. Cambridge
University Press, 2007.

[3] R. N. Mantegna, “Hierarchical structure in financial markets,”
The European Physical Journal B-Condensed Matter and Complex

Systems, vol. 11, no. 1, pp. 193–197, 1999. [Online]. Available:
https://doi.org/10.1007/s100510050929

[4] M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna, “A
tool for filtering information in complex systems,” Proceedings of the

National Academy of Sciences, vol. 102, no. 30, pp. 10 421–10 426,
2005. [Online]. Available: https://doi.org/10.1073/pnas.0500298102

[5] V. Boginski, S. Butenko, and P. M. Pardalos, “Statistical analysis
of financial networks,” Computational statistics & data analysis,
vol. 48, no. 2, pp. 431–443, 2005. [Online]. Available: https:
//doi.org/10.1016/j.csda.2004.02.004

[6] M. Tumminello, C. Coronnello, F. Lillo, S. Micciche, and R. N.
Mantegna, “Spanning trees and bootstrap reliability estimation in
correlation-based networks,” International Journal of Bifurcation and

Chaos, vol. 17, no. 07, pp. 2319–2329, 2007. [Online]. Available:
https://doi.org/10.1142/S0218127407018415

[7] A. Kocheturov, M. Batsyn, and P. M. Pardalos, “Dynamics of cluster
structures in a financial market network,” Physica A: Statistical

Mechanics and its Applications, vol. 413, pp. 523–533, 2014. [Online].
Available: https://doi.org/10.1016/j.physa.2014.06.077

[8] J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, and A. Kanto, “Asset
trees and asset graphs in financial markets,” Physica Scripta, vol. 2003,
no. T106, p. 48, 2003.

[9] J. Birch, A. A. Pantelous, and K. Soramäki, “Analysis of correlation
based networks representing dax 30 stock price returns,” Computational

Economics, vol. 47, no. 4, pp. 501–525, 2016. [Online]. Available:
https://doi.org/10.1007/s10614-015-9481-z

[10] D. Han et al., “Network analysis of the chinese stock market
during the turbulence of 2015–2016 using log-returns, volumes
and mutual information,” Physica A: Statistical Mechanics and its

Applications, vol. 523, pp. 1091–1109, 2019. [Online]. Available:
https://doi.org/10.1016/j.physa.2019.04.128

[11] R. Desper and O. Gascuel, “Theoretical foundation of the balanced
minimum evolution method of phylogenetic inference and its
relationship to weighted least-squares tree fitting,” Molecular Biology

and Evolution, vol. 21, no. 3, pp. 587–598, 2004. [Online]. Available:
https://doi.org/10.1093/molbev/msh049

SEYED SOHEIL HOSSEINI ET AL.: ON FINDING THE OPTIMAL TREE OF A COMPLETE WEIGHTED GRAPH 275

