
Abstract—Named Data Networking (NDN) is a widely

adopted future Internet architecture well-suited to large scale

content retrieval. The congestion control is one of the research

topics actively studied, and the rate-based congestion control

method is considered to be fitted to NDN. From the viewpoint

of implementation, however, the rate-based method has an

issue that it requires the fine-grained clock management, which

is hard to implement in off-the-shelf computers. Among the

rate-based congestion control methods, an approach in which

intermediate nodes report a maximum rate explicitly for a flow

is considered to work well. In this paper, we pick up the

Multipath-aware ICN Rate-based Congestion Control as an

example of explicit rate reporting scheme, and examine how

coarse-grained clock gives impacts to its performance. This

paper provides the performance evaluation when consumers

and NDN routers use the system clock with long time interval.

This paper also proposes a method for smoothening Interest

sending under a coarse-grained clock and evaluates the

performance of proposed method.

I. INTRODUCTION

ESULTING from a drastic increase of content retrieval

traffic over the Internet [1], there are many studies on

the future Internet architecture called Information Centric

Network (ICN). Among them, Named Data Networking

(NDN) [2] is a platform widely adopted among the ICN re-

searches. The fundamental concept adopted in NDN is the

name of required content, not the address of hosts contain-

ing the content. NDN uses two types of packets in all com-

munications: an Interest packet and a Data packet. A con-

sumer that requests a specific content sends an Interest

packet containing the content name. A producer that pro-

vides the corresponding content data returns a Data packet

to the consumer. An Interest packet is forwarded using the

name prefix it contains, and a Data packet traverse the re-

verse path of the corresponding Interest packet. NDN

routers transferring a Data packet cache the packet itself for

future redistribution.

R

The congestion control is one of the hot research topics in

NDN [3]. Although it has been also a hot topic in TCP, the

mechanisms in TCP congestion control are limited to the

congestion window management at data senders [4] and the

simple explicit congestion notification [5]. In contrast, vari-

ous techniques are adopted to the NDN congestion control.

The receiver-driven window-based congestion control ap-

proach in NDN is similar to that in TCP. In this approach,

the window for Interest packets is maintained in consumers,

and Interest packets are sent back to back within the window

size. In the traditional proposals, congestion is detected by

timeout [6], [7] or the congestion notification [8], and the

window size is managed heuristically through an Additive

Increase and Multiplicative Decrease (AIMD) mechanism.

There are some newly introduced methods, including one

which adopts CUBIC TCP like window management [9],

ones which use the active queue management scheme such

as CoDel [10], watching out the delay of packets in sending

queues for congestion detection [11], [12], and one adopts

multiple window increase methods dependent on the usage

of communication links [13].

In NDN, the rate-based congestion control approach is

also studied actively. In this approach, a consumer and

routers maintain a rate, in which Interest packets are trans-

mitted regularly with a fixed interval. The rate is deter-

mined heuristically by use of congestion notification [14],

[15] or by the explicit rate reporting [16]-[20]. Among

these methods, the rate-based method with explicit rate re-

porting provides the best performance. Here, each router

monitors the total of data packet traffic receiving over an in-

dividual link to an upstream router or a producer, and calcu-

lates the optimal Interest packet rate for each Interest-Data

flow. Each router sends this optimal rate in a Data packet,

and a consumer sends Interest packets according to the re-

ported rate.

From the viewpoint of implementation, however, the rate-

based congestion control approach has a problem. Since the

transmission speed in recent data links becomes high, e.g., 1

Gbps for typical access links, the fine-grained clock

management is required in the rate-based congestion control.

For example, if the Data packet size is 10,000 bits and the link

speed is 1 Gbps, the interval of Interest packet transmission is

10 μsec when Interest packets are transmitted in a line speed.

How Coarse-grained Clock Impacts on Performance of NDN

Rate-based Congestion Control with Explicit Rate Reporting

Toshihiko Kato, Takumi Enda, Ryo Yamamoto and Satoshi Ohzahata
Graduate School of Informatics and Engineering, University of Electro-Communications

1-5-1, Chofugaoka, Chofu, Tokyo 182-8585 Japan

Email: {kato, enda, ryo_yamamoto, ohzahata}@net.lab.uec.ac.jp

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 479–488

DOI: 10.15439/2020F40

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 479

If the rate is 0.5 Gbps or 0.3 Gbps, the Interest transmission

interval will be 20 μsec or 33.33 μsec, respectively. In order

to handle these cases, it is supposed that higher precision

clock with shorter tick, such as 1 μsec, will be required in

order to manage the Interest packet sending timing.

On the other hand, it is considered that the fine-grained

clock management is hard to implement in off-the-shelf

computers. In the real world, TCP implementation uses 200

msec (5Hz) and 500 msec (2Hz) clocks for the delayed

acknowledgement and retransmission, respectively [21]. So,

implementing a rate-based mechanism with micro second

order clock is extremely hard, especially in NDN nodes

handling a large number of flows simultaneously.

We pointed out this issue and discussed how a

coarse-grained clock influences the NDN rate-based

congestion control in our previous paper [22]. We adopted

the Stateful Forwarding [14] as a target system of the

evaluation, and showed that the performance, specifically the

Data packet throughput, is degraded largely when a

coarse-grained clock is introduced.

However, the Stateful Forwarding is not the best example

of the NDN rate-based congestion control methods. As

stated above, the explicit rate reporting methods, especially

the Multipath-aware ICN Rate-based Congestion Control

(MIRCC), provide better performance. In this paper, we

examine how the coarse-grained clock influences the

performance of MIRCC. We gave some study on this topic

in our recent paper [23] but the analysis in this paper is

insufficient. Moreover, we propose a method to send Interest

packets more smoothly even in the coarse-grained clock

environment.

It should be noted that [24] focused on a similar issue on the

processing overhead of fine-grained clock management for

the rate-based congestion control, but it took a method that

exploits a hop-by-hop window control, which does not require

the clock management.

The rest of this paper is organized as follows. Section 2

gives the related work focusing on the overview of NDN

congestion control, the overhead of fine-grained clock, and

MIRCC. Section 3 describes the implementation of MIRCC

over the ndnSIM simulator [25], which is a widely used

network simulator for NDN, and the modification under the

coarse-grained clock. Section 4 gives the performance

evaluation results of the original MIRCC with coarse-grained

clock. Section 5 proposes a mechanism for smoothening

the Interest sending under coarse-grained clock and shows its

performance evaluation. In the end, Section 6 concludes

this paper.

II. RELATED WORK

A. Related work on NDN congestion control

As described above, most of the congestion control

methods in NDN are classified into the receiver-driven

window-based and the rate-based methods. Tables 1 and 2

show examples of those methods.

As examples of the traditional receiver-driven

window-based methods, the Interest Control Protocol (ICP)

[6] and the Content Centric TCP (CCTCP) [7] follow the

traditional TCP window control, where a consumer sends

Interest packets with the limitation of window size, and the

window size is changed according to the AIMD mechanism

triggered by Data packet reception and congestion detected

by timeout. ICP uses one timer for one flow, just like the

TCP round-trip time (RTT) estimation mechanism.

CCTCP introduces a timer for an individual Interest packet

by inserting a timestamp in Interest and Data packets. The

Chunk-switched Hop Pull Control Protocol (CHoPCoP) [8]

is another window-based method that introduces the explicit

congestion notification with random early marking and

changes the window size according to the AIMD mechanism

with constant value increasing in the additive increase.

CHoPCoP introduces an Interest packet shaper at an

intermediate router.

Recently proposed window-based methods adopt new

approaches. The CUBIC-based method [9] follows the

CUBIC TCP congestion control in its window control, with

an explicit congestion tag in a Data packet. The Practical

Congestion Control (PCON) [11] and the Window based

Congestion Control Mechanism (WinCM) [12] introduces an

active queue management monitoring packet-sojourn time at

routers. PCON can implement a number of classic

TABLE I. RELATED WORK ON RECEIVER-DRIVEN WINDOW-BASED APPROACH

480 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

loss-based TCP algorithms, and actually, implemented TCP

Reno and BIC TCP. PCON avoids unnecessary window

reduction resulting from consecutive negative

acknowledgments (NACKs) or congestion tags, and allows

at most one window decrease within one RTT. WinCM

introduces Reno and BIC TCP. During no congestion, i.e.

when the cumulative count of congestion tagged Data

packets is zero, the window increase follows BIC TCP, and

otherwise it follows TCP Reno. As for the window

decrease, it adopts the additive decrease instead of the

multiplicative decrease. The Variable-Structure Congestion

Control Protocol (VCP)-based method [13] introduces the

load factor that indicates the status of Data packet sending

queue in an individual router. The largest load factor in a

flow is conveyed in a Data packet. A consumer adjusts the

window increasing according to the load factor for a flow.

In the case of low load, the multiplicative increase is used.

When moderate load and high load, the additive increase

with constant value and the Reno-like additive increase are

used, respectively. The window decreasing adopts the

multiplicative decrease.

It is considered that those window-based methods have a

problem that the window size itself may not be optimal when

Data packets are cached in different routers.

The rate-based methods are classified into the

non-deterministic scheme, which uses the AIMD mechanism

in determining the Interest sending rate, and the explicit rate

reporting scheme, in which intermediate routers report the

optimal Interest rate to a consumer. The Stateful

Forwarding (SF) [14] is an example of the former scheme.

It introduces an NACK packet, which has a similar packet

structure with Interest, as a negative response to an Interest

packet. NACK packets are generated when a router losses

an Interest packet, e.g., due to the congestion detection.

The new SF [15] is an extension of SF in order to avoid

unnecessary rate reduction due to multiple NACKs generated

during one congestion event. It reduces the rate once

within one RTT, as PCON mentioned above.

In contrast with those non-deterministic methods, there are

some methods that enable routers to report a maximum

allowed Interest sending rate to a consumer [16]-[20].

These methods take a similar approach but have several

differences in the detailed procedure. The Hop-By-Hop

Interest Shaping (HoBHIS) [16], [17] is one proposed in an

early stage. A router focuses on the upstream link for the

Interest packet sending and on the downstream link for the

Data packet sending. It also use the number of flows,

whose monitoring provides significant overheads for routers.

The Explicit Congestion Notification (ECN) based Interest

sending rate control method [18] tries to focus only on the

upstream link, but it seems to still use the Data packet queue

length on the downstream link. MIRCC [19] is

sophisticated compared with other methods, in the meaning

that it just focuses only on the upstream link. The Interest

packet queue length is used instead of the Data packet queue

length in other methods. The Rate-based, Multipath-aware

Congestion Control Algorithm (MNRCP) [20] is based on a

similar scheme with HoBHIS, and it takes account of the

numbers of Interest and Data flows separetely.

These rate-based methods with explicit rate reporting are

able to control Interest transmission so as to suppress

congestion, and as a result they can provide higher

throughput. However, their implementation requires the

precise timing control for sending Interest packets. The

fine-grained clock is hard to implement in off-the-shelf

computers, as discussed later. The Hop-by-hop

Window-based Congestion Control (HWCC) [24] tries to

resolve this problem by taking the hop-by-hop window-based

approach. HWCC introduces a hop-by-hop

acknowledgment (H-ACK) packet that notifies a router of

the reception of an Interest packet together with the Interest

rate over the next link to the producer. The per-hop

window size between this router and the next router is

determined according to the reported rate and the link RTT

measured by the H-ACK.

B. Overhead of fine-grained clock implementation

In off-the-shelf computers, the rate control mechanism in

which an Interest packet is sent in a specific interval is

implemented by the interrupt handling framework. As

described in the previous section, it is required to handle

various Interest sending rates, and so the interrupting clock

tick takes finer value. In an example given above, the clock

tick is 1 μsec while the actual sending intervals are 10 μsec, 20
μsec, or 33 μsec.

TABLE II. RELATED WORK ON RATE-BASED APPROACH

TOSHIHIKO KATO ET AL.: HOW COARSE-GRAINED CLOCK IMPACTS ON PERFORMANCE OF NDN RATE-BASED CONGESTION CONTROL 481

Figure 1 shows a schematic processing diagram of the rate

control in NDN nodes. A timer hardware generates clock

tick interrupts regularly, and then the interrupt handling

shown in Figure 1 is invoked. At the beginning, the current

values of registers are saved. Then, an Interest packet of an

Interest-Data flow stored in a send queue is selected, and it is

checked whether the time to send the Interest packet is

reached or not. If the sending time is not reached, then an

Interest packet of another flow is searched and the same

process is done in the case there is another one, otherwise the

interrupt handling routine is finished after restoring the

register values.

Here, we assume that the CPU clock rate is 4GHz, and that

the processing flow when the sending time is not reached (No

for “Is it time to send ?” in the figure, check branch) requires

forty CPU clocks. Then, the time for one check branch is 10

nano sec (1/4 nano sec × 40). If an NDN node handles 100

active flows, the interrupt handling routine takes 1 μsec to be
executed even if there are no Interest packets to be sent at that

timing. If the clock tick for the rate control is 1 μsec, one
CPU executes only the check branches by its full capability.

Recent CPUs have multiple cores such as 8 cores. If the

number of active Interest-Data flows is 1,000, recent

multi-core CPUs cannot support even the check branches.

There are some traditional rate-based schemes, but they

use some hardware mechanism instead of the fine-grained

clock. For example, the Asynchronous Transfer Mode

(ATM) uses a kind of rate-based cell transfer [26], but ATM

uses null cells discarded at a receiving side to regulate cell

streams at a specific rate. [27] introduced pause packets

over Gigabit Ethernet, corresponding to null cells in ATM,

that are used only between end nodes and switching hubs.

Those approaches are implemented by the MAC level

hardware, but NDN Interest packets are handled as a higher

level, which makes the hardware support difficult.

C. Details of MIRCC

In order to examine the impact of coarse-grained clock to

the rate reporting congestion control, we pick up MIRCC. In

MIRCC, consumers and routers that forward Interest packets,

called forwarders, maintain the parameters indicated in Table

3. The model of a forwarder is given in Figure 2, which

explains some of the parameters. It should be noted that the

parameters focus on the upstream link of a forwarder. Each

forwarder calculates the Interest sending rate R(t) for

individual flows, at each interval T. R(t) is specified as the

sum of base_rate(t) and excess_rate(t). The base_rate(t) is

the rate to split the allowed link bandwidth among the passing

flows. The excess_rate(t) is for filling the extra available

bandwidth with traffic equally. Each of them is given in the

following way.

In order to calculate base_rate(t), a forwarder estimates the

number of flows by equation (1).

 (1)

Then, base_rate(t) is computed as follows:

 (2)

TABLE III.

LIST OF MIRCC PARAMETERS

Figure 2. Forwarder model in MIRCC

Figure 1. Schematic processing diagram of rate control

482 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Here, is given by

 (3)

As for excess_rate(t), the following equation is used.

 (4)

In order to avoid high-frequency oscillation, an exponential

weighted moving average (EWMA) is applied to both

base_rate(t) and excess_rate(t) with weight 0.5. Finally, R(t)

is given by the following equation.

 (5)

When a router receives a Data packet, it checks the stamping

rate included in the packet, and if the included rate is larger

than the computed R(t), then R(t) is set in the Data packet.

III. MIRCC WITH COARSE-GRAINED CLOCK

A. Implementation of MIRCC over ndnSIM

In order to evaluate the performance of MIRCC, we

implemented it over the ndnSIM simulator version 1.0 [28].

The reason we used this version is that we reused the

coarse-gained clock implementation in our previous paper.

We implemented MIRCC in the following way.

(1) Add R(t) parameter in Data packet

In order to convey R(t) in a Data packet, we defined the

corresponding parameter, m_rate, and the methods to

access and modify it, in files model/ndn-data.{h,cc}.

Besides, the methods for formatting a Data packet,

Serialize() and Deserialize(), is modified in

model/wire/ndnsim.cc.

(2) Implement a method calculating R(t)

A method called CalculateRate() is implemented in

utils/ndn-limits.cc. This method is invoked every

T interval, and calculates R(t) according to equations (1)

through (5) specified above. Here, we need to mention that

y(t) is given by dividing the number of received Interest

packets by T, that the leaky bucket size is used as g(t), and that

η=1 in our case.

(3) Add various functions in Interest/Data handling

Interest and Data packets are handled in file

model/fw/ndn-forwarding-strategy.cc. We

added the following functions in this file.

 Counting received Interest packets.

 Evaluating smoothed RTT at receiving Data packets.

 Setting R(t) in a Data packet if the corresponding value in

the Data packet is larger than the calculated R(t).

(4) Behaviour of consumer

A consumer sends Interest packets according to the

reported R(t) in Data packets. We implemented this kind of

consumer as a new class called ConsumerLi.

B. Implementation of Coarse-grained Clock Based MIRCC

In the original NDN, the rate control in the consumer is

implemented as follows. The sending of Interest packets

with a specific rate is done in the

ScheduleNextPacket() method of the ConsumerLi

class. In this method, the SendPacket() method of the

Consumer class, which is the superclass, is invoked

periodically, every 1.0/m_frequency seconds. The

SendPacket() method sends one Interest packet actually.

We emulated a course-grained clock in the Consumer

class in the following way (Figure 3).

 A clock system with longer tick, such as 100 msec, is

implemented in the ConsumerLi class. It calls itself

periodically with the Schedule() method of the

Simulator class.

 We also introduced a queue storing Interest packets

temporarily. This queue is implemented using the

list class.

 In the SendPacket() method, Interest packets are

stored in the queue, instead of being sent actually.

 When the longer clock tick is invoked, all the queued

Interest packets are transmitted actually.

In the router side in MIRCC, we implemented a

coarse-grained clock, by assigning a large value, such as 100

msec, in the interval T.

IV. PERFORMANCE EVALUATION MIRCC WITH

COARSE-GRAINED CLOCK

A. Experimental setup

The network configuration used in this evaluation is

shown in Figure 4, which is a dumbbell configuration where

two consumers (C1 and C2) and two producers (P1 and P2)

are connected through two routers (R1 and R2). The

bandwidth and delay between a consumer and a router, and

between a router and a producer are 10Mbps and 50 msec,

respectively. Those between routers are 12Mbps and 100

msec, respectively. The length of a Data packet is 1,250

bytes (10,000 bits), and so the link speed 10Mbps and

12Mbps corresponds 1,000 packets/sec and 1,200

packets/sec, respectively. The depth of a token bucket for

time

1/m_frequency sec

queuing Interest packets

long term clock

sending queued
Interest packets

sending queued
Interest packets

Figure 3. Implementation scheme of coarse-grained clock system

in a consumer

TOSHIHIKO KATO ET AL.: HOW COARSE-GRAINED CLOCK IMPACTS ON PERFORMANCE OF NDN RATE-BASED CONGESTION CONTROL 483

policing the Interest packets is set to 200 packets in

consumers and routers.

We assume that all of the nodes in Figure 4 use the same

granularity for the rate control clock. That is, the long-term

clock in the consumers and interval T in the routes uses the

same time interval value. Under these conditions, we

evaluated the cases that the rate control clock has 100 msec,

250 msec, 500 msec and 750 msec interval values. In all

the evaluation runs, consumer C1 transmits Interest packets

to producer P1 between time 1 sec and 10 sec, and consumer

C2 sends Interest packets to producer P2 between time 3 sec

and 8 sec. In this evaluation, cache is not used.

B. Results of performance evaluation

Figure 5 shows the results, where the time interval is set to

100 msec, 250 msec, 500 msec, and 750 msec. The graphs

show the Interest sending rate at consumers C1 and C2.

The result in Figure 5(a) corresponds to the case that the

time interval is 100 msec. In the beginning, the Interest

sending rate at C1 takes the value around 1,000 packets/sec

although there is a slight fluctuation. When C2 starts the

communication, the Interest sending rates at C1 and C2 go to

600 packets/sec, with some fluctuations. This result shows

that two flows from C1 and C2 share the bandwidth of the

bottleneck link evenly. It is considered that MIRCC

performs well, even if the time interval is relatively large.

 Figure 5(b) shows the result in the case that the time

interval is 250 msec. The result seems to be similar with

the case of 100 msec. The difference is that the

convergence to 600 packets/sec when C2 starts the

communication takes larger period, around 2 sec.

 In contrast to these results, those in Figures 5(c) and 5(d)

show a catastrophic situation. Even if C2 starts its session,

the Interest sending rates in C1 and C2 keep 1,000

packets/sec as if the individual consumer communicates

alone. These results indicate that the MIRCC mechanism

does not work well. It should be noted that the time

interval values in those cases are larger than RTT (400 msec)

between the consumer and the producer.

We also examined the Data packet delivery losses.

Table 4 shows the loss rate of the C1-P1 and C2-P2 flows in

the four coarse-grained clock values. These values give the

overall loss rate throughout individual flows. It should be

Figure 4. Network configuration for performance evaluation

TABLE IIV. OVERALL LOSS RATE OF EACH FLOW

 (a) time interval = 100 msec. (b) time interval = 250 msec.

 (c) time interval = 500 msec. (d) time interval = 750 msec.

Figure 5: Time variation of Interest sending rate.

484 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

noted that our performance evaluation suppresses the

retransmissions of Interest packets. So, the loss rate given

here is that for original Interest packets. That is, the loss

rate is given by the number of delivered Data packets

divided by the number of sent Interest packets. In the case

that the time interval is 100 msec, the loss rate is small, and

that for 250 msec time interval is 0.1 for the C1-P1 flow and

0.24 for the C2-P2 flow. On the other hand, the loss rates

for 500 msec and 750 msec time intervals is larger than 0.5.

These correspond to the result of the Interest sending rate vs.

time that the MIRCC congestion control does not work well

under these time interval values.

Figure 6 shows the time variation of the Data packet loss

rate calculated for every 100 msec. Figure 6(a) shows that

there are some Data packet losses around 4 sec, both in the

C1-P1 and C2-P2 flows. This time frame is just after the

C2-P2 flow started. In other time frames, all Data packets

are delivered. As a result, the overall loss rate is low in the

case of 100 msec time interval.

When the time interval is 250 msec, there are some losses

from time 2 sec to 4 sec (Figure 6(b)). This means that

there are some losses in the C1-P1 flow while only this flow

exists. When the second flow started, there are some losses

between time 4 sec and 5.5 sec. These losses happen while

the Interest sending rate of two flows decreases from 1,000

packets/sec to 600 packets/sec. The reason for these losses

is that this decreasing is slower than the case of 100 msec

time interval. This delay is considered to be caused by the

slow behavior of consumers and routers due to longer time

interval.

The results in Figures 6(c) and 6(d) are significantly

deferent. While the C1-P1 flow is continuing by itself,

there are some periods when the loss rate is 100%. This

means that an MIRCC flow does not work well in the

situation that the shaping clock tick in a consumer and

interval T in routers have a large value. As a result, the loss

rate becomes larger than 50%, and so the mechanism cannot

detect the fact that there are two flows sharing the bottleneck

link.

V. SMOOTHENING INTEREST SENDING AND ITS PERFORMANCE

EVALUATION

A. Smoothening Interest sending

In this section, we propose a mechanism that smoothens

the Interest packet sending without using fine-grained clock.

The performance degradation shown in the previous section

comes from long time intervals used in consumers and

routers. The long time interval in consumers makes the

Interest packet sending bursty, and that in routers makes the

update of the stamping rate unfrequent. Although the rate

update in routers is difficult to make frequent, the burstiness

of Interest sending at consumers can be reduced by a

mechanism to process the Interest sending when Data and

NACK packets are received. This mechanism was useful

for the Stateful Forwarding with coarse-grained clock [22].

Here, we propose an Interest control method that utilizes

the Data and NACK packet receiving timing. The

receiving processing of Data and NACK packets is triggered

by a packet receive interrupt. This does not require large

 (a) time interval = 100 msec. (b) time interval = 250 msec

 (c) time interval = 500 msec. (d) time interval = 750 msec.

Figure 6. Time variation of Data packet loss rate.

TOSHIHIKO KATO ET AL.: HOW COARSE-GRAINED CLOCK IMPACTS ON PERFORMANCE OF NDN RATE-BASED CONGESTION CONTROL 485

processing overhead, different from the software based rate

control mechanism. So, the receiving timing is a good

chance to proceed the Interest packet sending. We have

added the following mechanism in the coarse-grained clock

based MIRCC described in Subsection III.B.

 When a consumer receives a Data or a NACK packet, it

processes the received packet and then tries to send the

Interest packets that need to be sent by this timing, i.e.,

those stored in the Interest queue in the implementation

described in Subsection III.B.

 This procedure is implemented in the OnData() and

OnNack() methods in the Consumer class.

B. Performance evaluation of coarse-grained clock based

MIRCC with Interest sending smoothening

This subsection shows the result of performance

evaluation of coarse-grained clock based MIRCC with

Interest sending smoothening. We use the same

experimental conditions described in Subsection IV.A.

Figure 7 shows the Interest packet sending rate of the

proposed method, when the time interval value is 100 msec,

250 msec, 500 msec, and 750 msec. The results in Figures

7(a) and 7(b) are similar to those shown in Figures 5(a) and

5(b), respectively. This means that, when the original

MIRCC is working well, the Interest sending smoothening

proposed here does not contribute so much to the

performance.

The results shown in Figures 7(c) and 7(d) differ largely

from those in Figures 5(c) and 5(d), respectively. When the

time interval used in consumers and routers is large, the

original MIRCC cannot estimate the optimal rate. As

shown in Figure 6(c) and 6(d), there are packet losses even

when only one flow exists. Since the data links used by the

C1-D1 flow have enough bandwidth when only this flow

exists, these packet losses seem to come from the Interest

packet shaping using the coarse-grained timer at the

consumer. The Interest sending smoothening proposed

here, on the other hand, distributes the Interest packet

sending to the timing when Data or NACK packets are

received. As a result, the Interest sending rates of two

flows could be tuned to the half of the bottleneck link

bandwidth. That is, the proposed smoothening method

takes an effect similar to the Interest packet sending with

smaller time intervals, although the Interest sending itself is

not performed regularly in an identical interval. Comparing

the results in Figure 7(c) and 7(d), the shift of Interest

sending rate from 1,000 packets/sec to 600 packets/sec is

slower in the case of 750 msec interval. This is because the

new stamping rate is reported by routers at the configured

time interval, and the consumers take longer time to change

the rate in the case of 750 msec interval.

TABLE V. OVERALL LOSS RATE OF EACH FLOW WITH INTEREST

SENDING SMOOTHENING

 (a) time interval = 100 msec. (b) time interval = 250 msec.

 (c) time interval = 500 msec. (d) time interval = 750 msec.

Figure 7. Time variation of Interest sending rate with Interest sending smoothening.

486 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Table 5 and Figure 8 shows the results of Data packet loss

rate. Table 5 shows the overall loss rate of individual flows

calculated throughout the sessions. Comparing with the

results in Table 4, the loss rates when the time interval is 100

msec and 250 msec are similar for the original MIRCC and

the MIRCC with Interest sending smoothening. More

specifically, the loss rate of the smoothing is slightly smaller

than the original MIRCC. For the cases of 500 msec and

750 msec time interval values, the overall loss rate in the

smoothening is much better than the original MIRCC, whose

loss rate was larger than 50%.

Figure 8 shows the time variation of the Data packet loss

late calculated for every 100 msec. By comparing Figures

6(a) and 8(a), the smoothening reduced the Data packet loss

rate slightly in the case of 100 msec time interval. Figure

8(b) shows some difference from Figure 6(b) in the case of

250 msec time interval. By introducing the smoothening,

the Data packet losses are limited to the time frames of

around 2 sec and from 4 sec to 5 sec.

The results in Figures 8(c) and 8(d) changed largely from

those in Figures 6(c) and 6(d). By introducing the

smoothening, the Data packet losses in the single flow are

reduced largely in the cases of 500 msec and 750 msec time

intervals. When two flows exist in the case of 500 msec

and 750 msec time intervals, the smoothening also reduced

the loss rate. While there were several 100 % loss rate

observations in the original MIRCC, there is just one 100 %

loss rate observation by use of the smoothening.

VI. CONCLUSION

This paper discussed about the impact of the

coarse-grained clock on MIRCC, one of rate-based NDN

congestion control methods with explicit rate reporting.

We implemented MIRCC over the ndnSIM simulator and

evaluated the performance in a dumbbell network when the

rate control clocks in consumers and routers have a large tick

value. The result showed that the rate control of MIRCC

does not work well due to bursty Interest packet sending at

consumers and rough rate detection at routers. We

proposed a method which smoothens the Interest packet

sending by use of the timing of Data packet receptions.

The results of performance evaluation showed that the

smoothening is effective in reducing the Data packet losses

when the rate control clock has a large tick value.

REFERENCES

[1] Cisco public, Cisco Annual Internet Report (2018-2023). White

paper, 2020.

[2] V. Jacobson et al., “Networking Named Content,” in Proc.

CoNEXT ’09, pp. 1-12.

[3] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion

control in named data networking - A survey,” Computer

Communications, vol. 86, pp. 1-11, Jul. 2016.

[4] A. Afanasyev, et al., “Host-to-Host Congestion Control for TCP,” IEEE

Commun. Surveys & Tutorials, vol. 12, no. 3, pp. 304-342, 2010.

[5] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit

Congestion Notification (ECN) to IP. IETF RFC 3168, Sep. 2001.

[6] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and

Evaluation of an Interest Control Protocol for Content-Centric

Networking,” in Proc. IEEE INFOCOM 2012, pp. 304-309.

 (a) time interval = 100 msec. (b) time interval = 250 msec.

 (c) time interval = 500 msec. (d) time interval = 750 msec.

Figure 8. Time variation of Data packet loss rate with Interest sending smoothening.

TOSHIHIKO KATO ET AL.: HOW COARSE-GRAINED CLOCK IMPACTS ON PERFORMANCE OF NDN RATE-BASED CONGESTION CONTROL 487

[7] L. Saino, C. Cocora, and G. Pavlou, “CCTCP: A Scalable Receiver-

driven Congestion Control Protocol for Content Centric Networking,”

in Proc. IEEE ICC 2013, pp. 3775-3780.

[8] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu, “A

Transport Protocol for Content-Centric Networking with Explicit

Congestion Control,” in Proc. IEEE ICCCN 2014, pp. 1-8.

[9] Y. Liu, X. Piao, C. Hou, and K. Lei, “A CUBIC-Based Explicit

Congestion Control Mechanism in Named Data Networking,” in Proc.

IEEE CyberC 2016, pp. 360-363.

[10] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM

Magazine Queue, vol. 10, issue 5, pp. 1-15, May 2012.

[11] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A Practical Congestion

Control Scheme for Named Data Networking,” in Proc. ACM ICN

2016, pp. 21-30.

[12] M. Wang, M. Yue, and Z. Wu, “WinCM: A Window based

Congestion Control Mechanism for NDN,” in Proc. IEEE HotICN

2018, pp. 80-86.

[13] S. Xing, B. Yin, J. Yao, H. Zhang, Q. Zhai, and H. Shi, “A VCP-based

Congestion Control Algorithm in Named Data Networking,” in Proc.

IEEE IAEAC 2018, pp. 463-468.

[14] Y. Cheng, A. Afanasyev, I. Moiseenko, B. Zhang, L. Wang, and L.

Zhang, “A case for stateful forwarding plane,” Computer

Communications, vol. 36, no. 7, pp. 779-791, Apr. 2013.

[15] T. Kato and M. Bandai, “Congestion Control Avoiding Excessive

Rate Reduction in Named Data Network,” in Proc. IEEE CCNC 2017,

pp. 1-6.

[16] N. Rozhnova and S. Fdida, “An effective hop-by-hop Interest shaping

mechanism for CCN communications,” in Proc. IEEE INFOCOM

Workshops 2012, pp. 322-327.

[17] N. Rozhnova and S. Fdida, “An extended Hop-by-hop Interest shaping

mechanism for Content-Centric Networking,” in Proc. IEEE

GLOBECOM 2014, pp. 1198-1204.

[18] J. Zhang, Q. Wu, Z. Li, M. A. Kaafar, and G. Xie, “A Proactive

Transport Mechanism with Explicit Congestion Notification for

NDN,” in Proc. IEEE ICC 2015, pp. 5242-5247.

[19] M. Mahdian, S. Arianfar, J. Gibson, and D. Oran, “Multipath-aware

ICN Rate-based Congestion Control,” in Proc. ACM ICN 2016, pp. 1-

10.

[20] S. Zhong, Y. Liu, J. Li, and K. Lei, “A Rate-based Multipath-aware

Congestion Control Mechanism in Named Data Networking,” in Proc.

IEEE ISPA/IUCC 2017, 174-181.

[21] K. Fall and W. Stevens, TCP/IP Illustrated, Volume1; The Protocols,

Second Edition. Addison-Wesley, 1994.

[22] T. Kato, K. Osada, R. Yamamoto, and S. Ohzahata, “A Study on How

Coarse-grained Clock System Influences NDN Rate-based Congestion

Control,” in Proc. IARIA ICN 2018, pp. 35-40.

[23] T. Kato, T. Enda, R. Yamamoto, and S. Ohzahata, “A Study on

Performance of Explicit Rate Report Based Congestion Control under

Coarse-grained Clock Management,” in Proc. INSTICC DCNET 2020,

pp. 82-88.

[24] T. Kato and M. Bandai, “A Congestion Control Method for NDN

Using Hop-by-hop Window Management,” in Proc. IEEE CCNC

2018, pp. 1-6.

[25] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator

for NS-3,” NDN, Technical Report NDN-0005, 2012.

[26] ITU-T, B-ISDN asynchronous transfer mode functional

characteristics, Series I: Integrated Services Digital Network.

Recommendation I.150, Feb. 1999.

[27] Y. Yamamoto, “Estimation of the advanced TCP/IP algorithms for

long distance collaboration,” Fusion Engineering and Design, vol. 83,

issue 2-3, pp. 516-519, Apr. 2008.

[28] NDN, “Overall ndnSIM documentation; Forwarding Strategies,”

http://ndnsim.net/1.0/fw.html.

488 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

