

Towards a Better Understanding of Agile Mindset
by Using Principles of Agile Methods

Necmettin Ozkan
Information Technologies Research

and Development Center
Kuveyt Turk Participation Bank

Kocaeli, Turkey
necmettin.ozkan@kuveytturk.com.tr

Mehmet Şahin Gök
Department of Business

Gebze Technical University
Kocaeli, Turkey

sahingok@gtu.edu.tr

Büşra Özdenizci Köse
Department of Business

Gebze Technical University
Kocaeli, Turkey

busraozdenizci@gtu.edu.tr

Abstract— The right way to agility should start with a proper

agile mindset instead of applying Agile methods directly.
However, apart from the manifesto, it is unlikely to find a

comprehensive set of Agile principles that can serve for an

improved agile mindset. Our study intends to fulfill this gap in

a systematic way: providing a list of the Agile methods along

with their principles within a single source, in the way of

providing a better understanding of the concept of agility from

a wide and exhaustive perspective. To do so, the collected 105

principles were content-analyzed in order to group them into 32
categories for a higher-level abstraction. These categories then

were subsumed into two main categories. The whole grouping

process was reviewed by one expert and the list was adjusted

accordingly. Then, based on the consolidated list of the

categorized principles, analysis and evaluations were made by

the authors. As a part of the evaluations, semi-structured

interviews with two experts were conducted to evaluate the

categorized principles in general, especially in terms of their

contribution to agility.

Keywords— agile mindset, agility, agile methods, agile

frameworks, principles

I. INTRODUCTION

Effective agile individuals, teams and organizations
require a particular attitude, way of thinking and behavior so
called as agile mindset, beyond the given set of procedures,
techniques and rituals [12]. By applying a set of Agile
practices of (a) particular Agile method(s), there is no
guarantee to utilize the agile mindset properly [1]. The
practices offered by the Agile methods have some
fundamental limitations in nature; they are not adequate to
cover possible agility capabilities fully and also they are very
static in providing the ability of adaptation to changing
situations. Indeed, the right way to agility should start with a
proper agile mindset instead of applying Agile methods
directly. Principles, as “a basic belief, theory, or rule that has
a major influence on the way in which something is done”
(macmillandictionary.com), support any mindset more
effectively than practices. This emphasizes a proper
understanding and locating the principles first and foremost,
before the practices.

In terms of providing Agile principles, the Agile
Manifesto is the most well-known set in supporting the Agile
mindset in a formal sense via its values and principles. Apart
from the manifesto, it is possible to find different sets of Agile
principles scattered in the literature, which makes it hard to
reach a comprehensive list. The existing literature has been
reviewed in our study to find out the most possible
comprehensive list of the Agile methods. It shows that there
has been no study aiming to disclose the principles or
principle-like features (referred to as “principles” across the

study, if not stated otherwise) of the methods. Our study in
particular intends to fulfill this gap in a systematic way:
providing the most possible complete list of the methods along
with their principles within a single source from a wider and
exhaustive perspective, in the way of providing a better
understanding of the concept of agility.

In addition to exhibiting the known attributes of the
methods, differently, our study aims to reveal some analysis
through the consolidated list of the principles (Level 1/L1)
such as grouping them into categories (Level 2/L2) along with
the classification of these categories at a higher level (Level
3/L3), an analysis on the methods and their principles (L2),
the contribution of principles (L2) to agility and more, with
referring to expert opinions to get more sound basis. In
particular, taking advantage of reaching out to such a scope,
the principles provided by the methods (L2) and the principles
of the Agile Manifesto are mapped, in terms of coverage.
Consequently, the research questions are formed as follows:

RQ1: What are the Agile methods in the literature?

RQ2: What are the principles offered by these Agile
methods?

RQ3: Is there a match between the principles of the
methods with the manifesto principles or not?

RQ4: What do the principles (L2) represent in general, and
also about their contribution to agility in particular?

The rest of this paper is organized as follows: Section 2
delivers the background for the methods and the definition of
agility for software solution development. Section 3
elaborates related works and Section 4 depicts the research
design. Section 5 delivers findings and analyses made for the
set of the principles. Section 6 evaluates findings and analysis
with the consideration of the feedback from the interviewees.
Finally, Section 6 presents conclusions and future work.

II. BACKGROUND

A. A Brief History of the Agile Methods

As a cornerstone of the Agile methods, iterative,
evolutionary, and incremental development roots go back
decades [2]. It grew from the 1930s’ work proposing a series
of short “plan-do-study-act” cycles for quality improvement
and was involved in software projects such as NASA’s
Mercury in the early 1960s, with practices like time boxing,
test-first development [2]. One of the early traces of the Agile
principles were also witnessed in the work of the Tavistock
Group, which conducted research on the self-organizing teams
of British coal miners in the 1950s [3]. It is worth mentioning
that, in 1976, Tom Gilb introduced evolutionary project
management as the first clear flavor of the Agile methods [2].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 721–730

DOI: 10.15439/2020F46

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 721

One of the early known works defining the self-organizing
teams is Takeuchi’s study [4], inspired by the Toyota
production system. In the study of Morgan [5], he argues that
an organization can improve its ability to self-organize
through the holographic brain metaphor. In 1988, Gilb
published a new book, Principles of Software, which describes
the Evo method (chronologically the first method in our
study).

Apart from these prominent milestones, throughout the
1970s and 1980s, there are some other publications and
specific projects partially integrating the Agile practices.
While people from the previous decades incorporate a
preliminary major specification stage with the teams utilizing
iterations with minor feedback, differently in the 1990s, the
mainstream of Agile initiatives became preferring less early
specification work, rather a stronger evolutionary analysis
approach [2]. In this decade, unlike the previous ones, the
agile mindset and practices started to take a form within
certain formal methods/frameworks (hereinafter and
heretofore referred to as “method”), such as Scrum, Dynamic
Systems Development Method (DSDM), Rational Unified
Process (RUP), Extreme programming (XP), Feature-driven
Development (FDD), which later referring collectively to
Agile Software Development Methodologies.

The quest for a full-fledged agile mindset ended up in the
meeting in a ski resort in Utah, in the year 2001, where the
well-known techniques from some “Agile Software
Development Methodologies” were combined within the
manifesto for the Agile Software Development [6]. Those
well-known methods that had an influence on the manifesto
include DSDM, TDD (Test-Driven Development), ASD
(Adaptive Software Development), D3 (Design Driven
Development), Scrum, Crystal, XP, Pragmatic Programming,
FDD [6]. From this period of time to today, the interest in
Agile has continued increasingly and various other methods
have been presented.

B. Back to the Basics: the Definition of Agility in Software
Development Domain

The understanding of the word “Agile” varies [7], even
among prominent Agile pioneers. For instance, Alistair
Cockburn defines it as “being effective and maneuverable”
[8]. Kruchten’s [9] definition is “the ability of an organization
to react to changes in its environment faster than the rate of
these changes”. Conboy and Fitzgerald [10] state agility as
“the continual readiness of an entity to rapidly or inherently,
pro-actively or reactively, embrace change, through high-
quality, simplistic, economical components and relationships
with its environment the continual readiness of an entity”.
Highsmith defines agility as “the ability to both create and
respond to change in order to profit in a turbulent business
environment; it is the ability to balance flexibility and stability
[11]. Instead of using such existing definitions, we would
rather like to present a revised definition of agility inspired
from the definition in [42], to communicate a better
understanding of the background of our mentality used
throughout this study.

 We see “responding to change” as the widely
recommended feature of agility. At this point, questions arise:
change of “what”; inconsistent customer requirements,
analysis documentation or changes in the environment?
Therefore, it is better to define agility based on the closest
point to the source of the change, which is the reality itself,

instead of from the view of customers, for instance. Users or
customers are a kind of proxy of reality and the same as
documentation as a proxy of the system being developed, not
the reality itself. From another point of view, the definitions
similar to of Kruchten (“the ability of an organization to react
to changes in its environment faster than the rate of these
changes”) take us to a passive position of re-acting. Although
information technology has traditionally taken a passive
position throughout its history, as it has been seen as a
business-driven body, it is not a common rule beyond ages.
Thus, these two points bring us to a new definition of agile;
“the ability to move quickly and easily” (where Cambridge,
Oxford and Macmillan dictionaries achieve consensus for this
part of the definition), to adapt to changes of the reality or to
create changes becoming the reality, let us say in the domain
of software solution development.

III. RELATED WORK

There are plenty of studies reviewing the Agile methods,
comparing them with their characteristics, strengths,
weaknesses, similarities and differences, providing criteria to
choose them according to the context of development,
generally provided in an informative way. Our study rather
intends to provide a complete list of the methods along with
their principles. In addition to exhibiting the known attributes
of the methods such as their principles, we aim to reveal some
patterns through the consolidated list of the principles such as
by grouping them into categories, the classification of
categories, the frequency of principles, the contributions of
principles to agility and more. Expert opinions are involved in
interpretation-intense sections to get more sound
determinations. Hence, this study provides a wider
perspective to the concept of agility by revealing all possible
Agile methods and their principles in a single picture along
with analysis, resulting in inputs for a better understanding of
the agile mindset.

The majority of the works on the agile mindset are
satisfied by only mentioning the term as a “fixed concept”
without actual descriptions, details, explanations or
definitions [1]. As witnessed by the study of Mordi and
Schoop [1] conducted in 2020, there are also relatively few
studies on the agile mindset. Among these few papers, [1, 12,
43] aim to come with a list of the elements of agile mindset.
Miler and Gaida [12] conducts a survey with 52 Agile
practitioners who evaluate the importance of 26 selected
elements of the agile mindset to the effectiveness of an Agile
team. Miler uses the literature review to identify relevant
elements, consisting mainly of books, web sites and hardly of
peer-reviewed papers. By using a similar way to define the
characteristics of the agile mindset, the study [1] conducts a
review of the existing literature, including both scientific as
well as practitioner publications, and interviews with
practitioners. Study [43] identifies factors that affect the
expansion of agile development in large organizations
positively or negatively using interviews within multiple case
studies then groups them in two categories: ”agile mindset”
and ”contextual dependencies”. When it comes to the
difference between these types of studies and our study, our
work focuses on the principles specifically that may contribute
directly or indirectly to the understanding of the agile mindset,
with their possible elements.

722 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

IV. RESEARCH DESIGN

The well-known methods that had an influence on the
manifesto include DSDM, TDD, ASD, D3, Scrum, Crystal,
XP, Pragmatic Programming, FDD [6]. From this set of
methods Scrum, XP, Crystal and FDD were used to form the
search phrase, as these are better known than others do. Thus,
the search was done with the keyword of “scrum ‘Extreme
Programming’ crystal ‘feature driven development’", in the
dates between 28/01/2020 and 05/02/2020, without any
specific filter in the year range, within the full text, in the
libraries of IEEE Xplore, Web of Science, Science Direct and
Springer, respectively. A total number of 368 works that are
peer-reviewed and in English were returned from the search
results. The researcher could not reach the full text of the 58
of them. The rest 310 works were examined through their full
text to find and extract the methods mentioned. Considering
that any new method name not encountered since after 83% of
this search indicates that the search result set is sufficient in
terms of the coverage.

After reaching the list of the methods, explicitly listed
principles or principle-like attributes of each method along
with their descriptions were extracted from the formal books
(as indicated in Table 1) or from the formal web-site of the
methods. Primarily, the principles were sought, if not found,
the principle-like attributes were used. The principle-like
attributes include philosophy, value, pillars, characteristics,
and properties, respectively. To reach to this list of attributes
(philosophy, value, pillars, characteristic, and properties), the
concepts with a close relationship with dictionary meanings of
“principle” were sought in multiple dictionaries. The
relationships between these attributes are shown below. It
demonstrates that the meaning of the principle, philosophy,
value and pillars are related to each other by means of shared
words in the descriptions of their meanings. By definition,
properties and characteristics of a concept serve for effectively
defining phenomenon under consideration [14], which make
“characteristic” and “property” a proper candidate for
inclusion.

 Principles: “a basic belief, theory, or rule that has a
major influence on the way in which something is
done” (macmillandictionary.com)

 Philosophies: “a system of beliefs that influences
someone’s decisions and
behavior” (macmillandictionary.com)

 Values: “the principles and beliefs that influence the
behavior and way of life of a particular group or
community” (macmillandictionary.com)

 Pillars: an important idea, principle, or belief
(macmillandictionary.com)

 Characteristics: “a typical or noticeable feature of
someone or something” (dictionary.cambridge.org)

 Properties: “a quality or characteristic that something
has” (oxfordlearnersdictionaries.com)

In the chain of the “reality-values-principles-practices”,
even though principles have a close relationship with practices
in a way of influencing the pattern of practices done, the
practices were not included in the set because of that they
can/should be diverse and varying, with no limitation. Even
though Agile methods share some common practices such as
short time boxed iterations with adaptive and evolutionary

refinements of plans, specific practices of the methods still
vary [15], in this sense, it makes it difficult to collect all of
them from all of the methods. Thus, this study internationally
prefers to exclude practices from the list.

After reaching the list of principles of the methods, which
is a straightforward process, the first author content-analyzed
the principles’ descriptions (L1) and grouped them into 32
categories (L2) based on his knowledge for a higher-level
abstraction. These categories then were subsumed into two
main categories (L3), by the same author. The whole grouping
process was reviewed by one expert in Agile Software
Development having both academic and sector background
for 5 years in Agile Software Development particularly, and
the list was adjusted accordingly (%18 of the items updated
after two iterations). Then, over the consolidated list of the
principles with their grouping (L2), analysis and evaluations
were made by the authors. As a part of the evaluations, the
first author conducted semi-structured interviews with two
experts to evaluate the principle categories (L2), especially in
terms of their contribution to agility. The notes taken were
then reviewed by the interviewees and necessary corrections
were made accordingly.

V. FINDINGS AND ANALYSIS

A. Methods (RQ1)

The search mentioned in the Research Design Section to
find out the Agile methods in the literature has ended with 28
methods listed in Table 1.

Regarding these methods, as one of them, Evo, the first
Agile method in the list, provides a baseline for many Agile
initiatives. As the most used method, Scrum, is designed for
small self-organizing teams breaking their work into smaller
parts that can be completed within time-boxed iterations that
are no longer than one month. DSDM was initially proposed
to build quality into RAD (Rapid Application Development).
In the recent version, DSDM fixes time; functionality varies
according to the need of stakeholders. It resembles Scrum in
terms of practices such as time-boxing, iterative development,
taking the customer in, staying mainly on the development
layer, covering the world of a single team and increasing roles
via the proxies. In a different way, DSDM adds a project layer
on top with planning activities, encourages visualization
through the concept of modeling and makes an emphasis on
the quality aspects of the development.

DAD brings discipline in the implementation of Agile
approaches and builds on the many practices from Scrum,
AM, LSD, and others yet with the aim of moving beyond
Scrum, which makes it a scaling framework as well. DevOps
proposes a set of practices that combine software development
(Dev) and operations (Ops) which aims to provide a
continuous stream of integration and delivery. FDD focuses
on the feature aspect of a project and development is
organized based on the feature concept, posing a position
located mainly on the first parts of the development pipeline.
XP proposes software development engineering practices.
Crystal family is a collection of the Agile methods proposing
different sub-methods based on the individual project
complexity and the team size that are measured mostly by the
quantitative properties. Then, it recommends the
implementation of certain roles and artifacts accordingly,
representing a plan-driven approach to development to some
extent.

NECMETTIN OZKAN ET AL.: TOWARDS A BETTER UNDERSTANDING OF AGILE MINDSET BY USING PRINCIPLES OF AGILE METHODS 723

An ancestor of considerable methods on the list, RUP
draws attention with its object-oriented modeling, numerous
roles and artifacts offering a descriptive and obsolete approach
for today in terms of agility. OpenUP preserves the essential
characteristics of RUP that include iterative development, use
cases and scenarios driving development and architecture-
centric approach yet adding some Agile aspects such as
iterative development with feedback loops. Like RUP,
ICONIX uses UML based diagrams turning to use case text
into working code. AM was introduced to adapt modeling
practices using an agile mindset and it covers only modeling.
Sharing the same inventor, ADM focuses on the data aspects
of development. Coined by the same inventor, AUP proposes
a simplified version of RUP and, in 2012, was superseded by
DAD.

ASD comes with some basic principles, lacking with
implementation details, as a more iterative and shorter-
interval version of the RAD. ASP, with an image of extinction
with very few resources, describes concurrent development
processes in the Japanese software industry, which already
includes practices like dividing software into smaller parts, a
time-fixed interval of delivery, close customer relations, and
incremental construction of the system. Although MSF was
not designed with a full Agile perspective at the first stage, it
brought in an Agile template into the tool in 2005. PSP&TSP
offers suggestions for individuals and teams to manage their
own works and determines their competencies with a focus on
measurement that they need to develop.

LSD focuses on optimizing the entire development
process and reducing waste. Kanban focuses on continuous
flow and continual delivery of work instead of iterating.
Scrumban offers a structure that combines selected features
of Kanban and Scrum.

OSSD is hardly to count as a pure Agile method, yet it can
be considered similar to the Agile approach with sharing code

freely, faster development cycles and such. ISD proposes
development with small teams working in parallel and
dependency management by using a combined spiral
/waterfall model with daily builds aimed at developing a
product with high speed.

TDD provides a set of practices for testing. BDD is an
extension of test-driven development with a set of practices
for testing. PP introduces a set of programming best practices
in the form of the collection of short tips. These three (TDD,
BDD and PP) are excluded from the list for further stages as
they focus deeply on programming practices. D3, suffering
from lack of sufficient resources, uses design as a part of
processes to learn and better define requirements whereby
design and user experience drive the development. For APM,
there is similarly no sufficient resource for further
investigation and thus, these two (D3 and APM) are excluded
from the list for further stages.

While determining the “Obsolete” field in Table 1, three
different parameters were looked at: 1- whether the main
subject (such as UML modeling, object-oriented approach,
spiral model) on which the method is based becomes obsolete
in the Agile world for today, 2- whether superseded by another
method, 3- no appearance in the VersionOne reports [13] from
2006 to 2019 (Obsolete) or disappearance towards the recent
years (Nearly Obsolete), 4- the resources found during the
authors' review on the methods belong to the far old years.
These reasons for being obsolete as coded from 1 to 4
accordingly are also delivered in the list. For instance, AUP,
ADM and AM are superseded by DAD and the ones using
RUP as the foundation stone including OpenUp, ICONIX and
AUP are out of date as RUP is so, at least for the Agile
communities of today. For the rest of the methods that are
referred to as “Alive”, it implies that their ideas are still valid
and their names are included in the reports of Version One for
at least the recent three years (2017, 2018, and 2019).

TABLE I. LIST OF AGILE METHODS

Method Abb. Release

year

Vitality Reasons

of Being

Obsolete

Principle

Related

Attribute

Main

Refere

nce

Evolutionary Project Management Evo 1981 Obsolete 3,4 Principles [17]

Dynamic Systems Development Method DSDM 1995 Nearly Obsolete 3 Principles [18]

Scrum Scrum 1995 Alive - Pillars [19]

Rational Unified Process RUP 1996 Obsolete 1,3,4 - [20]

Agile Software Process ASP 1997 Obsolete 3,4 Characteristics [21]

Open Source Software Development OSSD 1997 Obsolete 3,4 - [22]

Crystal Crystal 1998 Obsolete 3,4 Properties [23]

Adaptive Software Development ASD 1999 Obsolete 3,4 Characteristics [24]

Extreme Programming XP 1999 Alive - Values [25]

Feature-driven Development FDD 1999 Nearly Obsolete 3 - [26]

Internet Speed Development ISD 1999 Obsolete 1,3,4 - [27]

Pragmatic Programming PP 1999 - - - -

Agile Modeling AM 2002 Nearly Obsolete 1,2,3 Values [28]

Agile Data Method ADM 2003 Obsolete 1,2,3 Philosophies [29]

Lean Software Development LSD 2003 Alive - Principles [30]

Agile Unified Process AUP 2005 Nearly Obsolete 1,2,3 Philosophies [31]

Microsoft Solutions Framework MSF 2005 Obsolete 3,4 Principles [32]

Open Unified Process OpenUP 2006 Obsolete 1,3,4 Principles [33]

Behavior-Driven Development BDD 2009 - - - -

DevOps DevOps 2009 Alive - Principles [34]

Scrumban Scrumban 2009 Alive - - [35]

Kanban Kanban 2010 Alive - Principles [36]

Disciplined Agile Delivery DAD 2012 Alive - Principles [37]

Design Driven Development D3 - - - - -

Personal Software Process & Team Software Process PSP&TSP 1996 Obsolete 3,4 Principles [38]

724 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Agile Portfolio Management APM - - - - -

ICONIX ICONIX Obsolete 1,3,4 - [39]

Test-driven development TDD - - - - -

B. Agile Principles (RQ2)

After reaching the list of the methods, the principles of
each method (L1) were collected as described in the Research
Design section and 105 (101 distinct in names) principles were
achieved. These principles were then grouped into the high-
level principles that are 33 in number (L2). During this stage,
it is seen that some original principles (L1) can serve for
multiple high-level principles (L2) then they are duplicated
under different high-level L2 principles, yielding 114 L1

principles in total (duplicated ones are marked with a number
inside the corresponding principle box). The L2 principles are
also classified as People or Process-Relevant (L3), according
to their descriptions. At this stage, if an L3 item includes both
Process and People Relevant L2 item(s) then it was taken of
those with a higher number (there was no equality
encountered). As a note, this hybrid distribution was seen in
the 5 of 33 L2 principles. All trees are depicted as below
bearing principle name, relevant method(s), and the unique
numbers if duplicated.

Fig. 1. Process-relevant Principles

 With iterative development along with frequent
delivery, a big bunch of development is divided into smaller
functional increments to understand functionality better, to
manage risk effectively and to get feedback from customers
and end users early. Iterative development encourages
experimentation and learning. Through feedback and
learning cycles, teams can identify areas for improvements.
To the short cycles of iterations, a fixed schedule
accompanies [in some methods] to reach a high level of
predictability. With iterative development, the accumulation
is not by default in additive kind. The system developed can
yield incremental progress thus an organic growth of the
system is achieved as required to adapt to changes.

In order to manage the complex world of reality along
with its context variations, the human-beings who have
equally complex abilities is brought up against it. Human-
made proxy products, such as processes, documents, fixed
plans, are neither capable of representing the actual ability of
the human nor the reality itself. Instead of these intermediate
solutions, by reducing their significance, people are in the
foreground to counterbalance the reality. And, therefore it is
aimed to be close to the customer who is relatively close to
reality. As being close to the front sides, customer and end
user are the real owner and user of requests, which reminds
being focusing on the customer, value, quality and goal.

NECMETTIN OZKAN ET AL.: TOWARDS A BETTER UNDERSTANDING OF AGILE MINDSET BY USING PRINCIPLES OF AGILE METHODS 725

Fig. 2. People-relevant Principles

 In the association with the reality, people often use
investigation, inspection, learning and feedback loops to get
to know more about the reality. People abandon the passive
position of classical methods and take on a more active role.
Effective learning includes learning from mistakes. At this
process, one of the things people need is courage needed for
change including changing one's own self, with a feeling of
being safe and having relatively high tolerance against
mistakes that require personal safety. This calls for that both
the team and the members of the team respect each other.
Respect strengthens communication channels, supports
coloration and accepting feedback. Respect assures for
individuals a suitable safe place for trial and learning. Courage
is also important to hearten people to make critical decisions
to be able to change direction for adaptation.

 “To move quickly”, the information should flow quickly
inside and between the teams. This is mainly why Agile teams
are preferably co-located and cross-functional. Thus, with
close and intense communication, the interaction of
information increases and the information itself becomes
agile: it is updated, corrected, accelerated, shared to gain
experience and to develop new ideas throughout and beyond
enterprises. Transparency plays as a facilitator for
communication. Communication enables learning, including
from the developed solution itself. It is necessary to
communicate with the developed solution itself to see its
behavior, listen to what it says (the process is successful,
throws an error, etc.). Moreover, along with shared goals,
communication also supports collaboration and teamwork.

Cross-functionality reduces the cost of communication
by gathering the necessary competencies into the team and
enables rapid action. With the contribution of cross-
functionality, self-organization enables teams to operate
around varying cases of the complex world of reality.

Agile processes are additionally equipped with technical

excellence, continuous integration and deployment, system
thinking, design capabilities, disciplined approaches and
measurement-control mechanisms, by some of the methods.

Numerically speaking, process- relevant items (of L1)
cover 64% (73/114) of the whole. Among the people- relevant
items (of L2), depending on the definition of agility,
adaptation to realism to create value comes into prominence.
However, the enterprise-wide perspective is relatively
underestimated to create this value (of the organization). This
may be because of the people who created these methods
having more developer backgrounds. Design may come to the
fore with an effect of a similar situation. Quality emphasis has
a moderate place unlike in the manifesto that gives no place
for it. Although discipline in Agile approaches is hardly
addressed, we see that some methods include this dimension.
Time-box, frequent delivery, and iterative development
practices applied by many methods are rather less apparent at
the principles level. However, when considered incremental
and iterative development, frequent delivery and continuous
integration and deployment (CI/CD) together, they take
considerable place. It is observed that the Lean approach, of
which the main focus is not agility, but the literature counts it
as an Agile method, creates a unique field and does not receive
much support from other methods for System Thinking.

In the people-relevant dimension, we see that human and
team relevant principles come to the fore. It is natural in this
sense that the channels of communication equipping human
abilities are seen at a high level of principles. The context
dimension, which needs human abilities to manage rather than
the ability of the process dimensions, takes an important place.
Parallel to reality-driven, customer orientation is also located
at higher levels at the people-relevant side. However, the
expertise of individuals who are expected to pose a parallel
level with the context dimension and being crucial for self-
organizing teams takes a lower place. Similarly, cross
functionality, which is proposed by many methods, is
relatively at a low level. We see that this principle is supported
by DevOps, which is bounded by this principle very
profoundly.

726 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 3. Count of Principles

Unsurprisingly, we can say that those methods with a
process expression in their names such as Agile Software
Process (ASP) or in their definitions such as of Scrum
outweigh the process side. As the first instance of Agile
methods, Evo approaches agility mainly from the process side.
Lean Software Development poses a very process-oriented
image with its focus on the waste in the processes.

Fig. 4. % of Process-Relevance of Principles

Although DevOps has many aspects that touch processes,
it is remarkable that DevOps is at the forefront of people’s
dimension. Agile Modeling bases on XP in defining its values.
In the context of this study, since XP and AM are included

with values instead of principles and as values are more
people-oriented, it can be considered normal that these two are
seen at the forefront of people-relevant dimension.

Fig. 5. % of People-Relevance of Principles

C. Comparison of Principles with the Manifesto (RQ3)

When looking at the degree of overlap of the principles
(L2) with those of the manifesto, it is seen that more than half
of the determined principle categories are touched by the
manifesto. Cohen argues that all Agile methods follow the
four values and twelve principles of the Agile Manifesto [16],
yet they provide more principles than the manifesto in terms
of the coverage.

Fig. 6. Map for the Manifesto Prınciples

 However, even if the feedback is not explicitly stated, it is
assumed to receive feedback on the delivery of the product
with the early delivery, providing inspection accordingly.
Similar logic can be put forward for incremental development
in relation to iterated progress. Cross-functionality can be seen
as a prerequisite for self-organizing teams. Similarly, although
transparency is not explicitly stated, it can be considered as a
capability gained automatically by establishing intensive
(especially on a daily basis) communication. Principles

relating to goal-oriented, focus and modular may not be seen
as primary to be included in the manifesto, within a dedicated
mentioning.

D. Evaluation of the Principle by Experts (RQ4)

The first author conducted semi-structured interviews with
two experts to evaluate the principle categories (L2),
especially in terms of their contribution to agility. Expert A
has 15 years of experience in total, of which 5.5 years as a

7 7

5 5 5

3 3
2 2

1 1

8 8

6
5

4 4
3 3 3 3 3

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1

T
e
a

m
w

o
rk

P
e

o
p

le
-O

ri
e

n
te

d

C
o

m
m

u
n

ic
a

ti
o

n

S
e

lf
 o

rg
a
n

iz
in

g

C
u

st
o

m
e

r
c
e
n

tr
ic

C
o

n
te

x
t

G
o

a
l-

O
ri

e
n

te
d

C
ro

ss
-F

u
n

c
ti

o
n

a
l

E
xp

e
rt

ic
e

Q
u

a
li
ty

F
e

e
d

b
a
c
k

V
a
lu

e

D
e
si

g
n

A
d

a
p

ta
ti

o
n

R
e
a

li
sm

C
o

n
te

x
t

In
cr

em
en

ta
l…

Q
u

a
li
ty

E
n

te
rp

ri
se

-W
id

e

R
is

k
-D

ri
ve

n

In
sp

e
c
ti

o
n

It
e

ra
ti

v
e

D
ic

ip
li
n

e

F
e

e
d

b
a
c
k

CI
/C

D
-…

Fr
eq

ue
nt

…

S
y
st

e
m

 t
h

in
k
in

g

M
o

d
u

la
r

Im
p

ro
v
e

m
e
n

t

Le
a
rn

in
g

F
o

c
u

s

T
ra

n
sp

a
re

n
cy

T
im

e
-B

o
x
e

d

C
u

st
o

m
e

r
c
e
n

tr
ic

G
o

a
l-

O
ri

e
n

te
d

Li
g

h
t-

 w
e
ig

h
t

M
ea

su
re

m
en

t-…

People-relavent Process-relavent

100%100%
92%

86% 83% 83%
75%

63% 60% 57% 56%
50% 50% 50%

40% 40%

29%

71%

60% 60%

50% 50% 50%
44% 43% 40% 38%

25%
17% 17% 14%

8%

NECMETTIN OZKAN ET AL.: TOWARDS A BETTER UNDERSTANDING OF AGILE MINDSET BY USING PRINCIPLES OF AGILE METHODS 727

product owner in a bank in Turkey applying Scrum. Expert B
has 13 years of experience in total mainly from two different
banks in Turkey, of which 4 years in a Scrum development
team. The following statements directly convey the views of
experts on the principles.

Expert A states that each of these principles determined
supports the agility. Using these principles together in the
whole picture will be beneficial for maintaining balanced,
healthy and sustainable agility. According to her, although
adaptation is important, the market has a lot of emphasis on it,
which can lead to an unbalance in some other points. For
example, in some cases of adaptation without a balance,
quality, enterprise-wide, risk-driven, systematic, realistic
(adaptation to realistic changes) approaches and sufficient
inspection phases may be damaged. This approach may lead
to the emergence of unsustainable structures that will not
benefit the customers in the long run. Teams that move away
from the holistic picture with the effect of adaptation pressure
can result in isolations across the teams themselves, such as
happening in impact analysis mostly conducted in non-
sufficient and isolated ways. In addition to agility, the
necessity of elements such as expertise and discipline to
support it manifests itself. Expertise for instance is important
enough, as becoming a prerequisite for self-organizing teams
to be able to self-organize. Unstable teams and teams with a
low level of expertise unlikely to become self-organized. In
addition to adaptation pressure, time-boxing may lead to
compromise on quality and value with a similar effect.

She states although value and customer orientation are
important, a blindfolded dedication to the customers may
cause human values of teams to be ignored and remained in
the background. With a customer-driven approach,
development teams come to a more passive position, and
customer demands that do not go through enough filters of the
customers put more pressure on the teams. Considering these
situations, principles such as system thinking, organization-
wide, quality and realism stand out for sustainable agility. In
addition, incremental and iterative development, teamwork,
cross-functionality come into prominence in a way supporting
agility fundamentally.

Expert B asserts that transparency contributes to reality by
supporting open and clear environments, in a way of reducing
reworks. She adds that frequent delivery increases quality.
Frequent delivery, on the hand, cannot be possible in some
cases depending on the nature of the project. Progressing
iteratively reduces the risk for the users and developers as the
users see the increment at the early stages and give feedbacks.
For developers working the design up-front as much as
possible reduces the risk as well.

According to her, teams with a deadline coming with the
iteration time-box can have positive and negative effects
depending on the situation. In both cases, determining the end
of the iteration by the teams supports self-organization. It
supports meetings to be more productive. However, for self-
organized individuals, time-boxing will be meaningless. Daily
meetings and time- boxing will be effective in a positive way
with pressure for non-self-motivated individuals. However,
this pressure can also have a negative effect on some people.

She says it is usually expressed that organizations trust the
Scrum teams, yet it is a utopia to trust the team in an absolute
manner. Factors and rules outside the teams do not allow the
teams to be truly self-organizing. Self-organization can also

be a problem, especially in the setup stages of Scrum. Scrum
does not respect the context dependencies much. Depending
on the context, it may be difficult to set up Scrum with its
factory settings, especially during the transformation stages or
in disciplined environments like in a bank.

She adds that Agile [Scrum] comes with a customer-
oriented process setup. Customer feedback directs the
development. What the customers want is accepted as master
and generally does not go through a filter. Project-based team
structures eliminate the need to work on a modular basis.
Cross-functionality is thus provided for the project via such
temporary teams. It is actually a structure that supports context
diversity and process flexibility.

VI. DISCUSSION

Among the methods, some of them focus on project
management (like Scrum and DSDM), while some others
focus mainly on software development activities (like XP,
Crystal), mostly on the team level, ignoring organization-wide
perspective. The main reason for being mostly on the team
level may be that the creators of the methods mostly come
from the software development background. While those such
as DevOps and Kanban provide a continuous stream for
delivery (continuous planning, integration, delivery, feedback
etc.), some others like DSDM, Scrum uses segmented units of
the timeline to manage the pipeline. Thinking the time within
the segmented iterations like a sprint in Scrum can be an
advancement for a big bunch of development lines of plan-
driven approaches of yesterday, yet it cannot be regarded as a
contemporary method of today. Contrary to the agile logic,
handling these static time frames of iterations with strict
planning and expecting a concrete product at the end is very
instance of a plan-driven approach. Instead, to keep with
fluctuations of the complexity of the reality that is at very
atomic level of granularity, a continuous approach to
development providing a very mutual and natural atomic level
of reflections may be needed. This is probably why DevOps,
Scrumban and Kanban stay alive among those a few, by
providing a continuous stream for the pipeline.

Staying alive among those a few, XP and DevOps take
place as focusing on people-related issues in terms of
principles. However, being human oriented and being-system
oriented seem to be a binary choice within the methods. While
many models establish their main structure on the roles of
people, there are some methods such as Kanban, LSD that
focus the system rather than people.

As the most used method, an interesting issue with Scrum
that takes a process-oriented approach to development,
assertively delegates this duty of process-orientation to its a
few basic roles of people. And as it is expected, this intense
process orientation is prone to be derailed by people who are
naturally far from providing a standard approach to what these
intense processes require.

The aim of LSD is to approach the zero (waste) point.
Agility leans more on the expansion of perspectives; learning
(fail fast), reworks (creating features only to understand
customers better at the earliest) and so on. This "haste” to
respond quickly in Agile may “make waste", implying that
Lean and Agile approaches can be contrast serving in two
different directions. However, there is a Lean perspective in
the manifesto by advocating just enough documentation,
reducing “ineffective communication” occurring in the
hierarchy, tools and processes. This shows us that the Lean

728 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

and Agile approaches are used together in the manifesto,
maybe with confusion, even if they contain some
contradictions.

When it comes to the manifesto, interestingly, we see no
quality-related emphasis on it. Another interesting point in the
manifesto is that the agility of Agile Software Development is
considered a separate and isolated body, not directly
connected with the organization wide perspectives. The main
reason for this may be that the manifesto writers come from
the software development background, too. In the context of
software development, it will not be enough to include the
customer in the processes. Therefore, considering the Agile
Software Development separate from the whole organization
come with some issues. Another important issue in the
manifesto appears in contextualization. It is usual for the
reality to vary depending on the context, which calls for each
unique practitioner to define a space for their context and to
shape their own agility within this space. However, the
manifesto does not explicitly refer to the context
dependencies, which is an important dimension of realism, nor
is there any concern about the expertise of people, which is a
crucial factor to deal with the context, in the vertical
dimension. Although in Agile approaches, T-shaped
specialization is recommended instead of general
specialization with assuming that it contributes to
collaboration within cross-functional teams, yet it only
provides a horizontal dimension to the context-related issues,
which should remind us not to ignore the issues related to the
depth of the context, especially of the complex world.

Some of the determined principles (L2) are close to each
other (such as teamwork and self-organizing or incremental
and iterative development, frequent delivery and CI/CD),
some are closely supporting each other (such as feedback,
communication and transparency). Others are not open to
debate, as they make an absolute positive contribution (such
as improvement and learning). We will discuss here debatable
ones, in general, without mentioning the differences between
those close to each other.

As one of the principles, moving within iteration is an old
school tradition, seen mostly in the first generation of the
methods. Maintaining this tradition with building walls (with
fixed times) and trying to live agility within limitations of
these walls of iterations are a kind of reduction to and conflict
for people who have more atomic level, more sensitive,
stronger agility capabilities in themselves. As an excuse,
fixing iterations with a “deadline” to speed up the
development to assure the fulfillment of the customer's top
present needs, or using fixed iterations for motivating
development teams (as stated by Expert B) are just expected
benefits. Using a combination of adaptation and iteration with
time-boxes may create artificial pressures on teams causing
compromise on some other values (Expert B). It implies that
this artificial ‘solution’ produced for indirect problems (not
being motivated, not being value oriented) creates a cause for
another problem; trying to imprison the reality of the future by
artificial parameters of time. However, the reality of future is
so dominant and free that it does not fit in an artificial frame
of time (like sprints with a fixed end), then it gets out of
iteration limits, enforces obedience of all other parameters.
For example, towards the end of the fixed iteration which does
not progress according to the plan enforces a situation where
the scope or quality will be compromised. It is reminded that

time is one of the strongest among parameters, then people
should learn to get along with it instead of imprisoning it.

The term artificial means iteration is not in a pure form of
time itself rather a kind of proxy of it, a sort of representative
of the time at a different platform. In this sense, it takes the
process away from reality. Moreover, iteration-based planning
means adding determinism into the complexity of the future,
especially if it comes with a fixed end time. This approach
indicates an attempt to manage non-deterministic software
development with deterministic methods. Using iterations as
a batch feedback method with some static rituals is to
communicate with an artificial cycles as well. For instance, an
issue at the beginning of the sprint may, not necessarily but
most probably, delay to the review or retrospective meetings
that are located at the end of the sprints. Fixed rituals break
the natural flow of the reality (such as in getting feedback
when it is ready). So, it is recommended to synchronize the
loop of feedbacks with its own cycle of the realism instead of
an artificial one. Thus, with iterations saved from fixed events,
the sooner the solution is delivered, the sooner feedback can
be received.

Realism is to be driven by the reality itself instead of the
proxy of it. For example, processes to organize real operations
aiming to be a projection of the reality, with trying to represent
it or even direct it by going ahead of it are also a sort of
artificial proxies. However, a process is not the reality itself.
It is a kind of artificial entities produced by humans. After all,
models are human-made products, and every human-made
product (software, hardware, ideas etc.) is defective. Like in
the time parameter, the reality as the master dominates the
static [process] frameworks, models and methodologies that
try to be real.

Self- organization increases the ability to respond to
change while decreasing the speed of response for decision-
making in quickly, easily and adequately manner (as stated by
Expert A). Advantageously, it strengthens the concept of
“move” in the definition of agility by means of delegating the
work to those who know it closely and expanding decision
capabilities, yet it should not be regarded as a way that
contributes to agility in absolute terms. Cross-functionality
reduces the cost of communication by gathering the necessary
competencies into the team and enables rapid actions.
However, self-sufficient (!) teams weaken their abilities in the
holistic picture with their possible estrangement. Even though
the ability, speed and convenience of moving increase inside
the teams, these capabilities may be in danger in the context
of multiples teams (as stated by Expert A).

Agility is easier when managed in the abstract dimension,
which calls for more design up-front. Managing the solution
with a “concrete running software" may be costly, hand-
binding, and waste. If the customer's need is "discoverable" a
bit from the front, the up-front investigation should be located.
Agility is also more sustainable when combined with system
thinking, quality and organization-wide perspectives (Expert
A) and discipline (Expert A, B).

Software developers develop software mostly for people,
with people. However, the human is not a pure representative
of the deepest level of the reality that is in a perpetual state of
change. As a proxy, they cannot perceive and convey the
reality as it is, sometimes deliberately and they add their
natural interpretations, perspectives, and limitations of their
context to the reality, making them a very strong decrement

NECMETTIN OZKAN ET AL.: TOWARDS A BETTER UNDERSTANDING OF AGILE MINDSET BY USING PRINCIPLES OF AGILE METHODS 729

point in transmitting it. Hence, driving the change solely by
people may be misleading (as partially stated by Expert A).

In parallel, Parnas and Clements [40] states (as
paraphrased by [2]) that a system’s users seldom know exactly
what they want and cannot articulate all they know. Even if
they could state all requirements, there are many details that
we can only discover once we are well into implementation.
Brown's study [41] reports three different perspectives about
the same project varying dramatically with the role of people.
The customer will of course be a mediator of the change. The
important thing here is to be the seeker of the reality together
with the customer and not regarding customers sacrosanct and
accepting them as the absolute point of the reality. There is
less visible yet another crucial layer between the customer and
the reality to discover with them together.

VII. CONCLUSION AND FUTURE WORK

The study does not attempt to redefine agility in the
software solution development in a full-fledged way. It rather
makes an evaluation based on the principles, considering a
particular approach to the definition of the agility, with some
threats to validity when considered low level validation by
experts. Even so, the study may provide specific contributions,
especially with its progressive position that has two faces:
locating the principles on the center, looking at the
relationship between the principles and the methods and
examining how these principles support agility. In this sense,
as future work, it can be investigated to what extent a specific
method supports agility through these principles. However, as
the next study, we prefer to improve these principles by
combining results from other related studies and examine how
and to what extent each element in the final set supports
agility.

REFERENCES

[1] A. Mordi, and M. Schoop, “Making It Tangible–Creating A Definition

Of Agile Mindset”, ECIS, 2020.

[2] C. Larman and V. R. Basili, “Iterative and incremental developments:

a brief history”, Computer, vol. 36, pp.47–56, 2003.

[3] E. Trist, “The evolution of socio-technical systems”, Occasional paper,

vol. 2, 1981.

[4] H. Takeuchi, and I. Nonaka, “The new new product development

game”, Hardvard Business Review, vol. 64, no.1 1986.

[5] G. Morgan, Images of organization, Sage Publications: Beverly Hills,

1986.

[6] P. Hohl, J. Klünder, A. van Bennekum, R. Lockard, J. Gifford, J.

Münch, and K. Schneider, “Back to the future: origins and directions
of the “Agile Manifesto”–views of the originators,” Journal of

Software Engineering Research and Development, vol. 6, no.1, 2018.

[7] N. G. Abbas, A. M. Gravell and G. B. Wills, “Historical roots of agile
methods: Where did “Agile thinking” come from?, International

conference on agile processes and extreme programming in software

engineering, pp.94-103, 2008.

[8] A. Cockburn and J. Highsmith, “Agile Software Development: The

Business of Innovation”, Computer vol. 34, no.9, pp.120–127, 2001.

[9] P. Kruchten, “Contextualizing agile software development”, Journal of
Software: Evolution and Process, vol. 25, no. 4, pp. 351-36, 2013.

[10] K. Conboy, and B. Fitzgerald, “Toward a conceptual framework of

agile methods: a study of agility in different disciplines” ACM
workshop on Interdisciplinary software engineering research, pp.37-

44, 2004.

[11] J. Highsmith, Agile Project Management, Boston: Addison-Wesley. .

2004.

[12] J. Miler and P. Gaida, “On the agile mindset of an effective team–an
industrial opinion survey”, Federated Conference on Computer

Science and Information Systems (FedCSIS), pp. 841-849, 2019.

[13] https://stateofagile.com/

[14] R. Suddaby, “Editor's comments: Construct clarity in theories of

management and organization”, 2010.

[15] C. Larman, “Agile and Iterative Development: A Manager’s Guide”,
C. Alistair, H. Jim, (eds.), Pearson Education: London, 2004.

[16] D. Cohen, M. Lindvall and P. Costa, “An Introduction to Agile

Methods”, Advances in Computers, pp.1–66, 2004.

[17] T. Gilb, “Evolutionary Development", SIGSOFT Softw. Eng. Notes,
vol. 6. No.2, 1981.

[18] J. Stapleton, DSDM, dynamic systems development method: the

method in practice, Harlow: England, 1997.

[19] K: Schwaber and J. Sutherland, “The scrum guide”, Scrum Alliance,

2011.

[20] https://www.ibm.com/developerworks/rational/library/content/03July/

1000/1251/1251_bestpractices_TP026B.pdf

[21] M. Aoyama, "Agile Software Process model," 21st International

Computer Software and Applications Conference, 1997.

[22] E.S. Raymond, The Cathedral and the Bazaar, O’Reilly: Cambridge,

1999.

[23] A. Cockburn, Surviving object-oriented projects: a manager's guide,

Addison-Wesley: Longman Publishing, 1998.

[24] J. A. Highsmith, Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems, New York: Dorset House,

2000.

[25] K. Beck, Extreme programming explained: embrace change, Addison-

Wesley Professional, 2000.

[26] P. Coad, J. D. Luca and E. Lefebvre, Java modeling color with UML:
Enterprise components and process with Cdrom, Prentice Hall PTR,

1999.

[27] M.A. Cusumano and D. B. Yoffie, “Software development on Internet
time.” IEEE Computer, vol. 32, no.10, pp.60-69, 1999.

[28] S. Ambler, Agile modeling: effective practices for extreme

programming and the unified process, John Wiley & Sons, 2002.

[29] S. Ambler, Agile database techniques: Effective strategies for the agile

software developer, John Wiley & Sons, 2003.

[30] M. Poppendieck, T. Poppendieck, Lean Software Development: An

Agile Toolkit, Addison-Wesley Professional, 2003.

[31] http://www.ambysoft.com/unifiedprocess/agileUP.html

[32] M. Turner, Microsoft solutions framework essentials: building

successful technology solutions, Microsoft Press, 2006.

[33] P. Kroll, B. MacIsaac, Agility and Discipline Made Easy: Practices

from OpenUP and RUP, Pearson Education, 2006.

[34] G. Kim, J. Humble, P. Debois, and J. Willis, “The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in

Technology Organizations”, IT Revolution, 2016.

[35] C. Ladas, “Scrumban-essays on kanban systems for lean software

development”, Lulu.Com, 2009.

[36] D. J. Anderson, Kanban: successful evolutionary change for your

technology business, Blue Hole Press, 2010.

[37] S. W. Ambler, and M Lines, Disciplined agile delivery: A practitioner's

guide to agile software delivery in the enterprise, IBM press, 2012.

[38] Watts, Using a defined and measured Personal Software Process,

https://www.amazon.com/Introduction-Software-Process-Watts-

Humphrey/dp/020147719X.

[39] D. Rosenberg, M. Stephens and M. Collins-Cope, Agile development

with ICONIX process, New York: Editorial Apress, 2005.

[40] D. L. Parnas and P.C. Clements, “A rational design process: How and

why to fake it”, IEEE transactions on software engineering, vol.2, pp.

251-257, 1986.

[41] A. D. Brown, “Narrative, politics and legitimacy in an IT

implementation, Journal of Management Studies, vol. 35, pp.35-58,

1998.

[42] N. Ozkan, “Imperfections Underlying the Manifesto for Agile Software
Development”, 1st International Informatics and Software Engineering

Conference (UBMYK), 2019.

[43] H. van Manen, H. van Vliet, "Organization-Wide Agile Expansion
Requires an Organization-Wide Agile Mindset", Product-Focused

Software Process Improvement. Ed. by A. Jedlitschka, P. Kuvaja, M.

Kuhrmann, T. Männistö, J. Münch, M. Raatikainen, pp. 48–62, 2014.

730 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

