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Abstract—Crime hotspot forecasting is an important part of
crime prevention and reducing the delay between a 911 call
and the physical intervention. Current developments in the field
focus on enriching the historical data and sophisticated point
process analysis methods with a fixed grid. In the paper we
present a simple spatio-temporal point process allowing one to
perform exhaustive (literal) grid searches. We then show that this
approach can compete with more complex methods, as evidenced
by the results on data collected by the Portland Bureau of Police.
Finally, we discuss the advantages and potential implications of
the new method.

I. INTRODUCTION

S
PATIO-TEMPORAL crime forecasting is a field that grabs

the attention of both scientists and practitioners. Many

academic researchers have published results based on time

series analysis ([1]), regression methods ([2], [3], [4]), kernel

density estimation ([5], [6], [7], [8], [9], [10]) or self-exciting

point processes ([11], [12], [13], [14], [15], [16], [17]). More-

over, the US Government appreciates the impact predictive

policing has on society (see [18]).

In a typical crime prediction task, the forecast area is fixed

and divided into small sub-regions, called cells. The cells are

then scored separately over a given future time window. The

ones with the highest rate are chosen as the most dangerous

areas and called hotspots. In this article we present a point

of view for hotspot forecasting that differs from those which

can be found in the literature. We emphasise the simplicity

and efficiency of our algorithm for a fixed grid to get an

opportunity to check as many grids as possible. We place

those attributes over sophisticated methods, with state-of-the-

art results in practice. Our models won eight categories of

the Real-Time Crime Forecasting Challenge conducted by the

National Institute of Justice ([19]).

The rest of the paper is organized as follows. In section

II we explain our approach in detail. Section III contains a

comprehensive description of case study of our method – the

Real-Time Crime Forecasting Challenge. Further comments

and summary are placed in section IV.

II. THE MODEL

A. The choice of grid

There is a vast literature available about crime forecasting

for a given grid of cells based on past crimes committed

(see references in the Introduction). In such a setup, more or

less sophisticated methods are applied to predict which fixed

parts of the investigated region will experience the highest

future rate of crime. Clearly, changing the grid changes the

entire task as well and may lead to completely different

predictions with different levels of effectiveness in the real

world. However, as far as we know, whenever the cell division

is not imposed in advance, searching for a good grid is in

practice reduced to grid search, random search (see [20]) or

another primitive method of walking among parametrizations

of possible tessellations. The reason there is a lack of ’smarter’

grid choosing techniques may be that spatial distributions of

crimes committed in urban areas are ’weird’: they contain

atoms with very high crime rates (related to, for example,

large-area stores or shelters for the homeless). Therefore, using

the same data-driven algorithm for even very similar grids can

cause a huge discrepancy in the qualities of the predictions

obtained. Hence, grid optimization cannot be neglected.

Taking into consideration the massive number of grids worth

checking we concluded there was a need for a very fast but

still well performing supervised model for a fixed grid, one

that would simply execute a random search on a rich space of

grid parameterizations to find the ’optimal’ grid. This would

yield a better final result than a more sophisticated, but slower

algorithm applied to a random set of grids that would be too

small to contain any decent tessellation.

B. Fast algorithm for a given grid

The main idea behind our algorithm for a fixed grid is

simple: count the past crimes in every cell and mark the

cells with ’the worst past’ as hotspots. In other words, we

assume that if many crimes occurred somewhere, more are

likely to happen. This principle may strike some as naive

and outdated, but we believe that it is both accurate enough

and fast. Up-to-date crime registries are freely available for

several US cities. They form the main dataset in data-driven

crime forecasting algorithms. One can search for any external

data which could affect future crimes, but have not left a

trace on those crimes that have already been committed.

We are aware that weather, demographics and even social

media information (see [4]) are sometimes used in similar

contexts. Unfortunately, they significantly increase the model’s
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complexity, often without a guarantee of noticeably improved

accuracy. Keeping computations as simple as possible, by

using merely historical crime data, enables us to spend more

time on selecting the right grid.

We refine the raw algorithm by taking care of data aging and

seasonality. Namely, we assign weights to all the past crimes

and then sum up the weights of all the crimes in consecutive

cells to find the hotspots. The weight of an event decreases

exponentially as a function of age (in days) of a crime. The

intensity of the decrease is a hyperparameter. Also, we boost

the weights of crimes committed on the same days of the year

as those in the forecasted time span. The power of boosting

is a hyperparameter as well.

Moreover, we introduce a primitive ’spatial radiation’ of

past crimes. For each data point, we put eight of its copies

with reduced weights in the corners and in the center of the

sides of the rhombus around it (see Figure 1). In this way,

a ’part’ of an event that has occured close to the cell border

could fall into a neighboring cell. We chose to use a rhombus

because it reflects the Manhattan metric, a reasonable match

for North-South-oriented axis grid street plans, of which there

are many in US cities. The size of the rhombus and reduction

of weights of added copies are hyperparameters.
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Fig. 1. Points on the rhombus around given point.

The approach presented here can be expressed in the lan-

guage of spatio-temporal point processes (cf., e.g., [14] and

references therein). Consider a counting process N(t, x, y)
characterized by its conditional intensity function λ. In our

case we define lambda as (1), where

• µage(tj , t) = e−A(t−tj),

• µseas(tj) = 1 + B · ν(tj) for ν(tj) = 1 if tj is the same

day of year as those placed in the forecasted timespan

and ν(tj) = 0 elsewhere,

• ϕ(xj , yj , x, y) =







1, if (xj , yj) and (x, y)
are in the same cell

0, elsewhere,

• ϕblur(xj , yj , x, y) = C ·
∑

{i∈D} ϕ(x
i
j , y

i
j , x, y) for D =

{N,NE,E, SE, S, SW,W,NW} and (xi, yi) defined as

in Figure 1, i.e., (xN , yN ) = (x, y+D), (xNE , yNE) =
(x+D/2, y +D/2), (xE , yE) = (x+D, y), etc.

We sum through all the past events (tj , xj , yj) with tj < t.
A, B, C, D are hyperparameters. Our lambda is much simpler

than those found in the literature. We need neither smoothing

nor symmetry properties. Also, for a fixed t, λ(t, x, y) =
λ(t, x′, y′) for every (x, y) and (x′, y′) lying in the same cell.

Hence, we can think about λ as of the intensity of the entire

cell and simply choose cells with the greatest values of λ as

hotspots.

C. Validation

To find the best grid and hyperparameter values, we split the

dataset into training, validation and test parts in the following

way: the last period becomes the test set, the second-to-last

is treated as the validation set and all the earlier events make

up the training set. Then we generate hotspots for different

grids and hyperparameters using training data and compare

them on validation data to choose the best settings. Finally,

we compute the hotspots for the best model once more - this

time with use of both training and validation data - and obtain

the ultimate score using test data.

In classic crime forecasting, the score functions taken from

the binary classification – ROC/AUC, sensitivity, etc. – are

used (see [6]). There are also two newer functions on the

market: predictive accuracy index (PAI, [6]) and prediction

efficiency index (PEI, [21]) given by PAI = n/N
a/Ar , PEI =

n
n∗

, respectively, where:

• n - the number of future crimes in k proposed hotspots,

• n∗ - the number of future crimes in k ’worst’ cells,

• N - the number of all future crimes in the entire area,

• a - the total volume of k proposed hotspots,

• Ar - the volume of the entire area,

assuming that k cells were indicated as hotspots. They all have

their disadvantages. Binary classification-based functions are

inconvenient if the area of the hot-spots to be forecast is a

very small fraction of the investigated jurisdiction, which is

typical. As for other functions, PAI favors smaller single cell

areas while PEI likes as great a single cell area as possible.

For this reason it is impossible to maximize both PAI and

PEI with the same grid, which casts doubt on the validity of

using either of them. Moreover, PEI is bounded by 1 from

above whereas the range of PAI is a positive half line, so

they are not directly comparable. Nevertheless, our approach

is metric-agnostic, therefore any reasonable score function can

be applied here.

III. CASE STUDY

A. The competition

In September 2016, the National Institute of Justice in the

US announced the Real-Time Crime Forecasting Challenge.

The goal was to predict future crimes in Portland, Oregon.

Contestants were asked to divide the area under Portland police

jurisdiction (an area roughly 15 by 20 miles) into a grid of

small cells (i.e., 250 by 250 feet) and indicate the cells that

would have the highest future crime rate - hotspots. Several

restrictions on the cells’ shape and the total volume of hotspots

were imposed.
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λ(t, x, y) =
∑

{j : tj<t}

µage(tj , t) · µseas(tj) · [ϕ(xj , yj , x, y) + ϕblur(xj , yj , x, y)], (1)

Four different categories of crime were considered sep-

arately: all crimes, burglaries, car thefts and street crimes

(including assaults, robberies, shots fired). Five future time

spans (starting in March 2017) were involved: one week, two

weeks, a month, two months and three months. Hence, there

were 20 type/time categories. In each of them, the predictions

were compared against the actual state of affairs in Portland

using both PAI and PEI. Thus, the competition consisted

of 4 · 5 · 2 = 40 separate sub-competitions in total. Only

the best submission was awarded in each of them. Three

independent tracks of the challenge were run simultaneously:

intended for large businesses, small businesses and students,

respectively. Each track had the same rules and goals, but

separate contestants, winners and prizes.

B. Data

The NIJ delivered historical data on all the crimes registered

in Portland between March 2012 and February 2017. Almost

1,000,000 records were provided in total. Each of them con-

tained the day the crime was committed, coordinates (with

accuracy to one foot) and the type of crime committed. There

were no data gaps.

The distribution of data between crime categories was

highly imbalanced: burglaries, car thefts and street crimes were

only 0.5%, 1%, and 16.5% of records, respectively. Thus,

we expected a huge discrepancy in the numbers of crimes

committed between particular type/time categories between

March and May 2017. That was true, two extreme cases were:

all the crimes between March and May 2017 - 65,000 records,

and burglaries in the first week of March 2017 - only 20 events.

Distributions of crimes in all the categories with a big

enough number of events had similar characteristics: they

consisted of the ’dense’ part looking like a sample from

a continuous distribution and the ’discrete’ part made from

atoms. It seems that although the accuracy of the coordinates

of crimes committed was in general one foot, police officers

tended to ’discretize’ some areas like stores or shelters to a

single spatial point next to the entrance to the building/area.

C. Computations

The first attempts showed that in each of the 20 type/time

categories the PAI metric was maximized by a lot of small

hotspots whereas PEI behaved best for a small number of large

hotspots. Hence it was clear that we should not attempt to

satisfy both metrics simultaneously. Since each metric formed

an independent sub-competition with a separate prize, it was

better to have a good score for one metric than mediocre

results for both. So, for each of the 20 type/time categories we

had to decide which metric to focus on in our further work.

The metrics were incomparable, scores between the categories

were incomparable and we did not know other competitors

and their results. Thus, we did not have any hitching point that

would help us to choose a metric. Moreover, our approach was

metric-agnostic. Hence, to choose a metric, we just tossed a

coin for each of 20 type/time categories.

During the competition we were examining parallelogram,

triangular and hexagonal grids. No shape proved noticeably

better than other ones. We ultimately decided to only use

unrotated rectangular grids, parameterized by cell height,

width, horizontal and vertical shift. The number of predicted

hotspots was also a hyperparameter. We optimized the grid and

our model hyperparameters for each of 20 type/time categories

separately.

D. Results

Table I gathers information about seven categories with the

largest numbers of crimes committed during the test periods.

Our predictions proved the most accurate in all of them

in the contest track for large businesses. Moreover, all of

those predictions remained on the top after comparing results

from the competition’s three tracks (for large business, small

businesses and students). This was the best result among all

the competitors, while the runner-up achieved four across-track

wins.

TABLE I
COMPETITION CATEGORIES WITH THE LARGEST NUMBERS OF CRIMES

COMMITTED.

category number of crimes metric used metric value

all, 3 months 55744 PAI 60.53
all, 2 months 35770 PEI 0.989
all, 1 month 17873 PAI 61.37
street, 3 months 8480 PEI 0.967
all, 2 weeks 8021 PEI 0.957
street, 2 months 5352 PEI 0.940
all, 1 week 3876 PAI 62.35

One more category for which our prediction was the most

effective in the large business competition (but not in the

total rank) was for burglaries between March and May 2017.

However, in our opinion the number of crimes committed,

268, was so low that no model would be able to credibly

predict them, so our success was just a matter of luck. We

would conclude the same about seven more categories: the

other time periods for burglaries (175, 93, 41, and 20 crimes)

and car thefts in a one-month period and less (273, 135, and

71 incidents).

The results allowed us to conclude that for both the PAI

and PEI metrics we were able to find grids and hotspots with

quality competing with predictions obtained by authors of

more complicated methods described in the literature (cf. [22],

[23]). Our approach proved especially effective in categories

with the biggest number of crimes committed.
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Since different competitors submitted different grids, we

are unable to compare algorithms for a fixed grid created by

particular contestants. Therefore, we cannot judge whether the

good performance of our models was an effect of thoroughly

scouring potential grids or the power of simplicity of our

algorithm for a fixed grid, or perhaps both.

IV. DISCUSSION

The comparative case study on crime data from Portland,

OR, shows that our computation time-oriented approach can

compete with more sophisticated crime forecasting methods

existing in the literature. This result is somewhat surprising.

One may conclude that the spatio-temporal distribution of

crimes committed is too complicated to be estimated well

enough with the use of parametric methods. Or maybe the

choice of the proper grid matters much more than it seems.

Moreover, we have no reason to claim that the good perfor-

mance of our algorithm is a one-shot success valid only for

Portland since our model contains no part priorly adapted

to any particular city. Unfortunately, we did not have the

opportunity to compare the quality of crime forecasts done

with use of different methods (including our own) for the same

fixed grid. Such research would shed more light on this field.

The advantage of our algorithm for cases with thousands or

more crimes to forecast can be attributed to two possible fac-

tors: a specific spatial distribution of crimes or computational

simplicity. As stated above, for most statistical parametric

methods it may be intractable to cover a distribution containing

both a continuous and a discrete part. Comparing the perfor-

mance of different models for a fixed grid would bear this out.

On the other hand, sophisticated algorithms can paradoxically

struggle to find the optimal grid and hotspots when presented

with large volumes of training data. A time-consuming training

procedure for a fixed grid does not allow one to check a

sufficient number of potential grids. This problem may be

addressed by more efficient algorithms’ implementations and

significantly increasing computing resources. Also, adding

more constraints on the admissible grid shapes clearly solves

the problem, though it also makes it less universal.

Finally, we note that in the perspective of maintaining and

updating the crime forecasting system, using only the historical

crime data seems to be a good solution. It is hard to find any

non-constant external factor which can both influence future

crimes and be easier to predict than crimes themselves. Be-

sides, the impact of any hidden important feature is ultimately

reflected in the historical data. Moreover, changes in the

spatial crime distribution caused by system-driven preventive

police activities may be not easy to manage when external

data sources are used for forecasting. At the same time, a

forecasting system based on merely historical data is able to

simply retune to the current crime distribution.
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