
An incremental malware detection model for

meta-feature API and system call sequence

Pushkar Kishore

Dept. of C.S.E.

NIT Rourkela

Odisha, India

518CS1002@nitrkl.ac.in

Swadhin Kumar Barisal

Dept. of C.S.E.

NIT Rourkela

Odisha, India

swadhinbarisal@gmail.com

Durga Prasad Mohapatra

Dept. of C.S.E.

NIT Rourkela

Odisha, India

durga@nitrkl.ac.in

Abstract—In this technical world, the detection of malware
variants is getting cumbersome day by day. Newer variants of
malware make it even tougher to detect them. The enormous
amount of diversified malware enforced us to stumble on new
techniques like machine learning. In this work, we propose an
incremental malware detection model for meta-feature API and
system call sequence. We represent the host behaviour using
a sequence of API calls and system calls. For the creation of
sequential system calls, we use NITRSCT (NITR System call
Tracer) and for sequential API calls, we generate a list of anomaly
scores for each API call sequence using Numenta Hierarchical
Temporal Memory (N-HTM). We have converted the API call
sequence into six meta-features that narrates its influence. We do
the feature selection using a correlation matrix with a heatmap to
select the best meta-features. An incremental malware detection
model is proposed to decide the label of the binary executable
under study. We classify malware samples into their respective
types and demonstrated via a case study that, our proposed
model can reduce the effort required in STS-Tool(Socio-Technical
Security Tool) approach and Abuse case.
Theoretical analysis and real-life experiments show that our
model is efficient and achieves 95.2% accuracy. The detection
speed of our proposed model is 0.03s. We resolve the issue
of limited precision and recall while detecting malware. User's
requirement is also met by fixing the trade-off between accuracy
and speed.

Index Terms—meta-feature, API call, system call, incremental
malware detection, Abuse Case, STS-Tool

I. INTRODUCTION

TODAY, we are facing one of the toughest security threats,

malware. Whenever an unknown application is installed

by a user on their systems, the malware detector uploads the

application's executable on the cloud to verify whether an

application is malicious or benign. After the executable is re-

ceived, the detection system unpacks it using tools like PEiD1,

PolyUnpack [1], etc. Then, the detection system disassembles

the binary to extract API or system calls and trains a machine-

learning based model for classification.

Sequential series is a critical class of data, which can be

applied in anomaly detection [2], trend analysis [3], peri-

odic pattern detection [4], short-term prediction [5], etc. API

call profile has API call sequence, e.g. <WriteFile; Virtu-

alQueryEx; UnmapViewOfFile; Sleep; ...>. Anomaly score

1https://www.softpedia.com/get/Programming/Packers-Crypters-
Protectors/PEiD-updated.shtml

describes the sophisticated aggregation of the anomaly records.

Numenta Hierarchical Temporal Memory (N-HTM) [6], an

anomaly score generator, can be used to generate anomaly

score for each API call in an API call sequence. We will

treat the set of anomaly score of every instance in an API

call sequence as a newer API anomaly score sequence, e.g.

API relative frequency call sequence can be: <1, 1, 1, 1, 2,

2, ...>. For the case of the system call sequence, we use

the dataset generated by NITRSCT [7]. Embedding various

features in a single malware detector becomes non-functional

when adversarial attack occurs. So, we design an incremental

malware detector which accomplishes the task of malware

detection if one of its layers fails. The accurate classification of

malware families is still a tough problem and is also significant

in malware analysis. Whenever software is used, security

needs to be assured thoroughly among the users and software.

During the software development life cycle (SDLC), the Abuse

case and the STS-Tool approach can produce secured software.

To specify security requirements for the software, Abuse case

is used. Abuse case [8] is a model for specifying security

requirements. The term Abuse case is an alteration of the

use case. STS (Socio-Technical Security) [9] models security

requirements considering actors as various stakeholders and

their goals as main objectives. It tackles security-related issues

during the early phase of the socio-technical system design.

Despite having modern malware detection systems, re-

searchers are still facing many challenges. First, a single-layer

malware detection system is prone to adversarial or evasion

attacks and the detector will fail. Besides, accuracy is acutely

limited during run-time [10]. Secondly, user's expectation is

not met while fixing trade-off between accuracy and speed.

Thirdly, a lot of effort is wasted in the wrong direction in

STS-Tool approach and Abuse case. Lastly, it is very tough to

provide labels to malicious samples according to their class.

To address the above challenges, we propose a novel incre-

mental malware detection model for meta-feature API and

system call sequence. API calls can be extracted using tools

like IDA2, W32dasm3, etc. This will help in quick preparation

2https://www.hex-rays.com/products/ida/
3https://www.softpedia.com/get/Programming/Debuggers-Decompilers-

Dissasemblers/WDASM.shtml

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 629–638

DOI: 10.15439/2020F73

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 629



of the collection of API call sequences. We use NITRSCT

[7] generated datasets for the system calls. We use N-HTM

for generating an anomaly score for each API call in an

API call sequence. For an API call sequence, <WriteFile;

VirtualQueryEx; UnmapViewOfFile; Sleep; ...>, <0.2, 0.3,

0.7, 0.1, ...> may be the anomaly score sequence. We predict

the final label of the executable using an incremental model. At

first, we apply malware detection on the system call dataset

using one-class SVM. Then, we send only benign samples

for testing to malware detector based on meta-feature API

calls dataset using one-class SVM. The reason behind sending

only benign samples is to ensure that none of the malicious

executables gets executed due to wrong labelling by the first

detector. So, we cross-check it with the second detector.

We select six meta-features, which represent the characteristics

of the API anomaly score sequence. We assume that an API

anomaly score sequence X= {x1, x2, x3, ..., xZ}, where Z

is the length of the sequence. X is divided into m sub-

sequences. For each sub-sequence, we calculate the values of

meta-features: Kurtosis, Coefficient of Variation, Oscillation,

Regularity, Square wave and Variation of trend. By combining

various sub-sequences, we get the final dataset having the six

meta-features. A correlation matrix with a heatmap is used

to select the best meta-features. The incremental model helps

detect malware whenever the dataset is ready. We classify the

malicious binary executable into their respective classes. A

case study is included to demonstrate that effort required in

Abuse case and STS-Tool can be reduced by our proposed

model.

The main objectives of this paper are:

1) To represent API call sequence, we propose to use N-

HTM. In order to improve the convergence speed of the

malware detector, we use meta-features derived from the

API anomaly score sequence. We use the incremental

model trained using one-class SVM to detect the mal-

ware.

2) To reduce the number of meta-features using correlation

matrix displayed in heatmap. This reduction accelerates

the convergence speed of our model.

3) To implement the incremental model and assess it us-

ing an extensive scale of real-world data set. We use

anomaly score to assign malicious binary executable its

proper class.

4) To demonstrate that effort required in Abuse case and the

STS-Tool approach can be reduced using our proposed

model.

Paper Organizations The remaining part of this paper is

organized as follows: Section II briefly describes the related

work. Section III introduces the methodology of our proposed

model. Section IV presents the experimental results. Section

V discusses the comparison with related work. Section VI

shows the threats to the validity and Section VII presents the

conclusions and future work.

II. RELATED WORK

A. API Call Based Method

Many researchers used API calls to represent binary exe-

cutable. Patnaik, Barbhuiya and Nandi [11] checked the target

process's API call similarity with the API call signature of

the malware. Huang, Zhang and Tan [12] detected stealthy

behaviour by analyzing the user interface components of top-

level function. Fan et al. [13] proposed constructing sub-graphs

of API calls to represent the similar behaviour of malware of

the same family.

B. System Call Based Method and Malware Detection Model

Canzanese, Mancoridis and Kam [14] used system call n-

gram method for representing binary executable and support

vector machine (SVM) for malware detection. The perfor-

mance is quite good as system calls precisely represent the

binary executable's behaviour. This method fails if any mal-

ware hides in a computer and conceals its malicious behaviour.

Zhang, Qin, Zhang, Yin and Zou [15] proposed a lightweight

framework for malware detection based on the graph and

information theory. But, whenever a malware attack occurs,

its detection will be complex as there will be numerous

interactions between files, processes, etc, leading to the nexus

of graph. Raff, Barker, Sylvester, Brandon, Catanzaro and

Nicholas [16] used convolutional neural networks (CNN) and

bytecode n-grams for malware detection. Bytecodes are noisy

compared to opcodes, thus the accuracy is limited. Kang, Yer-

ima, McLaughlin and Sezer [17] used the Naive Bayes (NB)

method for detecting 2-opcode vectors represented malware.

This method's accuracy is very small as NB assumes that the

features are independent. Puerta, Sanz, Santos and Bringas

[18] used opcode frequencies to represent binary executable

and detected malware using SVM. Lack of simplicity of

features jeopardizes the accuracy.

C. Sequential Series

Numerous approaches are available to find anomalies in

univariate/multivariate sequences. We group these methods

into four categories: (1) Statistics-based methods [19] (2)

Intelligent- computing methods [20] (3) Bayesian networks

[21] and (4) Model-based approaches [22]. Statistical based

methods come from techniques that detect abnormal changes.

A variety of intelligent computing methods are available for

detecting anomalies, such as deep learning [23], SVM [5],

fuzzy theory and rough sets theory.

D. Anomaly score generation

For generating anomaly scores of a sequential data, Ahmad,

Lavin, Purdy and Agha [6] proposed a technique named N-

HTM. It is suitable for real-time applications and robustly

detects anomalies for any data stream. They have also shown

that their system is efficient, produces accurate results even

in the presence of noisy data, adaptable to statistical change

in the data, detects subtle temporal anomalies and minimizes

false positives.

630 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



E. Security Approaches

For the STS (Socio-Technical Security) approach, STS-ml

[9] is used which includes actors and is a goal-oriented mod-

elling language. This approach relates security requirements to

interaction. Paja, Dalpiaz and Giogini [9] proposed a technique

to handle security requirement conflicts in socio-technical

systems. The STS modelling language allows stakeholders to

impose security concerns over the interactions. For example,

if buyers send their personal data to a seller, the seller must

not disclose the data to third parties, only the buyer should

be able to access them. There is a commitment between

the actors which ensures that they will consider security

requirements while delivering service. One example of the

security requirement is that the seller commits that they will

not reveal buyer's personal data to anyone.

III. PROPOSED METHODOLOGY

In this section, we propose an incremental malware detec-

tion model for meta-feature API and system call sequence.

We present the architecture of our malware detection model

in Figure 1. It comprises of seven steps: Creating system

call dataset, classification using one-class SVM, unpacking

and disassembly process, generating anomaly score sequence

from API call sequence using Numenta Hierarchical Tem-

poral Memory, defining meta-features for the anomaly score

sequence, creating meta-feature API call dataset and classifi-

cation using one-class SVM for benign binary executables. By

performing the above seven steps, we can detect malware. We

present the algorithm in Algorithm 1. The time complexity is

O(n2) and space complexity is O(mn), where m is the number

of features and n is the number of instances. The description

of the above seven steps are discussed below.

A. Creating system call dataset

We use NITRSCT [7] generated system call dataset4. This

dataset contains system calls gathered from Windows OS

based benign and malicious binary executables. The features

are represented in the form of a vector having three consecu-

tive ordered system calls.

B. Classification using one-class SVM

We train the system call dataset using the one-class SVM

model. Upon testing, we send the benign results to the

next malware detector, i.e, meta-feature API detector. Benign

binary executable is sent for re-verification since we do not

want any malicious binary executable to damage the host. If

any evasion or adversarial attack occurs, attackers make sure

that the label of the real malware is misrepresented as benign.

In this case, our incremental model comes to rescue, we will

recheck that false labelled malware using another detector

which blocks execution of the malicious executables. Meta-

feature API detector is based on N-HTM technique and is

least prone to attacks compared to deep learning techniques.

After analysing the robustness of the models, we decide to

4https://github.com/pushkarkishore/NITRSCT

Fig. 1. Proposed architecture of our approach

keep machine-learning based detector in front and N-HTM at

last so that our incremental model will still work if an attack

occurs on the machine-learning based detector.

C. Unpacking and disassembly process

Unpacking and disassembly processes are used to unpack

and disassemble executables for getting their API calls. At-

PUSHKAR KISHORE ET AL.: AN INCREMENTAL MALWARE DETECTION MODEL FOR META-FEATURE API AND SYSTEM CALL SEQUENCE 631



tackers may have packed some binary executables using some

packing tools which are harder to disassemble. We unpack

them first, if they are packed with ASPack5, UPX6, etc. Then,

we disassemble the unpacked executable to get the API calls

using Ollydbg7. We use limited disassembly tools to avoid

distortion of the results. After completion of disassembling,

we build an API call sequence having a list of API calls.

Algorithm 1: Meta-feature API and system call based

malware detection

Input: A set of API calls, APIs = {API1, API2, . . .,

APIj}, where APIj represents the jth call;

System call dataset.

Output: A final label informing whether the binary

executable is malicious or benign.

1 Function MalwareDetector(APIs):

2 for training instances in the system call dataset do

3 Apply one-class SVM technique to train the

malware detection system;

4 for each test instance in the system call dataset do

5 Apply one-class SVM classifier to predict the

final label, i.e. anomalous or benign;

6 Send the benign samples for testing to

meta-feature API detector;

7 for APIj in APIs do

8 Generate a vector of API relative frequencies

V(apii) according to a set of API calls;

9 Apply N-HTM model to create API anomaly

score sequence of each API call sequence;

10 Generate dataset having best meta-features;

11 for training instances in the meta-feature API call

dataset do

12 Apply one-class SVM technique to train the

malware detection system;

13 for each test instance obtained from system call

detector do

14 Apply one-class SVM classifier to predict the

final label, i.e. malicious or benign;

15 return;

16 end

D. Generating API anomaly score sequence using Numenta

Hierarchical Temporal Memory (N-HTM)

The API anomaly score sequence is generated from the API

call sequence using relative frequency, e.g. for an API call

sequence, <WriteFile; VirtualQueryEx; UnmapViewOfFile;

Sleep; WriteFile; Sleep ...>, the API relative frequency call

sequence will be: <1, 1, 1, 1, 2, 2, ...>. N-HTM [6] calculates

an anomaly score for an API call upon receiving new patterns

5http://www.aspack.com
6https://upx.github.io.
7http://www.ollydbg.de/

TABLE I
ANOMALY SCORES OF SAMPLE API CALL SEQUENCE

Timestamp Value Anomaly Score

1-3-20 0:00 1 0.03010299967

1-3-20 0:00 1 0.03010299967

1-3-20 0:01 2 0.03010299967

1-3-20 0:01 2 0.03010299967

1-3-20 0:02 3 1

1-3-20 0:02 4 1

1-3-20 0:03 5 1

from the API call sequence. If the received pattern is predicted,

then anomaly score is zero, while for the completely non-

predictable pattern, it is one. Partial prediction of pattern

has an anomaly score between zero and one. The similarity

between actual and received patterns is calculated using sparse

distributed representation. The anomaly score is dependent on

the difference of overlap between actual and predicted bits.

The anomaly score of a sample API call sequence is

depicted in Table I. In Table I, 'Value' represents the API call

sequence, where 1, 2, 3, ... represents the relative frequency of

the API call. Anomaly score is associated with all the entries

of the API call sequence.

E. Defining meta-features for the anomaly score sequence

We define six meta-features which is statistical representa-

tion of the API anomaly score sequence. The approach used

in the different meta-features is discussed below:

1) Kurtosis: It measures whether a sequence is heavily

tailed or lightly tailed related to the normal distribution

[24]. For ECG data [25], kurtosis is effective in detecting

the abrupt peaks from a sequence. It reflects variability

of a sequence. It actually measures the number of

outliers present in the distribution. Sequence with high

kurtosis has generally heavy tails; but, low kurtosis

shows light tails. We use Equation 1 for the sub-

sequence created from API anomaly score sequence for

calculating kurtosis.

Kz =
1

n

n∑

i=1

D4

i − 3 (1)

where, n is the length of the z-th sub-sequence derived

from an API anomaly sequence; Di values are the stan-

dardized data values defined using standard deviation

with n as the denominator.

2) Coefficient of variation: It calculates the local vari-

ability relative to the complete sequence [26]. Local

variability of a sub-sequence significantly rises if the

abrupt peak occurs within the sub-sequence's interval.

This meta-feature indicates the sub-sequence's sharp

curve changes. It is used mainly for checking the con-

sistency of sequence. We use Equation 2 for the sub-

sequence created from the API anomaly score sequence

for calculating coefficient of variation.

Cz =
σz

µ
(2)

632 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



where, σz denotes the standard deviation of the z-th sub-

sequence; and µ is the mean value of all sub-sequences

of API call sequence.

3) Oscillation: It is a periodic fluctuation between two

consecutive anomaly scores in a sequence. In this work,

we calculated the oscillation of a sub-sequence.

4) Regularity: Sample entropy [27] is used to calculate the

regularity of series. It is also widely used for diagnosing

the presence or absence of a disease [28]. Regularity will

be higher, if there are less number of abrupt peaks in

the sequence.

5) Square wave: These waves are generated by binary

logic devices and encountered in digital switching cir-

cuits. A sequence can start and maintain the signal with

high values in the first half, and sharply reduces for

the second half. We have assumed that the curve of a

variable is consistent if the square wave is represented

and consistent with expectation. In the case of API

anomaly score sequence, z-th sub-sequence is Xz = {
xz,1, ..., xz,i, xz,i+1, ..., xz,N } and i = ⌊0.5N⌋. The

binarized sub-sequence of Xz, represented as TXz is

calculated using Equation 3.

TXz = Xz > 0.5 ∗max(Xz) (3)

Confirmation of the z-th sub-sequence being square

wave is done using Equation 4 .

Sz = 0.5− rs ∗ TXz/LEN(TXz) (4)

where, LEN denotes the length of TXz, vector rs = {1,

1, ..., 1, 0, 0, ..., 0} filters the signal with high values

in TXz. In vector rs, the value of “1” is i. According

to Equation 4, the sub-sequence corresponds to a lower

value, if it represents a square wave.

6) Variation of trend: Trend analysis provides a way

to differentiate between two series. We smoothen the

original API anomaly score sequence and calculate the

variation on it. The variation of trend of z-th sub-

sequence is defined using Equation 5 .

Tz = std(smooth(Xz)) (5)

where, smooth is used for smoothing the original API

sequence and std is used for finding its standard devi-

ation. For a sequence having random trend, Tz will be

small, if abrupt peaks are absent.

We have used the correlation matrix with heatmap to

select the best meta-features. A heatmap is a graphical

representation of data where values are represented as

colours. So, viewer can refer to the colour for getting

the value of data.

F. Creating meta-feature API call dataset

Two datasets are considered in performance analysis of our

malware detection model: a malware dataset and a benign

dataset. We have collected benign binary executables from 10

hosts in offices, computer laboratories, and isolated testbed to

test within real-life environment. The malware which we use

TABLE II
MALWARE DATASET

Sl. No. Malware family Number of samples

1 Backdoor 1352

2 Worm 559

3 Trojan 2394

4 Virus 809

Total number of samples 5114

in our experiments are collected from VirusTotal8. In order

to make sure that, the instances are unpacked, we detect the

packers. Using the unpacking tools, we have unpacked the

executables. Our final dataset contains 5114 malware binary

executables and 4800 benign binary executables as shown in

Table II. We split the malware and benign dataset into training

dataset and a test dataset. The volume of the malware training

dataset and benign dataset is fixed to avoid training biases.

We randomly choose 2000 malware and benign samples for

training purpose, while remaining samples are used for testing

purpose. The final label is predicted using incremental model.

G. Classification using one-class SVM for benign binary

executables

We use a one-class support vector machine, which classifies

by separating hyperplane. Linear SVM [29] uses a hyperplane

wTx, which separates data points belonging to two classes,

optimally. Here, w defines the hyperplane that learns from the

training data points using stochastic gradient descent (SGD)

method. We express the objective function used in SGD as a

feature vector xi belonging to X and their respective labels yi

having a value between 0 to 1. A regularisation constant α
penalises the model having a higher complexity and the loss

function L determines the objectives of SGD. We have used

the soft-margin SVMs, where L denotes the hinge loss, which

is represented by Equation 6.

L(t, y) = max(0, 1− ty) (6)

The objective function used is as follows:

E(w) =
1

p

p∑

i=1

L(yi,wT xi) + a ‖w‖
2

(7)

where, p is the number of training points and w represents the

weight. During detection, an instance is labelled 'malicious' if

wT x > Λ (8)

Testing instances consist of those binary executables which

are marked benign by the system call detector.

IV. EXPERIMENTAL RESULTS

In this section, we present the details of our experiment

to show the performance of the proposed approach. First,

we present the experimental setup, and then we discuss the

performance of our model. We show that our approach can

8https://www.virustotal.com/

PUSHKAR KISHORE ET AL.: AN INCREMENTAL MALWARE DETECTION MODEL FOR META-FEATURE API AND SYSTEM CALL SEQUENCE 633



perform better by comparing with the state-of-art methods. We

also assign proper class to the malicious samples after finding

that it is malicious. Lastly, we demonstrate via a case study

that effort required in Abuse case and STS-Tool approach can

be reduced using our proposed model.

A. Setup

We implement all the experiments on one computer. The

version of the CPU is Intel i5-3470 @ 3.20 GHz, the RAM

is 16.0 GB and the operating system is Windows 10. We

implement our approach using Python programming language

in which the matrix computations are dependent on numpy.

B. API calls

To extract API calls, we use Ollydbg to disassemble binary

executables and then obtain API calls. We collect API calls

from 9914 binary executables having 100 to 10,000 number

of API calls in each binary executable. In a few binary

executables, we are not able to extract API calls; thus, we

use a vector of all zero values to represent them.

C. Selection of Meta-features

To accelerate the convergence speed of our proposed model,

we use a correlation matrix with heatmap to select the best

meta-features. The heatmaps obtained from both malicious

and benign binaries available in the dataset having six meta-

features are shown in Figure 2 and 3 respectively. In the case

of heatmap of malware binaries, coefficient of variation is

highly correlated with variation of trend, oscillation is highly

correlated with square wave. We have removed the regularity

feature, since it is neutrally correlated with other features. And,

kurtosis is not also considered since it's not strongly correlated

with others as (coefficient of variation, variation of trend) and

(oscillation, square wave) does. So, we select 4 features from

malware binaries namely coefficient of variation, variation of

trend, oscillation and square wave. In the case of heatmap

of benign binaries, coefficient of variation is highly correlated

with variation of trend and oscillation is highly correlated with

square wave. So, we select the same 4 features available in

malware binary executable. So, the final meta-features used for

the final dataset creation are coefficient of variation, variation

of trend, oscillation and square wave.

D. Performance analysis of malware detection

The parameters and metrics which we use for performance

analysis of our proposed model are classification accuracy,

detection false positive rate, detection true negative rate,

detection false negative rate, detection precision, detection

recall, F1-score, training time cost and detection time cost.

The classification accuracy is calculated using Equation 9.

Recall of malware detection model is the true positive rate

evaluated using Equation 10, where True Positive (TP) is the

number of malware instances correctly classified and False

Negative (FN) is the number of malware cases misclassified

as benign one. TNR is the true negative rate, which is

evaluated using Equation 11 , where False Positive (FP) is

Fig. 2. Heatmap of malware binaries

Fig. 3. Heatmap of benign binaries

the number of benign instances which are misclassified as

malware binaries and True Negative (TN) is the number of

benign instances which are correctly classified. FPR represents

the false positive rate, FNR represents the false negative rate,

Precision represents malware detection precision, and F1-score

is computed using Precision and Recall, which are shown in

Equations 12-15.

accuracy =
TP + TN

TP + FN + TN + FP
(9)

TPR(Recall) =
TP

TP + FN
(10)

TNR =
TN

FP + TN
(11)

FPR =
FP

FP + TN
(12)

634 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE III
PERFORMANCE EVALUATION OF OUR MODEL

Sl. No. Performance Parameters Value

1 Accuracy (%) 95.2
2 Recall (%) 93
3 TNR (%) 88
4 FPR (%) 12
5 FNR (%) 7
6 Precision (%) 95.4
7 F1-score (%) 94.1
8 Detection Time (s) 0.03
9 Training Time (s) 160

FNR =
FN

FN + TP
(13)

Precision =
TP

FP + TP
(14)

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(15)

The performance evaluation of our model is shown in Table

III.

Fig. 4. Stability evaluation of accuracy

E. Stability evaluation of malware detection

Since malware variants are swiftly growing in numbers, we

always face issue that training samples are always smaller

than the volume of the test dataset. When the detection set

contains numerous binary executables and the training set

is smaller, then the ratio of training/(training+detection) is

small and will lead to limited accuracy. So, here we evaluate

the stability of our proposed malware detection model by

testing with different volumes of training sets. The various

sizes of our training sets is 500, 1000, and 2000. Figure 4

represents the precision, recall, 1-FPR, and the F1-score of

our proposed detection model for different sizes. From Figure

4, we can infer that our model is stable when the ratio of

training/(training+detection) is less than 0.2.

Figure 5 shows the training time of our approach for

different sizes of data set. We observe that the training time

Fig. 5. Training time of our approach for different volume of data sets

is moving in a steep way upto size 1000, and then smoothens

after size, 1200.

F. Classification accuracy of malware families

We evaluate the classification accuracy of malware families

evaluated using one-versus-all strategy SVM9. To make the

evaluation quick, we use the average anomaly score of each

sample only, reducing it to single feature. Results are repre-

sented in Table VIII. We observe that detecting virus is not

feasible, but have better accuracy for backdoor and Trojan.

Worms can be easily labelled by our model.

G. Case Study

We have considered a case of travel planning scenario to

demonstrate how our proposed model optimizes the effort

required in Abuse case and STS-Tool approaches. Abuse case

is determined by those interactions between an actor and

the system which can harm the resources associated with

actors, stakeholders or systems. STS model comprises of three

complementary views: social, information and authorisation.

These three views together help plan a model for system-at-

hand. Now, we discuss below the effort optimization process

for the above case study.

We identify the agents and roles in the model, for example,

Tourist, Travel Agency Service (TAS) and Hotel are roles,

while Hotel Service, Bob, Payment service and Amadeus

Service (AS) are agents. Then, we identify the goals of

agents and roles, as described in Table V. We design a goal

model of an actor that ties together the goals and documents,

For example, an actor possesses documents; an actor needs

documents to fulfil a goal; an actor produces documents during

goal fulfilment; an actor modifies a document while fulfilling

a goal. The goal model is described in Table VI. Using the

technique of goal delegation, we can transfer the fulfilment

responsibility of the goal from one actor to another. Also, the

9https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-
class-classification/

PUSHKAR KISHORE ET AL.: AN INCREMENTAL MALWARE DETECTION MODEL FOR META-FEATURE API AND SYSTEM CALL SEQUENCE 635



TABLE IV
SECURITY REQUIREMENTS FOR TRAVEL PLANNING SCENARIO

Roles Security Requirements Requester Why security requirement is handled by our model

TAS non-repudiation-of-acceptance (Tourist, TAS, Tickets booked) Tourist Trojans and Worms are detectable
Tourist non-repudiation-of-delegation (Tourist, TAS, Tickets booked) TAS Trojans and Worms are detectable

TAS true-redundancy-multiple-actor (Tickets booked) Tourist Unhandled
Hotel no-redelegation (hotel booked) Tourist Unhandled
AS integrity-of-transmission (provided(TAS, AS, Itinerary details)) TAS Unhandled

All agents not-achieve-both (eticket generated, credit card verified) Org Unhandled
AS availability (flight ticket booked, 85%) TAS Backdoor is detectable

Tourist delegated To(trustworthy(Hotel)) Tourist Backdoors and Trojans are detectable
TAS need-to-know (Personal data and Itinerary, Tickets booked) Tourist Unhandled
TAS non-modification (Personal data and Itinerary) Tourist Trojans and Viruses are detectable
TAS non-production (Personal data and Itinerary) Tourist Trojans and Backdoors are detectable
TAS non-disclosure (Personal data and Itinerary) Tourist Trojans and Backdoors are detectable

TABLE V
GOAL OF AGENTS

Name of Agent or Role Goals

Amadeus Service Eticket generated and credit card verified
TAS Flight ticket booked and Train ticket booked

Payment Service Prepayment made
Hotel Service Room selected and Prepayment made

Tourist Tickets booked and Hotel booked
Hotel Hotel booked and Room selected

TABLE VI
GOAL MODEL

Agent or Role Goal Asset rules

AS Eticket generated Produce flight tickets
AS Eticket generated Need itinerary details

TAS Flight ticket booked Need itinerary details
TAS Train ticket booked Produce tickets
TAS Tickets booked Need travelling order

Tourist Trip planned Produce travelling order
Tourist Trip planned Need travelling order
Tourist Trip planned Modify travelling order
Tourist Hotel booked Need IdDoc copy
Hotel Hotel booked Need and modify IdDoc copy

information is exchanged between actors, named document

provision. Goal delegations and document provisions for every

roles and agent are shown in Table VII. We eliminate some

security issues as they are handled by our proposed malware

detection model, such as non-repudiation of delegation or

TABLE VII
GOAL DELEGATIONS AND DOCUMENT PROVISIONS

Agent or Role Delegations or Provisions

TAS Delegates flight ticket booked to AS
TAS Provisions itinerary details to AS

Hotel Service Delegates prepayment made to Payment Service
Hotel Delegates hotel booked to Hotel Service

Tourist Delegates hotel booked to Hotel
Tourist Provisions IdDoc copy to Hotel
Tourist Delegates tickets booked to TAS
Tourist Provisions traveling order to Hotel

TABLE VIII
CLASSIFICATION ACCURACY OF MALWARE FAMILIES

Sl. No. Actual class Accuracy (%)

1 Backdoor 66
2 Worm 99
3 Trojan 70
4 Virus 1

acceptance, trustworthiness, and availability. Only we consider

no-redelegation, integrity of transmission, confidentiality of

transmission, separation of duties, combination of duties and

redundancy concerns. Security requirements for this example

is described in Table IV.

There may be malware which can cause TAS to non-

repudiate acceptance from Tourist. This type of malware

is easily discovered by our proposed model. Similarly, the

malware causing non-repudiation of delegation by Tourist,

when requested by TAS, is also detected by our model. TAS

tries to book tickets using either railways or airways, so true-

redundancy-multiple-actor security requirement is there, which

is uncoverable by our model. Hotel cannot redelegate the

request done by tourist, and it is undetected by our model.

Amadeus service's integrity maintenance can be done by ap-

plying intrusion detection in network channels, which cannot

be done on hosts. Agent's plan of action is previously defined

and is undetectable by our model. Non-Availability of any

service for specific duration is easily detected by our model.

Trustworthiness is easily insured as our proposed model will

detect the malware which results in suggestions without con-

sidering ratings of the desired results. Since the data is stored

in database or files, the modification, production and disclosure

are easily recognized by our model. However, the information

which is pre-required is undetected by our model.

For the Abuse case, we see that its assets'safety condition is

embedded within the STS-Tool approach. Hence, Abuse case

approach is not needed if we follow the STS-Tool approach.

After analysing the case study, we have seen that our proposed

model can tackle 7 out of 12 security requirements as shown in

Table IV. Henceforth, the effort required for designing security

model is reduced to approx 50%.

636 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE IX
COMPARISON OF PERFORMANCE OF OUR APPROACH WITH EXISTING STATE-OF-ART APPROACHES

Method Dataset Accuracy(%) Precision(%) Recall(%) 1-FPR(%) F1-score(%) Detection time(s) Training time(s)

SVM [18] Android Genome 83.5 86.5 80.6 87.4 83.4 0.001 31
NB [17] Android Genome 79.7 78.3 82.2 77.2 80.2 0.005 134

CNN [16] VirusShare 83.8 82.5 85.8 81.8 84.1 0.053 213467
SVM [14] VirusTotal 86.6 92.4 79.8 93.4 85.6 0.094 179

Graph theory [15] MobileSandbox 93.6 92.3 94 92.1 91.1 0.001 NA
Our approach VirusTotal 95.2 95.4 93 88 94.1 0.03 160

V. COMPARISON WITH RELATED WORK

We have compared the performance of our model with that

of several state-of-art methods and shown in Table IX. By

comparing with the other state-of-art methods, we observe that

our approach significantly improves the classification accuracy,

the detection precision and F1-score while retaining the detec-

tion speed. Accuracy is better than other models, thus it can be

used for industrial malware detection. Precision is also higher,

which means that 95.4% of the results are relevant results.

Recall is 93%, which is lower than the recall evaluated by

using Graph theory method. It means that 93% of total relevant

results are correctly classified by our model. In most problems,

we either give maximum priority to higher precision or recall,

which depends upon the problem under consideration. In

general, we use a simple metric which will use precision and

recall to maximize the number to improve the model. That

metric is known as F1-score, which is the harmonic mean

of precision and recall. Our model is imperative in terms

of F1-score, which is 94.1%. Specificity is equivalent to “1-

FPR”, which means that instances which are benign and being

labelled as benign is 88%. It is a subsidiary parameter, as

it's lower value can only block the benign process. However,

our main objective of not executing malware executable on

the host will not be affected by lower specificity. In terms of

detection time, our model lies behind models using SVM [18],

NB (Naive Bayes) [17] and Graph theory [15] based approach.

But, those models, i.e. SVM model [18], NB model [17]

and Graph theory model [15] have lower detection accuracy,

which implies that there is poor trade-off between detection

time and accuracy. Only the models using SVM [18], NB

[17] and Graph theory [15] have lower training time than

our proposed model. But, models using SVM [18], NB [17]

and Graph theory [15] have lower detection accuracy than

our proposed model. So, we draw inference that two-phase

approach of detection, representing API calls in the form of

meta-features and using average anomaly score of instances for

classification are effective in designing an industrial-applicable

malware detector.

VI. THREATS TO VALIDITY

In this section, we identify some possible threats to the

validity of our approach. Malware is generally packed using

packers, but sometimes they are not detected by malware

detectors. Majority of the packers can be unpacked using

numerous techniques and tools such as PolyUnpack [1], which

recover the original source file. For API calls based detection

technique to work, unpacking techniques should always pro-

vide the original code. Obfuscation in the software will make

it tough to de-obfuscate it. So, our discussion in this section

is concerned about the limitation caused by obfuscation.

Obfuscation is a semantic preserving transformation which

results in obfuscated programs. When we collect the obfus-

cated programs from the same source, then it is similar. Our

model can detect obfuscation to some degree. Obfuscation

can be of several types such as identifier renaming, junk

code injection, control flow based obfuscation, etc. Identifier

renaming obfuscation renames variables but it cannot impact

the representations of binary executable. The junk code injec-

tion can change the distributions but can be easily detected

and denoised. Control flow based obfuscation changes the

control flow graph leading to error in control flow based

detection. Some noisy instructions are added, but still, it is

similar to the original instructions. In general, our approach

can resist limited number of mistakes caused by obfuscation.

Adversarial attack, which is a limitation of machine -learning

based application is partially handled using our incremental

model. But, we need to focus on many issues to obtain

an appropriate technique for keeping our model safe from

adversarial attacks.

We consider the malware targetting windows OS and NI-

TRSCT is also limited to Windows OS. We assess the perfor-

mance of our model on windows based dataset only. Android

OS and Linux targetting malware may remain undetected.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an incremental malware detection

model for meta-feature API and system call sequence, which

effectively identified malware. We use the system call dataset

generated using NITRSCT. Then, the API calls are collected

by disassembling malicious executables and legitimate ones.

Then anomaly score sequence of API calls is generated using

N-HTM. A dataset is created using anomaly score of API calls,

which contains six meta-features. Number of meta-features are

reduced using correlation matrix with heatmap. After the final

meta-features are selected, then the proposed model is used

to detect malware. We also provided the labels to malware

according to its class which can analyse the feature selection

process of the malicious samples. Through a case study,

we have demonstrated that our proposed model eliminates

the need for having Abuse case approach and reduces the

PUSHKAR KISHORE ET AL.: AN INCREMENTAL MALWARE DETECTION MODEL FOR META-FEATURE API AND SYSTEM CALL SEQUENCE 637



effort required, to around 50% for STS-Tool. Our model

smoothly used meta-feature API calls (high-level features) and

system calls to cover characteristics of malware and improved

detection precision and F1-score by more than 3%. Real-life

experimental results have shown that our approach achieved

95.2% accuracy and have detection speed lower than 0.1s. In

addition, training time is also lower which doesn't increase the

time complexity of the model.

As future work, we will ensemble static analysis based

features with dynamic analysis to reduce dependency on

unpacking tools. We will try to apply this model to detect

the malware present in Android OS, anti-fraud systems, other

domains, etc. We will try to improve the classification accuracy

of each malware family. Exploration of a few more meta-

features will be done by us to find a minimal number of

features which will provide higher accuracy.

REFERENCES

[1] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee,
“Polyunpack: Automating the hidden-code extraction of unpack-
executing malware,” in 2006 22nd Annual Computer Security

Applications Conference (ACSAC’06). IEEE, 2006, pp. 289–300.
[Online]. Available: https://doi.org/10.1109/acsac.2006.38

[2] K. Yan, Z. Ji, and W. Shen, “Online fault detection methods for
chillers combining extended kalman filter and recursive one-class svm,”
Neurocomputing, vol. 228, pp. 205–212, 2017. [Online]. Available:
https://doi.org/10.1016/j.neucom.2016.09.076

[3] C. S. Sharma, S. N. Panda, R. P. Pradhan, A. Singh, and A. Kawamura,
“Precipitation and temperature changes in eastern india by multiple trend
detection methods,” Atmospheric research, vol. 180, pp. 211–225, 2016.
[Online]. Available: https://doi.org/10.1016/j.atmosres.2016.04.019

[4] A. K. Chanda, C. F. Ahmed, M. Samiullah, and C. K. Leung, “A
new framework for mining weighted periodic patterns in time series
databases,” Expert Systems with Applications, vol. 79, pp. 207–224,
2017. [Online]. Available: https://doi.org/10.1016/j.eswa.2017.02.028

[5] Z. Ji, B. Wang, S. Deng, and Z. You, “Predicting dynamic
deformation of retaining structure by lssvr-based time series method,”
Neurocomputing, vol. 137, pp. 165–172, 2014. [Online]. Available:
https://doi.org/10.1016/j.neucom.2013.03.073

[6] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised
real-time anomaly detection for streaming data,” Neurocom-

puting, vol. 262, pp. 134–147, 2017. [Online]. Available:
https://doi.org/10.1016/j.neucom.2017.04.070

[7] P. Kishore, S. K. Barisal, and S. Vaish, “Nitrsct: A software security
tool for collection and analysis of kernel calls,” in TENCON 2019-2019

IEEE Region 10 Conference (TENCON). IEEE, 2019, pp. 510–515.
[Online]. Available: https://doi.org/10.1109/tencon.2019.8929513

[8] G. McGraw, “Software security,” IEEE Security & Privacy,
vol. 2, no. 2, pp. 80–83, 2004. [Online]. Available:
https://doi.org/10.1109/msecp.2004.1281254

[9] E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and P. Giorgini,
“Sts-tool: socio-technical security requirements through social
commitments,” in 2012 20th IEEE International Requirements

Engineering Conference (RE). IEEE, 2012, pp. 331–332. [Online].
Available: https://doi.org/10.1109/re.2012.6345830

[10] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, “Droidensemble:
Detecting android malicious applications with ensemble of string and
structural static features,” IEEE Access, vol. 6, pp. 31 798–31 807,
2018. [Online]. Available: https://doi.org/10.1109/access.2018.2835654

[11] C. K. Patanaik, F. A. Barbhuiya, and S. Nandi, “Obfuscated
malware detection using api call dependency,” in Proceedings

of the First International Conference on Security of Internet

of Things. ACM, 2012, pp. 185–193. [Online]. Available:
https://doi.org/10.1145/2490428.2490454

[12] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International

Conference on Software Engineering. ACM, 2014, pp. 1036–1046.
[Online]. Available: https://doi.org/10.1145/2568225.2568301

[13] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu,
“Android malware familial classification and representative sample
selection via frequent subgraph analysis,” IEEE Transactions on

Information Forensics and Security, vol. 13, no. 8, pp. 1890–1905,
2018. [Online]. Available: https://doi.org/10.1109/tifs.2018.2806891

[14] R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detection
of malicious processes,” in 2015 IEEE International Conference on

Software Quality, Reliability and Security. IEEE, 2015, pp. 119–124.
[Online]. Available: https://doi.org/10.1109/qrs.2015.26

[15] J. Zhang, Z. Qin, K. Zhang, H. Yin, and J. Zou, “Dalvik opcode
graph based android malware variants detection using global topology
features,” IEEE Access, vol. 6, pp. 51 964–51 974, 2018. [Online].
Available: https://doi.org/10.1109/access.2018.2870534

[16] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops at

the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[17] B. Kang, S. Y. Yerima, K. McLaughlin, and S. Sezer, “N-opcode

analysis for android malware classification and categorization,” in 2016

International Conference On Cyber Security And Protection Of Digital

Services (Cyber Security). IEEE, 2016, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/cybersecpods.2016.7502343

[18] J. G. de la Puerta, B. Sanz, I. Santos, and P. G. Bringas, “Using
dalvik opcodes for malware detection on android,” in International

Conference on Hybrid Artificial Intelligence Systems. Springer, 2015,
pp. 416–426. [Online]. Available: https://doi.org/10.1093/jigpal/jzx031

[19] E. Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder, and
S. Silvestre, “Statistical fault detection in photovoltaic systems,”
Solar Energy, vol. 150, pp. 485–499, 2017. [Online]. Available:
https://doi.org/10.1016/j.solener.2017.04.043

[20] L. Dong, L. Shulin, and H. Zhang, “A method of anomaly detection
and fault diagnosis with online adaptive learning under small training
samples,” Pattern Recognition, vol. 64, pp. 374–385, 2017. [Online].
Available: https://doi.org/10.1016/j.patcog.2016.11.026

[21] J. C. M. Oliveira, K. V. Pontes, I. Sartori, and M. Embiruçu, “Fault
detection and diagnosis in dynamic systems using weightless neural
networks,” Expert Systems with Applications, vol. 84, pp. 200–219,
2017. [Online]. Available: https://doi.org/10.1016/j.eswa.2017.05.020

[22] M. Gan, C. P. Chen, H.-X. Li, and L. Chen, “Gradient radial
basis function based varying-coefficient autoregressive model for
nonlinear and nonstationary time series,” IEEE Signal Processing

Letters, vol. 22, no. 7, pp. 809–812, 2014. [Online]. Available:
https://doi.org/10.1109/lsp.2014.2369415

[23] S. Kanarachos, S.-R. G. Christopoulos, A. Chroneos, and M. E.
Fitzpatrick, “Detecting anomalies in time series data via a deep learning
algorithm combining wavelets, neural networks and hilbert transform,”
Expert Systems with Applications, vol. 85, pp. 292–304, 2017. [Online].
Available: https://doi.org/10.1016/j.eswa.2017.04.028

[24] M. K. Cain, Z. Zhang, and K.-H. Yuan, “Univariate and
multivariate skewness and kurtosis for measuring nonnormality:
Prevalence, influence and estimation,” Behavior Research Methods,
vol. 49, no. 5, pp. 1716–1735, 2017. [Online]. Available:
https://doi.org/10.3758/s13428-016-0814-1

[25] G. R. Iannotti, F. Pittau, C. M. Michel, S. Vulliemoz, and F. Grouiller,
“Pulse artifact detection in simultaneous eeg–fmri recording based on
eeg map topography,” Brain topography, vol. 28, no. 1, pp. 21–32,
2015. [Online]. Available: https://doi.org/10.1007/s10548-014-0409-z

[26] K. N. Rajesh and R. Dhuli, “Classification of ecg heartbeats
using nonlinear decomposition methods and support vector machine,”
Computers in biology and medicine, vol. 87, pp. 271–284, 2017.
[Online]. Available: https://doi.org/10.1016/j.compbiomed.2017.06.006

[27] R. K. Tripathy, S. Deb, and S. Dandapat, “Analysis of physiological
signals using state space correlation entropy,” Healthcare technology

letters, vol. 4, no. 1, pp. 30–33, 2017. [Online]. Available:
https://doi.org/10.1049/htl.2016.0065

[28] P. Marwaha and R. K. Sunkaria, “Complexity quantification of cardiac
variability time series using improved sample entropy (i-sampen),”
Australasian physical & engineering sciences in medicine, vol. 39, no. 3,
pp. 755–763, 2016. [Online]. Available: https://doi.org/10.1007/s13246-
016-0457-7

[29] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004. [Online].
Available: https://doi.org/10.1023/b:stco.0000035301.49549.88

638 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


