
An Effective Integrated Metaheuristic Algorithm

For Solving Engineering Problems

Adis Alihodzic

University of Sarajevo, BiH

Department of Mathematics

ul. Zmaja od Bosne, 33-35, Sarajevo

Email: adis.alihodzic@pmf.unsa.ba

Sead Delalic

University of Sarajevo, BiH

Department of Mathematics

ul. Zmaja od Bosne, 33-35, Sarajevo

Email: delalic.sead@pmf.unsa.ba

Dzenan Gusic

University of Sarajevo, BiH

Department of Mathematics

ul. Zmaja od Bosne, 33-35, Sarajevo

Email: dzenang@pmf.unsa.ba

Abstract—To tackle a specific class of engineering problems,
in this paper, we propose an effectively integrated bat algorithm
with simulated annealing for solving constrained optimization
problems. Our proposed method (I-BASA) involves simulated an-
nealing, Gaussian distribution, and a new mutation operator into
the simple Bat algorithm to accelerate the search performance as
well as to additionally improve the diversification of the whole
space. The proposed method performs balancing between the
grave exploitation of the Bat algorithm and global exploration of
the Simulated annealing. The standard engineering benchmark
problems from the literature were considered in the competition
between our integrated method and the latest swarm intelligence
algorithms in the area of design optimization. The simulations
results show that I-BASA produces high-quality solutions as well
as a low number of function evaluations.

I. INTRODUCTION

I
N THE last fifteen years, it was shown that most de-

sign nonlinear constrained optimization problems are an

essential class of issues in real-world applications, and almost

all are characterized as NP-hard problems. For such design

optimization problems, the finding of the best solution may

require centuries, even with a supercomputer. These highly

nonlinear and multimodal optimization problems are based

on the optimization of objective functions with complex con-

straints which usually involve thousands of or even millions

of elements, and they were written in the form of simple

bounds or more often as nonlinear inequalities. Nonlinearly

constrained optimization problems contain continuous and

discrete design variables, nonlinear objective functions, and

constraints, some of which may be active at the global optima.

Due to the complex nature of an objective function, as well as

the constraints that need to be met, it is challenging how to ef-

fectively and robustly explore overall search space. Therefore,

practically solving engineering problems are come down to

some efficient methods which are problem-specific [1]. Since

optimization methods can not escape falling in into some of

the local optima, metaheuristics as very modern and efficient

global techniques are considered to overcome these type of

problems [2]. Besides, those are capable of generating quality

solutions in a reasonable amount of time. The creating of

quality solutions is related to the establishment of the right bal-

ance between exploration and exploitation. [3]. Since a magic

formula does not exist, which works for all types of problems

[4], in this paper, several swarm intelligence algorithms [5]

have been adopted for solving nonlinear engineering problems.

Some of the most popular swarm intelligence optimization

techniques are artificial bee colony(ABC) [6][7][8][9], firefly

algorithm (FA) [10][1][11][12], cuckoo search (CS) [13][14],

bat algorithm (BA) [15][16][17][18][19], flower pollination

algorithm [20], and etc. In this article, we have combined the

bat algorithm as a representative of swarm intelligent multi-

agent algorithm with one agent simulated annealing method

to produce as much as possible suboptimal solutions.

The Bat meta-heuristic algorithm (BA) has proposed by

Xin-She Yang 2010 [15]. The primary mechanism of this

swarm intelligence technique propagates echolocation of bats

as agents. The agents seek for prey and avoid obstacles by

using echolocation. In the paper [19], it has been shown that

the BA very well performs local search, but at times it deviated

into some local optima, and it can not reach the optimal

solution while solving a hard problem. The original version of

bat algorithm, as well as the other metaheuristic algorithms,

were designed to address unconstrained problems. To tackle

the constrained problems, bat algorithm (BA) uses a penalty

approach as a constraint handling technique [16]. From the

experiments presented in [16], it can be seen that the BA is

almost always superior to other metaheuristics.

To promote the results obtained by the simple bat algorithm,

in this article, we propose an integrated I-BASA approach

to take on engineering problems. Unlike the original bat

algorithm which is not capable to found satisfying balance

between diversification and intensification, the proposed I-

BASA approach based on simulated annealing (SA) [21], a

new mutation operator, and Gaussian distribution achieves

a right balance and raises overall search performance. The

integrated I-BASA method was tested on the eight well-chosen

benchmark problems, and the simulation results report that our

approach almost always wins the state-of-the-art algorithms

regarding the convergence and accuracy. In this paper, we

have decided to exploit Deb’s rules as a constraint handling

process instead of a standard penalty method. Throughout

the simulation results, it can be seen that introduced rules

significantly improve the quality of the solutions.

The basic structure of the article looks like this. The basic

definitions related to constrained optimization are described in

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 207–214

DOI: 10.15439/2020F81

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 207



Section II, while the detailed description of the Bat Algorithm

(BA) and Simulated Annealing (SA) is presented in Section III

and Section IV, respectively. Details of our I-BASA approach

are in Section V. The brief review of eight engineering opti-

mization problems is there in Section VI. Parameter settings

and comparative results of applying state-of-the-art algorithms

for solving engineers problems are presented in Section VII.

Ultimately, the article is concluded in the last Section VIII.

II. CONSTRAINED OPTIMIZATION

The general form of most engineering problems is ex-

pressed over objective functions and constraints, which are

usually nonlinear manner. These problems are considered as

constrained optimization problems containing inequality and

equality constraints. They become increasingly difficult or

even impossible when the traditional techniques are employed

for their solving. Generally, their solving can be reduced on

the next nonlinear programming problem

min
x∈F⊂Rn

f(x), (1)

where x is a decision vector composed of n decision variables

x = (x1, x2, . . . , xn)
T (2)

The decision variables xi may have continuous or discrete

values, where each of them is limited by its lower bound Li

and upper bound Ui (i = 1, . . . n). The objective function f is

defined on an n-dimensional hypercube S such that S ⊂ R
n.

It is used as a measure of effectiveness of a decision. The sets

F ⊆ S and U = S \ F denote feasible and infeasible search

space, respectively. The feasible region can being presented as

follows

ψk(x) ≤ 0 (k = 1 . . .K)

φj(x) = 0 (j = 1 . . . J),
(3)

where letters K and J denote the number of inequality and

equality, respectively. If a solution x ∈ F , then all constraints

defined by Eq. 3 must be satisfied. Otherwise, some of the

constraints does not hold. For optimization algorithms, the

participation of the equality constraints poses a problem in

the sense of reducing available space F , so inequality ones

usually replace those in this way

|ψk(x)| ≤ ǫ (∀k), (4)

where ǫ ≥ 0 is a small violation tolerance.

It is well-known that swarm intelligence algorithms can not

directly solve constrained engineering problems because they

were designed for unconstrained ones. Therefore, the mapping

of constrained problems into unconstrained ones is achieved

by either using a penalty function or utilizing the fly-back

mechanism. By using the penalty functions, a constrained

issue is being addressed as an unconstrained in such way

that infeasible solutions are punished or "penalized" so that

the selection process favours feasible solutions. In this way,

in the latest phases executing of algorithms, the search is

directed towards the feasible regions of search space. The

advantage of penalty functions lies in their simplicity and

easy implementation, but the most challenging aspect of them

lies in the finding appropriate penalty parameters in pursuit

of constrained optimum. Their performance is not always

satisfactory, and there is a need for more sophisticated penalty

functions.

III. BAT ALGORITHM

In basic Bat algorithm (BA) offered by Yang [15], bats

are being moved in a specific area thanks to the time delay

between emission and reflection of the signal. Other words,

bats produce a booming, but not long stroke and then monitor

for the answers returned from the nearby objects. They have

various rates of pulse emission and frequency. For experi-

mental purposes, the pulse can be taken from [0, 1], where

0 means that the emission does not exist and 1 means that

the bats perform their maximum emitting. In the conventional

bat algorithm, Yang has been proposed three idealized rules.

The first rule states that each bat can determine distance by

using echolocation, as well as it knows the background in

some mysterious way. The second rule says that each bat flies

entirely arbitrary when it hunts for prey. Also, any bat can

adjust the wavelength of own emitted pulses and modify the

vibration emission depending on the closeness of the victim.

The last rule declares that loudness ranges of high positive

value to some small constant value.

It is essential to highlight that the original Bat algorithm,

besides standard control parameters, has a few relevant param-

eters. Those parameters are frequency tuning, climbing within

a promising neighbourhood, shifting between exploration and

exploitation. As we mentioned earlier, in order to deal with

constrained design problems, Bat algorithm has to be modified.

The use of penalty functions for reducing of constrained

optimization to an unconstrained one, to which the pure Bat

algorithm can be later applied, does not yield reliable results.

Namely, the mentioned transformation demands much fine-

tuning of the penalty elements that predict the quantity of

penalization to be engaged. Since the shortage of punishment

strategy does not commonly deliver satisfactory outcomes, we

decided to employ the following three of Deb’s rules in our

I-BASA approach. The first Deb’s rule tells that an algorithm

chooses among two feasible solutions, the one with the better

objective function value. Based on the second Deb’s rule, a

feasible solution beats infeasible one. In the last Deb’s rule, if

both solutions are infeasible, the one with the weakest amount

of constraint violation was favoured. Some difficulties can

appear in issues in which the global optima lies on frontier

within feasible and infeasible parts.

Techniques for solving constrained design problems mainly

begin with solutions which are not within the feasible area.

Our proposed Bat algorithm for solving engineering problems

also does not begin with the feasible initial population. During

the running process, Deb’s feasibility rules direct the solutions

to the feasible region. Hence, slightly infeasible solutions are

not discarded but kept in the population. They are utilized in

208 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



the generation in the next iteration with the hope of giving

feasible solutions. In this strategy, initially larger error values

are used, and this value is gradually reduced with each iteration

until it reaches to whatever acceptable error value. The pseudo-

code of the BA strategy for solving constrained engineering

problems can be summarized in this way:

Step 1. The building of beginning agents: Build an initial

group of N agents (bats) (i = 1, 2, . . . , N) which are

randomly dispersed. Before beginning an iterative process,

evaluate them, and by utilising Deb’s rule, determine the

fittest solution as xbest.

Step 2. Investigating of novel solutions: Querying for a

new promising solution xt

i is done by Eq. 5 and Eq. 6.

xt

i = xt−1

i + vt

i , (5)

vt

i = vt−1

i + (xbest − xt−1

i )fi, (6)

In Eq. 5 and Eq. 6 letters vt

i and xbest present agent

quickness of change and current global most suitable solution,

sequentially, while the alphabet fi in Eq. 6 is the frequency

which is being yielded as

f t

i = fmin + (fmax − fmin)β, (7)

where β is a random quantity uniformly extracted from [0, 1],
while the letters fmin and fmax are constants which are

usually initialized to 0 and 2, respectively.

It is worth noting here when a new vector xt

i has been

built by Eq. 5, then if its arbitrary element x
j
i is not inside

the interval [Li, Ui], it will be substituted by the element

Li + |x
j
i |%(Ui − Li).

Step 3. Intensification and diversification: In this step depend-

ing on the values rand1 and pulse rate rti , it is performed

intensification and diversification by applying the innovative

operator

xnew =

{

xbest + ǫAt, if rand1 > rti

xti, else
(8)

where At =< At
i > denotes noisiness on average in the

iteration t of all agents xt
i, while the parameters ǫ and rand1

are random numbers uniformly chosen from the intervals [0, 1]
and [−1, 1], respectively. In Eq. 8, the pulse rate rti was defined

by

rti = r0i (1− e
−βt), (9)

where r0i ∈ is an initial pulse rate of the ith agent, and β is a

fixed number. Additionally, in this step, edge conditions have

to be controlled as in Step 2.

Step 4. The election of a different candidate in fly: In

this step, if the solution xnew in the sense of Deb’s rules has

better cost value than the past one xt−1

i or holds At
i > rand2,

then the solution xt
i and the cost value f(xt

i) are modified

to xnew and f(xnew), respectively. Here, the letter rand2 is

a random number from [0, 1], while the loudness At
i can be

expressed as

At
i = αAt−1

i , (10)

where the changeless factor α behaves likewise to the cooling

constant in the SA algorithm.

Step 5. Record the fittest solution: According to Deb’s rules,

write down the fittest solution as xbest.

Step 6. The end criteria: The algorithm is over if the finish

criteria are reached or all iterations of the algorithm are

consumed. Otherwise, revert to Step 2.

IV. SIMULATED ANNEALING

In this section, we explain the simulated annealing (SA)

algorithm as one of the fundamental and often picked heuristic

technique [21].Simulated annealing is a well-known heuristic

algorithm, whose mechanism is relied on the annealing pro-

cedure through metal adaptation. If the convergence period is

prolonged, this algorithm can almost always achieve a global

convergence. The primary preference of simulated annealing

is that it can control its transition probability by control-

ling temperature, which further implies that the algorithm

principally escapes to being caught into some local optima.

Since simulated annealing is one kind of Markov chain, the

fundamental steps of this method for solving constrained

design problems are:

Step 1. Select temperature T0, generate randomly drawn

components of a solution x0 and the counter of iterations t

sets to one.

Step 2. Determine the stopping temperature Tstop, set n as a

maximum number of iterations and define the cooling table as

follows

Tt = αTt−1, α ∈ (0, 1), (11)

where α is a cooling schedule factor.

Step 3. Randomly select a new solution xt+1 as follow

xt+1 = xt + r1, (12)

where r1 ∈ (0, 1) denotes an uniform random number.

Step 4. Calculate the difference ∆f between the fitness values

of the solutions xt and xt+1 as follow

∆f = f(xt+1)− f(xt), (13)

where f(x) is the cost value of vector x.

ADIS ALIHODZIC ET AL.: AN EFFECTIVE INTEGRATED METAHEURISTIC ALGORITHM FOR SOLVING ENGINEERING PROBLEMS 209



Step 5. According to Deb’s rules, the new solution xt+1

generated by Eq. 12 is being accepted if it has more useful

fitness value than xt. Otherwise, the solution xt+1 will be

selected if the following condition is satisfied

p = e
−∆f
T > r, (14)

where p denotes the transition probability, and r ∈ (0, 1) is

randomly chosen number.

Step 6. Memorize the current optimal solution x∗ and the best

cost value f(x∗). Reduce the temperature T due to the Eq. 11.

Step 6. If termination criterion T > Tstop is not valid or

holds t ≥ n, then the iteration procedure is over. Oppositely,

set t← t+ 1, and repeat above steps from Step 3 to Step 6.

There are many types of research on how to merge the

simulated annealing and other optimization techniques to

obtain hybrid methods [22]. In this paper for engineering

optimization, for the first time, we integrate simulated anneal-

ing, Gaussian distribution, and a new mutation operator with

the original BA to extra improve the searchability and also

accelerate overall convergency.

V. AN INTEGRATED BAT APPROACH FOR SOLVING

CONSTRAINED ENGINEERING PROBLEMS: I-BASA

By analysing preliminary outcomes shown in the paper

[16], we can infer that standard bat algorithm has succeeded

at least once to produce near-optimal solutions during 30

independent runs. However, although it was able to generate

acceptable solutions using a small number of evaluations, it

can be perceived based on statistical results, how it is less

stable contrast to other algorithms. The main disadvantages

can be classified as a short seeking of search space and

not well established an equilibrium between exploitation and

exploration. To overcome discussed drawbacks, we incorporate

some parts of the SA algorithm, a new mutation operator,

and Gaussian perturbations into the original bat algorithm to

improve its performance. As a result, we provide the I-BASA

approach in solving engineering optimization problems. By

applying this method, the overall stability will be increased

because a better exploration disables algorithm being trapped

in some local optimum. Also, as another consequence of

that, the enhanced integrated bat algorithm will not iterate

until all iterations are exhausted, and it only will require a

few iterations for obtaining high-quality solutions. Hence, the

proposed I-BASA consists of two significant parts similarly as

it was done in the case of unconstrained optimization [23]. In

the first part, as soon as the algorithm builds the first group

of agents, fittest solutions are changed by novel solutions

produced by employing SA, accompanied by the original

updating formulas of the bat algorithm. In the second part

of the mentioned approach, Gaussian distribution is utilised to

scatter locations as much as possible. Also, a new mutation

operator was introduced in order to raise the convergency of

approach and establish an acceptable ratio between intensifi-

cation and diversification. Also, the I-BASA includes Deb’s

rules to manage constraints instead of a penalty approach

shown in paper [16]. Experimental analysis will show that

our proposed I-BASA can efficiently perform intensification

as well as diversification of the space compared to the rest

algorithms. The details of our proposed I-BASA approach are

given as follows:

Step 1. Our I-BASA method begins by randomly generating

population P containing n agents xi = (xi,j)
d
j=1 (i =

1, · · · , n) of dimension d, where each vector xi can be solution

of an engineering problem. Also, in this step are initialized

initial loudness Ai, pulse rates ri and r0i (∀i = 1, · · · , n)
as well as the annealing constant in SA algorithm. Before

starting the iterative search process, for each solution, xi fitness

value is evaluated, and according to Deb’s rules, the algorithm

identifies both fittest solution xbest and the smallest violation

gmin. After that, it determines the starting temeperature T0
and the cycle counter t is reset to 0.

Step 2. Adaptation value of any agent xi (i = 1, · · · , n) in

the current temperature t can be depicted as:

Av(xi) =
e−

f(xi)−f(xbest)

t

∑n

i=1
e−

f(xi)−f(xbest)

t

(15)

According to the roulette selection strategy, the alternative

solution x
′

best was picked up among all bats, while the new

formula calculates the new velocity of movement vti

vt

i = vt−1

i + (x
′

best − xt−1

i )fi, (16)

where frequency fi is selected by Eq. 7. To additionally boost

the heterogeneity of agents into space, we introduced Gaussian

operator δ by Eq. 5. Hence, the estimation of the solution xti is

accomplished by driving virtual agents xt−1

i by the following

equation

xt

i = δxt−1

i + vt
i, (17)

where δ ∈ N(0, 1). In this step, it is necessary to scan the

side conditions of the computed new solutions xt
i.

Step 3. For each solution xti, it should be checked the condition

ri < randi. If it is satisfied, then the local search is performed

around the solution xbest as follows

xt

l = xbest + a1ǫ, (18)

where a1 ∈ (0, 1) is a scaling factor, while ǫ ∈ (−1, 1)
is a random number. As a result, the new solution xt

l was

generated. Then, as in Step 2, the boundary conditions have

to be controlled for each coordinate of the vector xl. For

the experimental purposes, we have fixed the parameter a1
to value 0.1.

Step 4. In this step, the algorithm performs both computation

sum of the violations and fitness value of the selected solution

in Step 3. The generated solution from this stage will be

210 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



accepted as a new one if it is better than the previous one

according to Deb’s rules or it holds the condition At
i > randi.

If one of these two conditions is satisfied, then it does perform

the update process. It is based on the modifications of old

solutions, fitness values, and violations with the new ones.

Also, in this step, the rate rti is increased by Eq. 9, while

the loudness of signal At
i is decreased by Eq. 10. It will be

demonstrated throughout the simulation that the most reliable

results were found for r0i = 0.5, A0 = 0.99, and β = 0.9.

Step 5. In this step, we apply the new mutation operator

xmut to the previously calculated solutions xi to additionally

increase the search of the entire scope. The operator xmut is

defined by

xmut = xr3 + a2(xr1 − xr2), (19)

where r1, r2, r3 are three various randomly chosen numbers in

the interval (0, n), and a2 ∈ (0, 2) is a scaling factor. Then, we

compare the quality of solutions before and after introducing

the xmut operator to attain the optimal solution xbest as well

as fitness value f(xbest).

Step 6. In this step we memorize the solution xbest and

the highest fitness value according to Deb’s rules. Also,

the smallest violation gmin was determined. The value of

temperature parameter T is updated from the cooling schedule,

which is defined by Eq. 11, where α = 0.97.

Step 7. The I-BASA method stops if the end criterion is

reached or the counter t is equal max_no_cycles. In contrast,

increment t by one and go to Step 2.

VI. BENCHMARK PROBLEMS

In this part, we will quickly outline eight non-linear design

problems in order to assess the performance of our proposed

I-BASA approach. Each of the eight problems Pi (i =
1, 2, · · · , 8) has discrete and continuous variables. Table I

summarizes basic characteristics of mentioned problems, such

as dimension d, number of linear Le and non-linear Ne

inequalities. Complete mathematical formulation and their

description in detail can be found in papers [1][13].

P1. Pressure Vessel Design Problem

The basic task of the pressure vessel design problem is to

develop a compressed air room with a pressure of 3×103 psi
and a minimum volume of 750 ft3. It is determined as a

mixed discrete-continuos constrained problem because it has

two discrete variables x1 and x2 and two continuous variables

x3 and x4. These variables have the following meaning: x1
is a shell thickness, x2 is a thickness of the spherical head,

x3 is a radius of the cylindrical shell and x4 is a shell length.

The first two variables x1, x2 take the values inside interval

[0.0625, 6.1875], while values of the remaining two variables

x3, x4 belong to interval [10, 200]. The primary goal is to

reduce the total charge of the pressure vessel.

P2. Welded Beam Design Problem

The primary objective of the welded beam design problem

is to reduce the construction cost of the welded beam subject

TABLE I
THE MAIN PROPERTIES FOR THE EIGHT BENCHMARK PROBLEMS

P1 P2 P3 P4 P5 P6 P7 P8

d 3 4 3 7 4 2 5 11
Le 2 2 1 4 0 0 0 0
Ne 1 5 3 7 0 3 1 10

to restrictions on shear stress τ , bending stress σ in the beam,

end deflection δ of the beam and buckling load Pc on the bar.

The length of the beam is equal to 14 in, while the force of

size 6000 lb is enforced at the end of the shaft. The design

variables related to this problem have the following meaning:

x1 is weld thickness h, x2 present the clamping rod length

l, x3 denotes rod height t, and x4 is rod thickness b. These

variables are bounded by the following limits: x1 ∈ [0.125, 5],
x2, x3, x4 ∈ [0.1, 10].

P3. Tension/compression spring design problem

The aim of this problem is to reduce the construction cost

of the spring, which is limited by four nonlinear constraints. It

can be described by three variables x1, x2 and x3, where x1
is a wire diameter d, x2 is a mean diameter of the spring D

and x3 is a number of effective coils N . The ranges of those

variables are: x1 ∈ [0.05, 1.0], x2 ∈ [0.25, 1.3], x3 ∈ [2, 15].

P4. Speed Reducer Design Problem

The speed deducer design problem is a mixed discrete-

continuous optimization problem which describes how to

design a simple gearbox. Its application can be exploited

between the engine and a propeller of a light aeroplane to

achieve a maximum speed of rotation. The primary goal is to

perform reducing of the weight for speed reducer subject to

restrictions on bending stress of the gear teeth, surface stress,

transverse deflections of the shifts, and stress in the shafts.

The variables participating in the construction of speed reducer

have the following meaning: x1 is a face width, x2 is a module

of teeth, x3 is a number of teeth on the pinion, x4 and x5
respectively represent the length of the first and second shaft

between the bearings. In contrast, x6 and x7 are the diameters

of the first and the second shaft, respectively. For these seven

variables hold: 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

P5. Gear Train Design Problem

The gear train design problem is a discrete optimization

problem. It represents a complex issue involving a highly non-

linear design space. The determination of volume or centre-

to-centre distance of gear is an important subject in the design

of power transmission systems. The gear ratio for a reduction

gear train can be defined as the ratio of the angular velocity

between input and output shafts. The total gear train ratio can

be defined as follows

Gear ratio =
w0

wi

=
x2x3

x1x4
(20)

where the variables wo and wi present the angular velocities

of the output and input shafts, respectively. At the same time,

ADIS ALIHODZIC ET AL.: AN EFFECTIVE INTEGRATED METAHEURISTIC ALGORITHM FOR SOLVING ENGINEERING PROBLEMS 211



variables x1, x2, x3 and x4 denote the numbers of teeth of

the gears A, B, C and D, respectively. Those variables take

values in the interval [12, 60].

P6. Truss design problem with three-bar

The three-bar truss design problem is a continuous optimiza-

tion problem in civil engineering first proposed by Nowicki

in 1974. The purpose of this problem is to seek the optimum

cross-section that decreases the weight of the truss. Two design

variables x1 and x2 are used for its modelling which describe

cross-sectional area. The values of mentioned variables are

taken from the interval [0, 1].

P7. Cantilever Beam Design Problem

The cantilever beam design problem presents a continuous

optimization problem proposed by Fleury and Braibant. It can

be described by using five connected square hollow blocks

in order to make a beam. The beams are strictly braced at

the one end, while a vertical force operates on the free end

of the cantilever. The main objective of this problem was

to minimize the weight of the cantilever. The design space

includes five continuous variables xj and one constraint g1,

where the range of variables xj (j = 1, 2, · · · , 5) is the closed

interval [0.01, 100.0].

P8. Car Side Impact Design Problem

The car side impact design problem formulated by Gu is a

mixed-continuous optimization problem. The overall number

of elements in the model is approximately 90000, while the

total number of nodes is close to 96000. For side-impact

protection, two basic side-impact procedures are NHTSA and

EEVC [1]. Based on these procedures, a car was exhibited to

a side-impact. The prime goal is to reduce the weight using

11 design variables xj (j = 1, · · · , 11) and 10 nonlinear

constraints gk (k = 1, · · · , 10). The bound conditions for these

variables xj are defined with 0.5 ≤ xj ≤ 1.5 (j = 1, · · · , 7),
x8, x9 ∈ {0.192, 0.345}, −30 ≤ xj ≤ 30 (j = 10, 11).

VII. EXPERIMENTAL ANALYSIS

In this experimental analysis,we have chosen 8 well-known

constrained engineering problems to carry out a straightfor-

ward competition between our approach I-BASA and valuable

algorithms such as SA, ABC, FA, CS, and BA. All algorithms

participating in the simulation were carried out on the local

machine which has the following performance:

• Operating System: Windows 10x64;

• Type of processor: Intel Core i7 3770K processor with

a speed of 3.5 GHz;

• Memory (RAM): 16GB;

• Programming language: C#;

• Software: Visual Studio 2019.

A. Parameter Settings

As metaheuristics have stochastic properties, each exper-

iment was done in 30 series for each of the problems P1,

P2, · · · , P8. The run of each algorithm is over when all its

iterations are being consumed. For the experimental purposes,

each algorithm allocates 2000 iterations. In this case analysis,

except standard control parameters, each of the algorithms has

extra control parameters which have a direct influence on their

execution. The adjustments of algorithm parameters are given

below:

• SA - The temperature T0 at the beginning is set to 1.0,

the stopping temperature Tstop was initialized to 1.0E-

10, the beginning search period was set to 500, the

annealing constant is equal to 0.5, the maximum number

of rejections, acceptance and runs are set to 250, 150,

and 50, respectively.

• ABC - The max. size of population SP = 40, the

constant ’limit’ is initialized to SP × d × 5, where d

denotes the number of variables of the problem, while

the modification rate MR and scout production period

SPP were set to 0.9 and 400, respectively.

• FA - The max. size of firefly population is 40, the

initial value of attractiveness β was set to 0.05, the

randomization parameter α takes value from [0, 1]. Other

parameters were set as β0 = 1 and γ = 1.0;

• CS - The maximum population size SP is equal 40 for

all benchmark problems. The parameter pa of catching a

cuckoo egg was set to 0.99;

• BA - The max. number of agents is 40, the initial values

of the pulse rates and loudness are set to 0.5 and 0.99,

respectively, the frequencies fmin and fmax respectively

are set to 0 and 2.0, while both constants α and γ are

initialized to 0.9;

• I-BASA - The size of bat population is 40, fmin = 0,

fmax = 2.0, α = 0.9, γ = 0.99, the values of parameters

r0i and loudness A0
i were initialized to 0.5 and 0.99,

respectively. The annealing constant is fixed to 0.5.

B. Discussion of Experimental Results

The experimental results of the algorithms which participate

in the competition are reported in Table II. The best feasible

solutions demonstrate the capability of an algorithm to dis-

cover the optimal solution. At the same time, the statistical

quantities such as mean and standard deviation determine the

robustness of the algorithm. Also, the maximum number of

iterations is closely related to the convergence of the algorithm.

Best results are in bold, and those do not violate any of the

constraints.

For the problem P1, only our I-BASA approach obtained

fittest solution in each run. On the other hand, the remaining

algorithms are not equipped to gain the optimal solution except

the ABC algorithm, which generated a slightly worse best re-

sult compared to the I-BASA method. Based on the statistical

measures, it can be seen that our I-BASA is superior to other

algorithms. For the problem P2, only algorithms such as the I-

BASA, CS and ABC have achieved the best optimum. The CS

and I-BASA have utilized the smallest number of evaluations,

wherein because of the more straightforward structure of the

proposed I-BASA, the CS has consumed more than twice CPU

time compared to the I-BASA algorithm as it can bee seen in

Table III. Also, from the results shown in Table II, it can be

observed that the I-BASA was slightly stable compared to the

212 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE II
COMPARISON OF RESULTS BETWEEN THE IBASA METHOD AND OTHER VALUABLE METAHEURISTICS FOR EIGHT DESIGN PROBLEMS OVER 30

INDEPENDENT RUNS

Problem Statistics SA ABC FA CS BA I-BASA

P1 Best 6099.738697241 6059.712773680 6059.712977959 6059.718470374 6059.796804678 6059.712773616
Mean 75604.673833747 6059.713833747 6059.713518710 6059.711971580 6079.702933294 6059.712773616

SD 4.54E+02 2.66E-06 3.24E-08 7.07E-09 1.18E+01 6.27E-12
ANI 92649.3 1000 1000 2000 600 1000
SP 1 25 40 13 40 24

P2 Best 1.728322970 1.724852309 1.724852338 1.724852309 1.725381600 1.704852309

Mean 1.739173713 1.724874566 1.724863780 1.724852309 2.255381896 1.704852309
SD 5.92E-03 6.05E-06 4.02E-05 3.76E-12 5.85E-01 3.65E-13

ANI 78545.8 1000 500 2000 1000 800

SP 1 30 30 10 40 26

P3 Best 0.012708232 0.012666879 0.012665383 0.012666450 0.012668443 0.011215198
Mean 0.013009247 0.012797428 0.012694825 0.012695146 0.019492306 0.011215198
SD 2.81E-04 9.96E-05 2.17E-05 2.89E-05 6.55E-03 1.20E-12

ANI 252033.93 1000 600 1000 2000 684.90
SP 1 25 30 20 40 22

P4 Best 2994.842065360 2993.542819303 2993.542821348 2993.542819303 2993.668899790 2993.542819550
Mean 2998.837062287 2993.542819303 2993.544598620 2993.542819303 3007.132712792 2993.542825755
SD 2.53E+00 2.48E-12 5.50E-03 2.65E-12 6.53E+00 8.16E-06
ANI 82264.43 1000 1000 2000 2000 1000
SP 1 12 40 7 40 38

P5 Best 3.38E-14 2.79E-13 2.55E-20 1.51E-15 5.71E-15 1.11E-31

Mean 7.19E-10 1.60E-09 2.38E-13 2.79E-09 7.94E-09 2.03E-16

SD 8.00E-10 3.38E-09 1.20E-12 3.24E-09 4.27E-08 8.58E-16

ANI 163655.17 60 60 60 50 60

SP 1 10 10 10 30 10

P6 Best 263.896818396 263.895844535 263.895843378 263.895844333 263.895891445 263.852843376

Mean 263.918269245 263.895913071 263.895843384 263.895875913 263.907303271 263.852843376

SD 1.95E-02 7.28E-05 5.31E-09 2.85E-05 1.63E-02 5.189E-14

ANI 87690.93 1000 500 2000 1000 926.63

SP 1 40 35 10 40 17

P7 Best 1.343702597 1.339912015 1.339911699 1.339912807 1.339919926 1.339911698

Mean 1.349069456 1.339914165 1.339911722 1.339916864 1.433529924 1.339911698

SD 3.65E-03 1.26E-06 2.73E-08 2.18E-06 2.80E-01 5.44E-16

ANI 74087.9 2000 900 2000 1000 811.07

SP 1 19 40 19 40 24

P8 Best 22.851120887 22.843581559 22.842969358 22.842824093 22.846273985 22.842824207

Mean 22.880749817 22.855576650 22.843086577 22.844898883 24.010514696 22.843767285

SD 7.74E-02 1.57E-02 2.20E-04 1.20E-03 5.92E-01 1.47E-03

ANI 70471.57 1000 600 2000 1500 842.63

SP 1 40 40 14 40 35

ANI: Average number of iterations, SP: Size of population

CS algorithm. Further, the I-BASA method has achieved the

best result for the problem P3 as well as the best statistical

values, such as mean value and standard deviation. Also, for

this problem, the proposed I-BASA has consumed the least

number of evaluations to generate the best optimum solution.

By analyzing the outcomes in Table II, it can be seen that

only CS and ABC have delivered the best optimum for the

problem P4, while the I-BASA and FA have generated slightly

worse best results. Moreover, the ABC algorithm has used

up the smallest number of evaluations as well as the least

required CPU time as it reported in Table III. Since the

problem P5 is not a very hard problem, all algorithms were

generated the best optimum. The least number of evaluations

have consumed the algorithms ABC, FA, CS, and I-BASA.

Our proposed I-BASA has produced the most precise and

more stable solutions. For the problem P6, the I-BASA method

required both the smallest number of evaluations and least

CPU time to build the robust solution as it can be seen in

Table II and Table III. Further, the FA has generated slightly

worse best solution than I-BASA, but much better optimal

solution than other algorithms using only 17.500 evaluations.

Therefore, for this problem, regarding convergence speed as

well as robustness, the remaining algorithms are considerably

inferior to the I-BASA algorithm. Considering the results of

the problem P7, we can observe that the I-BASA and FA

algorithms were made the best results, where the I-BASA

has a slight advantage in terms of precision, and drastically

better statistical values such as mean value and standard

deviation than the original FA. Also, for this problem, equally

good results are obtained by ABC and CS algorithms. As it

can be seen from Table II, the achieving global optima has

cost 19465.68 evaluations by the proposed I-BASA, which is

almost twice fewer evaluations than other methods. Finally, by

analyzing the simulation results for the last problem P8, we

can conclude that I-BASA and CS algorithms achieve similar

best solutions in each run. As it is shown in Table II, both FA

and ABC algorithms were produced the acceptable solutions as

well. The summary results confirm that the proposed I-BASA

ADIS ALIHODZIC ET AL.: AN EFFECTIVE INTEGRATED METAHEURISTIC ALGORITHM FOR SOLVING ENGINEERING PROBLEMS 213



TABLE III
AVERAGE TIME (IN SEC.) CONSUMED BY ALGORITHMS SA, ABC, FA,

CS, BA AND I-BASA OVER 30 INDEPENDENT SERIES

P1 P2 P3 P4 P5 P6 P7 P8

SA 0.60 0.90 1.47 1.25 0.65 0.29 0.81 0.57
ABC 0.42 0.79 0.48 0.25 0.01 0.35 1.01 0.98
FA 5.91 3.96 2.80 13.58 0.03 1.47 8.92 5.24
CS 1.77 1.42 1.63 1.15 0.04 0.99 3.20 2.47
BA 0.22 0.54 0.65 0.95 0.01 0.19 0.53 0.82
I-BASA 0.41 0.64 0.28 1.00 0.01 0.18 0.59 1.01

approach can accomplish the best solutions from literature for

engineering problems P1, P2, · · · , P8. Also, the proposed I-

BASA works better than the other algorithms concerning the

quality and robustness with noticeably enhanced convergence

rate for the bulk of design problems.

VIII. CONCLUSION

The main job of the article was to design intelligent hy-

bridization called I-BASA based on simulated annealing (SA),

Bat algorithm (BA), Gaussian perturbations, novel mutation

operator, which regulates the diversity of solutions in the

population. It has been shown that I-BASA technique very

successfully tackles design constrained problems while pre-

serving a low convergence rate and generating accurate results.

Also, it was demonstrated that the proposed I-BASA algorithm

retains the standard BA’s characteristics as well as improves

its accuracy. Besides, the proposed I-BASA employs Deb’s

rules instead of a penalty approach which has been used in

[16]. Additionally, our proposed I-BASA uses the geometric

scheme as in the case of the SA to further improve the quality

of solutions and speeds up the global convergence. Conducted

experimental analysis of accuracy and performance on the

eight benchmark problems state that our I-BASA model is

robust, most accurate and stable as well as it has a rapid

convergence rate. By examining the stated facts, it can be

concluded that the I-BASA method in the future can be applied

for practical solving of large-scale real-world engineering

problems.

REFERENCES

[1] A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Mixed variable
structural optimization using Firefly Algorithm,” Computers and Struc-

tures, vol. 89, no. 23-24, pp. 2325–2336, December 2011. doi:
https://doi.org/10.1016/j.compstruc.2011.08.002

[2] X.-S. Yang, “Review of meta-heuristics and generalised
evolutionary walk algorithm,” International Journal of Bio-

Inspired Computation, vol. 3, no. 2, pp. 77–84„ 2011. doi:
https://doi.org/10.1504/IJBIC.2011.039907

[3] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and ex-
ploitation in evolutionary algorithms: A survey,” ACM Com-

put. Surv., vol. 45, no. 3, pp. 35:1–35:33, July 2013. doi:
https://doi.org/10.1145/2480741.2480752

[4] X.-S. Yang, “Free lunch or no free lunch: That is not just a question?”
International Journal on Artificial Intelligence Tools, vol. 21, no. 3, pp.
5360–5366, 2012. doi: https://doi.org/10.1142/S0218213012400106

[5] ——, “Efficiency analysis of swarm intelligence and randomization tech-
niques,” Journal of Computational and Theoretical Nanoscience, vol. 9,
no. 2, pp. 189–198, 2012. doi: https://doi.org/10.1166/jctn.2012.2012

[6] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Technical Report - TR06, pp. 1–10, 2005.

[7] M. Tuba and R. Jovanovic, “Improved ant colony optimization al-
gorithm with pheromone correction strategy for the traveling sales-
man problem,” International Journal of Computers, Communica-

tions & Control, vol. 8, no. 3, pp. 477–485, June 2013. doi:
https://doi.org/10.15837/ijccc.2013.3.7

[8] N. Bacanin and M. Tuba, “Artificial bee colony (ABC) algorithm for
constrained optimization improved with genetic operators,” Studies in

Informatics and Control, vol. 21, no. 2, pp. 137–146, June 2012. doi:
https://doi.org/10.24846/v21i2y201203

[9] I. Brajevic and M. Tuba, “An upgraded artificial bee colony algo-
rithm (abc) for constrained optimization problems,” Journal of Intel-

ligent Manufacturing, vol. 24, no. 4, pp. 729–740, August 2013. doi:
https://doi.org/10.1007/s10845-011-0621-6

[10] I. Fister, J. Fister, X. Yang, and J. Brest, “A comprehensive review of
firefly algorithms,” Swarm and Evolutionary Computation, vol. 13, no. 1,
pp. 34–46, 2013. doi: https://doi.org/10.1016/j.swevo.2013.06.001

[11] N. Bacanin and M. Tuba, “Firefly Algorithm for Cardinality Constrained
Mean-Variance Portfolio Optimization Problem with Entropy Diversity
Constraint,” The Scientific World Journal, vol. 2014, pp. 115–139, April
2014. doi: https://doi.org/10.1155/2014/721521

[12] M. Tuba, N. Bacanin, and A. Alihodzic, “Firefly algorithm for
multi-objective RFID network planning problem,” Telecommunica-

tions Forum Telfor (TELFOR), pp. 95–98, September 2014. doi:
https://doi.org/10.1109/TELFOR.2014.7034365

[13] A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Cuckoo search algorithm:
a metaheuristic approach to solve structural optimization problems,”
Engineering with Computers, vol. 29, no. 1, pp. 17–35, January 2013.
doi: https://doi.org/10.1007/s00366-011-0241-y

[14] W. Long, X. Liang, Y. Huang, and Y. Chen, “An effective hybrid
cuckoo search algorithm for constrained global optimization,” Neural

Computing and Applications, vol. 25, no. 3-4, pp. 911–926, September
2014. doi: https://doi.org/10.1007/s00521-014-1577-1

[15] X.-S. Yang, “A new metaheurisitic bat-inspired algorithm,” Stud-

ies in Computational Intelligence, vol. 284, pp. 65–74, 2010. doi:
https://doi.org/10.1007/978-3-642-12538-6%5F6

[16] A. H. Gandomi, Yang, A. H. Alavi, and S. Talatahari, “Bat al-
gorithm for constrained optimization tasks,” Neural Computing and

Applications, vol. 22, no. 6, pp. 1239–1255, May 2013. doi:
https://doi.org/10.1007/s00521-012-1028-9

[17] A. Alihodzic and M. Tuba, “Improved bat algorithm applied
to multilevel image thresholding,” The Scientific World Jour-

nal, vol. 2014, no. Article ID 176718, p. 16, July 2014. doi:
https://doi.org/10.1155/2014/176718

[18] M. Tuba, A. Alihodzic, and N. Bacanin, “Cuckoo Search and Bat
Algorithm Applied to Training Feed-Forward Neural Networks,” vol.
585, pp. 139–162, 2014. doi: https://doi.org/10.1007/978-3-319-13826-
8%5F8

[19] A. Alihodzic and M. Tuba, “Improved hybridized bat algorithm for
global numerical optimization,” 16th IEEE International Conference on

Computer Modelling and Simulation, UKSim-AMSS 2014, pp. 57–62,
March 2014. doi: https://doi.org/10.1109/UKSim.2014.97

[20] S. M. Nigdeli, G. Bekdaş, and X.-S. Yang, “Application of the Flower
Pollination Algorithm in Structural Engineering,” Modeling and Opti-

mization in Science and Technologies, vol. 7, pp. 25–42, December 2015.
doi: https://doi.org/10.1007/978-3-319-26245-1%5F2

[21] J. M. P. V. S. Kirkpatrick, C. D. Gelatt, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983. doi:
https://doi.org/10.1126/science.220.4598.671

[22] H. Yu, H. Fang, P. Yao, and Y. Yuan, “A combined genetic al-
gorithm/simulated annealing algorithm for large scale system energy
integration,” Computers & Chemical Engineering, vol. 24, no. 8,
pp. 2023–2035, September 2000. doi: https://doi.org/10.1016/S0098-
1354(00)00601-3

[23] X. shi He, W.-J. Ding, and X.-S. Yang, “Bat algorithm based on
simulated annealing and Gaussian perturbations,” Neural Computing

& Applications, vol. 25, no. 2, pp. 459–468, September 2013. doi:
https://doi.org/10.1007/s00521-013-1518-4

214 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


