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Abstract—We develop efficient single- and multi-core algo-
rithms to compute partition functions for RNA sequences. Our
algorithms, which are based on McCaskill’s algorithm, are
benchmarked against state-of-the-art fast algorithms obtained
using the parallelizing source-to-source compilers PLUTO and
TRACO. On our Intel I9 computational platform, our best single
core algorithm takes up to 81.2% less time than the single
core algorithm resulting from PLUTO, which is faster than that
obtained from TRACO. Our best multi-core algorithm takes up
to 84.7% less time than the multi-core algorithm obtained using
TRACO when run with 20 threads (our I9 has 10 cores and
supports hyperthreading); the TRACO multi-core algorithm is
faster than the PLUTO one.

I. INTRODUCTION

S
EVERAL algorithms have been proposed to determine

the minimum energy secondary structure of an RNA

molecule. Smith and Waterman [1] and Nussinov et al. [2]

have proposed a dynamic programming algorithm to maximize

the number of complementary base pairs. These algorithms

are oversimplified and do not generate good RNA secondary

structure predictions. Zuker et al. [3] first defined five different

loops that are basic units of the RNA secondary structure and

proposed an energy model for each loop. Using this energy

model, they developed a dynamic programming algorithm to

determine the total minimum free energy structure for a given

RNA sequence. The original approach of Zuker et al. [3] has

been enhanced in [4], [5] by Zuker to handle more complex

cases. However, Zuker’s approach only provides a globally

optimal secondary structure at equilibrium where each loop

has been evaluated by the energy model without errors. To

calculate the variance of the secondary structure, Zuker [6]

proposed a further extension to calculate all suboptimal sec-

ondary structures of an RNA sequence. McCaskill [7] has

proposed a totally different method to compute the full equilib-

rium partition function, which is the sum of the contributions

of the suboptimal structures. McCaskill’s algorithm computes

the probabilities of each individual base pair of (i, j) in the

RNA sequence. These probabilities are used, for example

by the software LocaRNA [8] and PMComp/PMMulti [9]

for simultaneous folding and alignment and in algorithms to

predict RNA structure with a maximum expected accuracy

[10], [11].

Many parallel algorithms for RNA secondary structures

have also been proposed. ( see, for e.g., [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23]). Fekete

et al. [22] first parallelized the McCaskill algorithm for a

computer cluster. More recently, Palkowski and Bielecki [23]

used the parallelizing source-to-source compilers PLUTO [24],

[25] and TRACO [26] to automatically generate cache efficient

and multi-core codes for the McCaskill algorithm.

In this paper, we begin by rewriting McCaskill’s dynamic

programming equations using a single matrix rather than two

as used in the original equations. Then, using the row and

box computation methods proposed by us in [27] and [28] to

develop cache efficient algorithms for Nussinov’s and Zuker’s

methods, respectively, for RNA folding, we develop new

algorithms to compute the partition functions of McCaskill

using a single array. The performance of our algorithms is

compared experimentally with that of McCaskill’s original

algorithm and optimized versions obtained automatically by

the optimizing compilers PLUTO and TRACO. Code for the

original, PLUTO, and TRACO algorithms was obtained from

[23]. Our experiments indicate that we are able to reduce run

time by as much as 81.2% relative to the fastest previously

known single core code and by as much as 84.7% relative to

the fastest multi-core code using 20 threads on a 10 core Intel

I9 CPU that supports hyperthreading.

The rest of the paper is organized in the following way.

McCaskill’s original dynamic programming equations and

corresponding algorithm are presented in Section II. In Sec-

tion III, we give our rewrite of McCaskill’s equations and

corresponding algorithms. Experimental results are presented

in Section IV. Finally, Section V presents concluding remarks.

II. MCCASKILL’S EQUATIONS AND ALGORITHMS

Let A[1 : n] = a1a2 · · · an be an RNA sequence. Mc-

Caskill [7] develops an O(n4) and an O(n3) algorithm to

compute the partition functions of A. The O(n3) algorithm

uses a simplified (constant) energy function and it is this

algorithm that is the focus of [23] and this paper. Let Q(i, j)
be the partition function of the subsequence A[i : j] and let

Qbp(i, j) be the partition function of the subsequence A[i : j]
when A[i] and A[j] form a base pair (Qbp(i, j) is 0 when

A[i] and A[j] do not form a base pair). McCaskill’s simplified

dynamic programming equations are:

Qi,i−1 = 1, 1 ≤ i ≤ n (1)
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Algorithm 1 McCaskill Original

1: for i=N-1; i>=0; i−− do

2: for j=i+1; j<N; j++ do

3: Q[i][j] = Q[i][j-1];

4: for k=i; k<j-l; k++ do

5: Qbp[k][j] = Q[k+1][j-1] * exp(−Ebp/RT ) *

pair(k,j);

6: Q[i][j] += Q[i][k-1] *Qbp[k][j];

7: end for

8: end for

9: end for

Qi,j = Qi,j−1 +
∑

i≤k<j−l

Qi,k−1 ∗Q
bp
k,j (2)

Qbp
i,j = Qi+1,j−1 ∗ exp(−Ebp/RT ) ∗ pair(i, j) (3)

where pair(i, j) is 1 if A[i] and A[j] are complementary base

pairs such as AU , GC and GU , and 0 otherwise; Ebp is the

fixed energy, contributed by a base pair; R is a gas constant;

T is the temperature; and l is the minimum loop length.

Using these equations, the partition functions Q and Qbp

may be computed using the algorithm Original (Algorithm 1)

[23], which computes the Qs and Qbps by rows from bottom

to top and within a row from left to right.

Palkowski and Bielecki [23] have experimented with op-

timized single core and multi core versions of Algorithm

Original obtained using the source-to-source parallelizing

compilers PLUTO [24], [25] and TRACO [26]. We use

the terms Orig, Pluto, and Traco to refer to their single

core single thread codes for the original algorithm and its

optimization using PLUTO and TRACO, respectively.

III. OUR ALGORITHMS

A. Base Algorithm For Q Using One Triangular Array

McCaskill’s dynamic programming equations for Q are

easily rewritten as below by eliminating Qbp from Equation 2

using Equation 3. The rewritten equations are:

Qi,i−1 = 1, 1 ≤ i ≤ n (4)

Qi,j = Qi,j−1 +
∑

i≤k<j−l

Qi,k−1 ∗Qk+1,j−1

∗exp(−Ebp/RT ) ∗ pair(k, j)

(5)

Qbp(i, j), if needed, may be computed from Q(i+1, j−1)
using Equation 3 once all the Qs have been computed.

Using the rewritten equations, Q may be computed using

a single array as shown in Algorithm 2 (OneArray). This

algorithm computes Q by diagonals and within a diagonal

from top to bottom. It’s run time is O(n3) and it uses n(n+
1)/2 space when an upper triangular two-dimensional array

[29] is used for Q. Qbp may be computed from Q in O(n2)
time using Equation 3.

Algorithm 2 OneArray

1: for d=0; d<=N; d++ do // d: index of diagonal

2: for i=0; i<=N; i++ do // i: index of row

3: j = d+i; // j: index of column

4: Q[i][j] = Q[i][j-1];

5: for k=i; k<j-l; k++ do

6: Q[i][j] += Q[i][k-1] * Q[k+1][j-1] *

exp(−Ebp/RT ) * pair(k,j);

7: end for

8: end for

9: end for

Notice that Qs that are on the same diagonal may be

computed simultaneously. So, algorithm OneArray is eas-

ily parallelized. Let OneArrayP be the parallel version of

OneArray obtained by dividing each diagonal into t tiles of

approximately same size, where t is the number of parallel

threads.

B. ByRow (ByRow Algorithm)

In the loop of lines 5 and 6 of Algorithm OneArray
(Algorithm 2), the memory accesses for Q[k + 1][j − 1] are

cache inefficient as these correspond to a column access while

the memory accesses for Q[i][k − 1], which correspond to a

row access, are cache efficient. As noted by us in [27], [28]

cache efficiency is enhanced by computing the Qs by rows

bottom to top rather than by diagonals. Within a row, the

computation is done left to right. Algorithm 3, ByRow, does

exactly this. Though the computation order is the same in

Algorithm ByRow as in Algorithm Original (Algorithm 1),

there is a significant difference between the two algorithms

besides the fact that Algorithm ByRow does not use Qbp

explicitly. Once an element Q[i][j] has been calculated in

ByRow, all elements to its right which are on the same row

are updated. This does not happen in Original. Relative to

Algorithm 2, Algorithm 3 eliminates the inefficient column

access for Q.

Algorithm 3 ByRow

1: for i=N-1; i>=0; i−− do // i: index of row

2: for k=i; k<N-l; k++ do

3: Q[i][k] = Q[i][k-1];

4: for j=k+l+1; j<N; j++ do

5: Q[i][j] += Q[i][k-1] * Q[k+1][j-1] *

exp(−Ebp/RT ) * pair(k,j);

6: end for

7: end for

8: end for

The innermost loop of Algorithm ByRow (i.e., the j loop)

is easily parallelized. The resulting parallel algorithm is called

ByRowP .

C. ByBox (ByBox Algorithm)

The most cache efficient method developed by us for

dynamic programming computes the elements in the upper
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Fig. 1. Partitioning the upper triangle of Q for computation by boxes

triangle of Q by boxes rather than by rows [27], [28]. In this

method, the upper triangle is divided into strips with p rows

each. Each strip is divided into pxp square boxes except the

leftmost partition in each strip, which is a pxp triangular box

(Figure 1). p is chosen to be a multiple of the cache-line width

w. Q is computed by strips bottom to top. Within a strip, the

computation is done by boxes left to right. The corresponding

algorithm is ByBox (Algorithm 4).

Algorithm 4 ByBox

1: for r=N-p; r>=0; r=r-p do

2: Calculate triangular box (r, r+p, r, r+p) using ByRow

3: for c=r+p; c<N; c=c+p do

4: Let T be the square box (r, r + p, c, c+ p) that is

to be computed

5: Let L0, L1, · · · , Lk−1 be the boxes to the left of

T . (L0 is the first triangular box)

6: Let B1, B2, · · · , Bk be the boxes below T . (Bk

is the last triangle box)

7: for t=1; t<k; t++ do

8: Update T using the pair (Li, Bi)
9: end for

10: Update T using the pair (L0, T ) and (Bk, T ).
11: end for

12: end for

In our parallel version ByBoxP , we first compute the

triangular blocks. Since these blocks are independent of one

another, they may be computed in parallel using one processor

per block. Next, the square blocks are computed one at a

time bottom to top and within a strip left to right. When

computing block T (Figure 1), multiple block pairs (Li, Bi)
can be handled simultaneously.

IV. EXPERIMENTAL RESULTS

A. Experimental Platforms and Test Data

We implemented the single- and multi-core versions of the

algorithms OneArray, ByRow, and ByBox of Section III in

C; openMP was used in the parallel codes. The performance

of our codes was compared to that of the codes Orig, Pluto,

and Traco obtained from [23]. The tile sizes for Pluto and

Traco used by us were the defaults (16 x 16 x 16) and (1 x

128 x 16) set by Palkowski et al. in these codes, respectively.

For ByBox and ByBoxP , the box size p was set to 32.

All codes were compiled using the gcc compiler with the -

O3 option and run on the platform: Intel I9-7900X Ten-Core

processor 3.30GHz with 14MB LLC cache (Hyper threading

supported).

For test data, we used RNA sequences obtained from

the National Center for Biotechnology Information (NCBI)

database [30].

B. Performance on I9

Table I gives the run times, in seconds, for the single

core McCaskill algorithms on our I9 platform and shows the

speedup obtained by ByBox relative to each of the single core

single thread algorithms for each of our test sequences. Pluto
is the fastest of the codes in [23] when run using a single

thread and both ByRow and ByBox are consistently faster

than Pluto. ByBox is the fastest of our codes. The run time

reduction obtained by ByBox relative to Pluto ranges from

41.24% to 81.22% (column labeled B vs P ). ByBox achieves

a speedup of up to approximately 5.3 relative to Pluto.

Table II gives the run times, in seconds, for the multi core

McCaskill algorithms on our I9 platform. Times are given

using both 10 threads and 20 threads. Traco was consistently

faster with 20 threads than with 10 threads (recall that the

I9 supports hyperthreading) and ByBoxP was faster with 20

threads for sequence sizes more than 4000. ByBoxP was the

fastest multicore algorithm on the I9 for all sequence sizes and

Traco came in second. When 20 threads are used, ByBoxP
takes between 57.36% and 84.76% less time than does Traco
on our RNA sequences. Speedups of up to approximately 7.1

were obtained relative to Traco.

V. CONCLUSION

Using a rewrite of McCaskill’s dynamic programming

equation, we have obtained a one array implementation,

OneArray, of McCaskill’s algorithm to find the partition

functions of an RNA sequence. Two cache efficient versions

of OneArray along with parallel multi-core versions of all

three of these algorithms have been developed. On our Intel

I9 computational platform, our best single core algorithm,

ByBox, takes up to 81.2% less time than the best single core

algorithm in [23] and our best multi-core algorithm, ByBoxP ,

takes up to 84.7% less time than the best multi-core algorithm

in [23].
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