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Abstract—This paper presents BoostSole; a smart insole based
system for automatic human gait recognition. It consists of a
smart instrumented insole connected to the cloud via the patient’s
smartphone using low-power wireless communication. First, the
design of BoostSole is introduced with discussions of sensors
choice, placement, calibration, and data communication. Next, an
adaptive multi-boost classification algorithm is deployed to accu-
rately identify different gait patterns. The algorithm is fast and
lightweight and can be implemented in ordinary smartphones
with a small footprint in terms of computational requirements,
energy consumption, and communication usage. Raw and on-
device classified data can be securely uploaded to a distant cloud
server for continuous monitoring and analysis. Indeed, they can
be visualized and exploited by doctors to identify/correct walking
habits and assess the risks of chronic pain associated with an
abnormal walk. The system has been evaluated on a dataset
containing three gait patterns, namely: shuffle walk; toe walking;
and normal gait. Obtained results are promising with more than
97% classification accuracy accompanied by low response time
and computational demands.

Index Terms—Smart insole, Human Gait Analysis, Force
Sensing Resistors, MultiBoost Classification, Internet of Things.

I. INTRODUCTION

WALKING is a fundamental movement of the human

body, which has a direct impact on its health. Indeed,

a simple abnormality in walking can cause serious health

problems that can range from simple pain to the loss of the

walking ability. This is why gait analysis is very important for

assessing human health. Indeed, such an analysis allows the

evaluation and diagnosis of walk abnormalities before medical

interventions. It also makes it possible to monitor surgical

procedures and rehabilitation of patients from interventions

that can affect their ability to stand or walk.

In the past, gait analysis was conducted using subjective

methods, which are essentially based on the observations

of specialists under clinical conditions. Indeed, the various

parameters related to a patient’s gait are observed, noted, and

evaluated by the specialist while he is walking on a prede-

termined circuit. Now, advances in new technologies have

given rise to devices and techniques allowing an objective,

automatic, and fast assessment of different gait parameters.

Thus, allowing more effective measurement and providing

specialists with a large amount of reliable information on

patients’ gaits. This reduces the cost and the margin of error

caused by subjective techniques.

Such technological devices can be classified into two differ-

ent approaches: those based on Non-Wearable Sensors (NWS);

and those relying on Wearable Sensors (WS). NWS systems,

generally based on image processing and ground sensors,

require the use of controlled stations where the sensors are

located and capture walking data while the subject is moving

on a marked walkway. Their main advantage is in liberating

the subject from any constraints, but they are too expensive and

might not capture real-world gait characteristics. On the other

hand, WS systems make it possible to analyze data outside the

laboratory and to capture information on human walks during

their daily activities. Indeed, such sensors can be placed on

different parts of the patient’s body, such as the feet, knees,

or hips, to measure relevant gait characteristics. However, WS

may be constraining as they must be worn by the subject.

From the WS class, footwear systems stand as a non-

obstructive method that addresses most of the issues related

to wearable systems while preserving their advantages. For

instance, footwear systems only require to instrument the

insole/shoe with non-obstructive invisible sensors such as

flexion sensitive sensors, force-sensitive sensors, and inertial

measurement units [1]. The patient will wear the instrumented

shoe/insole similarly to an ordinary one. Moreover, footwear

systems are generally more accurate and lower cost when

compared with other WS and NWS systems. Furthermore,

they can serve other needs such as preventing foot ulcers in

diabetics and detecting falls in the elderly.

In this work, a prototype of a smart insole based sys-

tem for human gait recognition and classification, dubbed
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BoostSole, is developed. BoostSole comprises a low-cost, low-

power instrumented insole that continuously acquires gait data

and transfers it, via low-power wireless communication, to

the patient’s smartphone for on-device analysis before being

reported to the physician for decision making. The aim is

to provide a low-cost, reliable, and time-efficient decision

support system for physicians to identify and classify human

gait in real-world scenarios in a non-obstructive way. More

particularly, this paper provides the following contributions:

• Design, conception, and realization of BoostSole along

with sensors choice, placement, and calibration.

• Development of BoostSole smartphone and desktop soft-

ware applications as well as data acquisition, processing,

and decision support processes.

• Extensive performance evaluations of BoostSole with a

multitude of machine learning algorithms to classify three

gait types under different performance metrics including

accuracy, time efficiency, and lightweight aspects.

The remainder of this paper is organized as follows. Sec-

tion II presents and discusses related work. The architecture

of the BoostSole system is presented in Section III, while

the design, choice, placement, and calibration of sensors are

the object of Section IV. Section V is devoted to detailing

the communication, feature extraction, and software compo-

nents of the BoostSole system. This is followed by extensive

performance evaluations of BoostSole for classifying three

gait types (shuffle, toe, and normal) using a multitude of

machine learning algorithms in Section VI. The paper ends in

Section VII with conclusions and ideas for future directions.

II. RELATED WORK

In the last few years, many research works have used

footwear sensors for human gait analysis. [2]–[7] are examples

of such research. Overall, there is a big similarity in the

type of sensors used in these works, with some exceptions

in the number and the placement of the sensors. Differences,

mainly, reside in the artificial intelligence algorithms used

to classify human gait for identification, activity recognition,

and/or injury/fall detection and prevention.

For instance, [8] uses hidden Markov chains to detect the

phases of the human’s gait, [9] used Support Vector Ma-

chine (SVM) techniques to classify three types of walks, and

[10] analyzed their data using Principal Component Analysis

(PCA). Besides, [2] also used PCA to analyze their data and

classify three types of walking: normal, toe, and dragging foot

walking. PCA results showed a similarity between dragging

foot walking and normal walking.

Recently, the authors of [11] used the AdaBoost tree classi-

fier for gait asymmetry detection with smart insole attending

an accuracy of 89.9%. On the other hand, [12] used Deep

Convolution Neural Network (DCNN) to classify seven (07)

types of gait: walking, fast walking, running, stair climbing,

stair descending, hill climbing, and hill descending with an

accuracy of more than 90%. Finally, in [13], the authors used

a commercial ”FootLogger” smart insole to classify seven (07)

types of gait with Null-Space Linear Discriminant Analysis

(NLDA), and they found that the larger the number of steps of

a sample, the higher the classification performance becomes.

Table I summarizes some of those work with a focus on

the classification method used and walking phases detected.

Besides, the table also presents the type of used sensors along

with the hardware and software costs of the considered works.

Different from the above, the presented system is designed

to be low-cost, lightweight, resource-lean, and time-efficient

while providing reasonable accuracy in abnormal walk iden-

tification and classification. In the sequel, we will discuss the

system architecture, the sensors used, and their placement.

III. SYSTEM ARCHITECTURE

The architecture of our system is depicted in Fig. 1, which

is made of five main components, namely: (1) the low-cost

instrumented sole; (2) patient’s smartphone; (3) physician’s

working station; along with (4) local and (5) remote commu-

nication bridges.

Fig. 1: System architecture

The first component is the main element of the BoostSole

system. It consists of a smart insole equipped with a multitude

of miniaturized sensors of force, flexion, and IMUs continu-

ously collecting gait characteristics. Indeed, such sensors can

measure many parameters that characterize walking, such as

the timing of the heel strike and detachment of the foot,

dorsi/plantar flexion, step length, and walking speed.

This data will be transmitted to patients’ smartphones

via low-power wireless communications where it will be

processed and analyzed with lightweight on-device machine

learning and visualized via mobile applications which can be

used anywhere and at any time. Raw and on-device processed

data can be then transmitted to treating physicians via secure

remote communications as can be seen from Fig. 1. The

remote application (component 3 in Fig. 1) can visualize and

analyze the gait further so to help the physician decide by

comparing the obtained results with a reference.
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TABLE I: Related work summary and paper contributions

Ref. Walking phases/types Classification method FSR IMU Flex Hardware cost Software cost Observation

[12]

- Walking
- Fast walking.
- Running.
- Stairs Ascending/Descending.
- Hill Climbing/Descending

DCNN Yes Yes No High High
Used ”FootLogger” smart insole
with a classification accuracy of
more than 90%.

[14]

- Walking.
- Sidestepping.
- Jumping.
- Kicking.
- Squatting.

DNN Yes Yes No High Medium
A system able to predict the
movement of the lower body.

[15]
- Walking.
- Running.
- Stairs Ascending/Descending.

SVM Yes Yes No High High
An accuracy of 99.8% in the
recognition of daily living activities.

[13]

- Heel strike.
- Foot flat.
- Mid stance.
- Heel off
- Toe off.
- Mid swing.
- Late swing.

NLDA Yes Yes No High High
Used ”Footlogger” smart insole to
classify seven types of the gait cycle.

[16]

- Heel strike.
- Stance.
- Heel off.
- Swing.

None Yes Yes No High Low
”FootMov” system detects gait
phases using a developed algorithm.

[2]
- Normal walking.
- Tip-toe walking.
- Dragging foot walking.

PCA Yes No Yes High Low
Can classify three types of walks
using ZigBee for communication
and PCA for recognition.

This work
- Normal walking.
- Tip-toe walking.
- Shuffle walk.

MultiBoostAB with
Random Forest

Yes Yes Yes Low Low
Can classify three types of walks
with a lightweight algorithm that
can be implemented in a smartphone.

Patient

FSR 402

Flex sensor

MPU 6050

Data
acquisitionClassificationDisplay

D
oc

to
r

Results Walking

Fig. 2: System’s components and processes.

The processes and functionalities realized by the main

components of our architecture are depicted in Fig. 2. Thus,

the smart insole acquires and transmits data to local patient’s

gadgets, while the smartphone and/or the desktop application

is/are responsible for pre-processing, classification, and visu-

alization by the patient and/or the physician.

IV. DESIGN AND REALISATION OF BOOSTSOLE

The first step in designing BoostSole was to choose the

appropriate sensors, to create a highly instrumented low-

cost sole capable of reliability detecting gait parameters. The

following subsections detail the choice, role, and number of

sensors along with their locations and calibrations.

A. Choice, role, and number of sensors

BoostSole relies on several sensors to capture fundamental

human gait parameters. In our design, the focus is on using

the minimum number of sensors that allows identifying human

gait. The main used sensors are described below.

1) Force sensor: Force sensor or Force Sensing Resistor

(FSR), is a robust device made of thick polymer film, which

exhibits a decrease in resistance with the increase in the

force applied to the sensor surface. This force sensitivity

is optimized for use in human touch control of electronic

devices such as automotive electronics, medical systems, and

in industrial and robotic applications [4]–[7], [17].
We chose to use FSR 402, shown in Fig. 3a), because of

its very miniature size (0.45mm), its simplicity, and ease of

integration. Its robustness is up to 10 million actuation with a

low activation force of 0.1N and a sensitivity of up to 10N.

Besides, it is low-cost, ergonomic, and fits well to measure the

pressure applied to the bottom of the foot. Furthermore, the

combination of several FSRs can be applied to find the center

of force beneath the foot. The number of FSRs depends on

the accuracy required by the application and the cost of the

developed prototype.

(a) FSR 402 (b) Bend Sensor (c) MPU 6050

Fig. 3: Used sensors

2) Bend sensor: A bend or flex sensor, shown in Fig. 3b, is

a sensor that measures the bending angles. The resistance of

the elements of the sensor increases by bending. The more the

sensor is bent, the more it tends towards an infinite resistance

(open circuit). Since the resistance is directly proportional
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to the curvature, it is used as a goniometer and is often

called a flexible potentiometer. It is also used in a multitude

of other domains including, rehabilitation, physical activities,

machines, measuring tools.

The substrate of the bending sensor, which is produced

from ink, carbon, or graphite [18] plays an important role

in its performance. In our system, the bend sensor is used to

measure the flexion angles below the foot depending on gait

type and phases. We have used a flex sensor of 2.2” height,

which can give values between 45 and 15 KOhms depending

on the curvature radius, which is enough for BoostSole.

3) Inertial measurement unit: Inertial measurement units,

generally, comprise an accelerometer and a gyroscope and can

be attached to a mobile or any other object. The accelerometer

can measure the linear acceleration along one or 3 orthogonal

axes. On the other hand, when one seeks to detect a rotation or

angular speed, the gyroscope is used. These sensors are per-

vasively used in a multitude of applications including games,

gesture recognition, location-based services, movement-based

game controllers, 3D remote controls for digital TVs, and

portable sensors for health, fitness, and sports.

In this project, we used an MPU 6050 module (Fig. 3c),

which combines a 3-axis gyroscope and a high-precision 3-

axis accelerometer to form an inertial unit calculating acceler-

ation and angular speeds of a human gait. Table II summarises

the main characteristics of each sensor, their number, and their

unit prices in the market. It can be observed from this table

that the realization of a gait analysis support system can be

low-cost compared to its usefulness and its reliability.

B. Sensors’ placements and BoostSole prototype

This section details the sensors’ placements and presents

the realized prototype.

1) Sensors’ placements: Once the choice of sensors is

made, the emphasis is on choosing the right locations to place

them beneath the foot. In this prototype, presented in Fig. 4,

the 03 force sensors are placed under the toe, between the

toe and the middle of the foot, and under the heel to capture

the movements made by the patient. This is justified by the

fact that a human being when walks, his weight is generally

distributed on three essential points on the foot. These points

are the toe, the heel, and the place between the middle and

the toe [19]. The flex sensor is placed in the middle of the

foot to calculate angles. Remains, the last sensor, which is

MPU 6050. This latter is fixed behind the foot to capture the

translations with the angular velocities during feet movements.

It is put in the microcontroller unit detailed below.

2) Wiring BoostSole: Based on these locations and the

sensors seen in the previous sections, we created the first

prototype of BoostSole, illustrated in Fig. 5, by wiring them

to a microcontroller unit. The microcontroller brings together

the essential elements necessary for wiring and reading sensor

data such as micro-controller, memory, peripheral units, and

input interfaces. The realization of the prototype was made

using Arduino UNO; a well-known low-cost system-on-chip.

Fig. 4: Sensors’ locations

Fig. 5: The first prototype.

C. Sensors’ calibrations

To be correctly used, the sensors must be calibrated. This

section explains how we calibrated the flex sensor, FSRs, and

MPU 6050 to obtain correct values.

For the flex sensor, we proceed as follows. First, we draw a

semi-circle on a paper and draw angles from 0° to 180° by a

step of 2° as can be seen from Fig. 6a. Next, we have interfaced

the flex sensor with Arduino and fixed it in the prepared paper.

Then, we bend the sensor at each angle and note the value

given in the Arduino IDE. This experiment has been repeated

multiple times. Finally, we draw a graph representing the table

containing values obtained from Arduino and the values of

the real angles. Fig. 6a presents the flex sensor calibration

process, and Fig. 6b presents a portion of the calibration data

plotted in a graph. The values represented in this figure are

for angles from 0° to 20°. As can be seen from this figure,

flex values show a linear relationship with measured angles

that can reliably be exploited for gait analysis.

For FSR calibration, we proceeded similarly to the flex

sensor, but in this case, we applied different weights and read

the FSR values on Arduino IDE. After that, we drew a table

similar to that of the flex. The details of this calibration process

are alike those of [20]. Obtained results are in a concordance

with the conclusions of [20] and show a linear relationship

between FSR data and weights up to a value of 80Kgs.

Finally, for the calibration of the MPU 6050, we calculated

the average of the first 1000 values and then subtract this value

from the values read by Arduino. these relative values were

used. It should be noted, however, that the values of the MPU

6050 diverge quickly, so we need to re-calibrate the sensor

periodically to get correct measurements.
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TABLE II: Sensors’ characteristics

IMU FSR Flex sensor

Trade name MPU 6050 FSR 402 FS
Number 01 03 01
Price $ 5.98 $ 8.67 $ 12.30

Uses - Angles between the two legs. - To calculate pressure under the insole. - To calculate angle between the insole and the ground.

Dimensions (mm) 15.6*20.3*2.5 18.28*56.33*1.25 6.35*112.24*0.43
Life cycle 12 months 10 millions values >1 million values
Temp range -40°C to +105°C -30 - +70 ºC -35°C to +80°C

(a) Process (b) Results

Fig. 6: Flex sensor calibration.

V. DATA COMMUNICATION, CLASSIFICATION AND,

VISUALIZATION

Once the prototype is completed, we focused on the other

parts of the architecture, namely: sending data to a processing

station, classifying movements, and displaying the results.

A. Data communication

Communication plays an important role in the design of

a smart insole. Indeed, besides being the key component in

ensuring reliable transmissions of gait data from the embedded

microcontroller to the processing station, it is crucial to the

system’s energy consumption and hence on its lifetime.

Today, a multitude of wireless communication technologies

exist in the market. Each has its applications, advantages,

and drawbacks as can be seen from Table III. Thus, while

WiFi-based solutions are very pervasive, they consume much

energy making their lifetime in hours, which does not fulfill the

requirements of boostSole. On the other hand, IEEE 802.15.4

solutions provide better energy consumption that fulfills the

requirements of BoostSole, but they are not pervasive and

are not available in ordinary smartphones/PCs, which limit

their applicability. Bluetooth Low-Energy (BLE) has the ad-

vantages of both, making it an important candidate for the

BoostSole prototype. To do so, we have chosen the HM-10

BLE module, which implements Bluetooth 4.1 specification.

Indeed, it provides reliable communication by channel hopping

to avoid interference with co-existing networks, along with

high throughput for capturing sensor data. Furthermore, the

module goes into sleep automatically when no data activity

is detected. Besides, it can be integrated into Arduino via a

serial link. Finally, it should be noted that the pairing between

the processing station and BoostSole is initiated by the station

allowing the insole to start sending gait data just after pairing.

TABLE III: Low-power wireless communication technologies

Bluetooth WiFi ZigBee BLE Z-Wave

Standard 802.15.1 802.11n 802.15.4 802.15.1 G.9959
Frequency 2.4 GHz 2.4/5 GHz 2.4 GHz 2.4 GHz 868 MHz
Topology star star star, mesh star, mesh mesh
Data rate 2 mbps 100 mbps 250 kbps 1 mbps 40 Kbps
Range 15-30 m 10-100 m 10-100 m 15-30 m 30-100 m
Battery Months Days Years Years years
Pervasive. Yes Yes No Yes No

B. Feature extraction and classification

The raw data captured by the sole are transmitted via BLE

to the patient’s Smartphone for on-device gait analysis. Before

being processed, the acquired data will be segmented. Fig. 7

details the feature extraction process. As can be seen from this

figure, the input signals S1, ...Sn are respectively discretized

into Y 1, ...Y n sequences, where each Y i(j) represents the

mean of the jth interval of Si (Fig. 7). Such sequences are,

then, segmented with a sliding window procedure, where a

fixed-length window W is shifted along the signal sequence

for frame extraction. Consecutive frames usually overlap to

some degree (less than 50%). In the end, a set of vectors of

size n ∗ |W | are generated.
For classification, we deploy a supervised learning ap-

proach. Thus, the generated vectors along with the labels

provided by experts are fed to a supervised machine learning

algorithm for training as can be seen from Fig. 8. In order to
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Fig. 7: Feature extraction

select the best classifiers, a number of well-known algorithms

including SVM, kNN, decision trees, and ensemble classifiers

will be evaluated in terms of accuracy, time, and complexity.

The chosen classifiers are known to be powerful with a

high capacity of generalization. For instance, SVM belongs to

the kernel-based family which aims to fit an optimal hyper-

plane to accurately classify both linearly separable and linearly

inseparable data [21]. kNN is a non-parametric method used

for classification and regression. Boosting classifiers such as

Bagging, Boosting, AdaBoost, and MultiBoostAB are a type

of meta-algorithms that use decision trees and discriminant

analysis learners to improve the classification. Their main

idea is to boost weak classifiers. Multi-boosting [22] is a

representative sophisticated algorithm of this class. It is an

extension to the AdaBoost with Wagging.

The trained models will be used to classify feature vectors

extracted from a given test signal. Then, a majority vote can

be performed to predict the gait class of the signal (Fig. 8).

C. BoostSole software application

We developed both a desktop and an android application.

1) Desktop application: The desktop application is devel-

oped using JavaFX. Before it shows up, the application must

first connect with the insole. After that, the user can see a

graphical user interface that contains three (03) empty charts,

one is for the three FSR sensors, the second is for the flex

sensor, and the last one (at the bottom) is for MPU 6050.

At the right, there is a start button to choose the walking

period (30 seconds, 1, 2, 5, and 10 minutes). When the user

clicks on that button, the signals acquired from each sensor

are visualized in their corresponding places and stored in a

specified path as can be seen in Fig. 9. At the end of the

walking period, the application stops plotting the data and the

classification results can be displayed.

2) Android application: The Android application is devel-

oped using Android Studio. It allows a user to connect with the

BootSole using BLE, and visualize the pressure sensors data in

Fig. 8: Classification process

Fig. 9: The desktop application

a Heat-Map. We used three Android activities: the first starts

the communication, the second visualizes the pressure map,

and the third analyzes and displays gait recognition results.
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VI. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

system. We start by describing the dataset, methodology, and

metrics before discussing the obtained results.

A. Experimental dataset

To access the system, we collected data from 5 healthy

volunteers (age [y]: 23.5 ± 1.3; height [m]: 1.77 ± 0.08,

weight [kg]: 78 ± 5). All walking sequences were tracked using

BoostSole. A single sensing unit was captured with a 1Hz

sampling rate in order to save energy. All the recorded data

was sent via BLE to a laptop placed in close proximity to the

participant. The volunteers performed a continuous sequence

of three walking types, namely: shuffle walking (class 1);

normal walking (class 2); and toe walking (class 3). For each

one, the volunteers walked for 30s, which make it a 90s total.

Fig. 10 presents a screenshot for a representative gait data

collected for each type by the desktop application.

B. Evaluation methodology and metrics

In our evaluations, six (06) classifiers were considered,

namely SVM, kNN (k = 5), Stacked, Random Forest (RF),

MultiBoostAB with RF (MB-RF), and MultiBoostAB with

Logistic Model Tree (MB-LMT). The 5-fold cross-validation

method is followed to evaluate the accuracy of the afore-

mentioned classifiers under different window lengths (from

1s to 10s). Also, in classification, we have only used the data

collected from FSRs and bend sensors to assess their ability to

distinguish walk patterns. All main results were obtained using

an i7-8750H @2.20GHz, 16 Go RAM, and a GTX-1050 4Go

GPU. Average accuracy, precision, recall, F-measures, and

Receiver Operating Characteristic Curve (ROC) Areas were

used to evaluate the effectiveness of the involved classifiers.

They are measured as follows:

• Accuracy: the ratio of number of correct predictions to

the total number of input samples.

Accuracy =
∑
c

TPc+TNc

TPc+TNc+FPc+FNc

, c ∈ classes (1)

• Precision: An average per-class agreement of the data

class labels with those of a classifiers.

Precision =
∑

c

TPc

TPc + FPc

, c ∈ classes (2)

• Recall: Average per-class effectiveness of a classifier to

identify class labels.

Recall =
∑

c

TPc

TPc + FNc

, c ∈ classes (3)

• F -Measure: The harmonic mean of the macro-average

precision and recall.

F−Measure =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

• Receiver Operating Characteristic Curve Areas

(ROC areas): It represents the area below the plot of the

true positive rate against the false positive rate. It shows

the trade-off between sensitivity and specificity.

Furthermore, the best models were deployed on an android

device (Samsung S7-Edge) in order to evaluate their average

response time, memory, CPU, and battery usage.

C. Results and discussions

1) Comparison of classifiers: This experiment aims to find

a suitable classifier and window length for the BootSole

system. Table IV shows the average accuracy for different

classifiers under different window lengths. Overall, the ac-

curacy of all algorithms increases with increasing window

length up to a window of 8s. When it comes to individual

classifiers, RF and MB-RF have achieved better accuracy

compared to SVM, kNN, MB-LMT, and stacked classifiers.

Indeed, average accuracies of above 95% were observed as

soon as a window of 3s for both RF and MB-RF. Besides, MB-

RF achieved an accuracy of about 97% in a 4s window length.

Furthermore, this classifier reached almost 100% accuracy

for 7s window length. For the sake of time, energy, and

computational resources, a 4s window is used.

In addition to the accuracy results, MB-RF has shown the

smallest test response time, which makes it very promising for

classifying walking types using BootSole. Before embedding

it in the Android application, we will get a closer look at

MB-RF in the following section.

2) A detailed evaluation of MB-RF: Table V shows dif-

ferent evaluation metrics obtained for the MB-RF classifier.

On average, a precision value of around 0.969 has been

recorded, which allows MB-RF to predict correctly the positive

observations to the total predicted positive observations. A

similar value has also been registered for recall, allowing MB-

RF to classify positive observations w.r.t. the observations in

the actual class with 96.8%. Besides, the confusion matrix,

given in Table VI, shows that the toe and shuffle classes are

well discriminated, whereas, signals from the normal walk

are slightly hard to be correctly classified. To confirm such

results, we have drawn ROC curves and assessed the area

under ROC. All the curves start on the left-hand border and

then follow the top border of the ROC space, which justifies

the results presented in Table V. Indeed, MB-RF recorded

a 0.989 average ROC area (0.988 for the shuffle, 0.982 for

normal, and 0.995 for toe walking) in a 4s window length.

3) MB-RF resource consumption on Android: By giving

the best results, MB-RF is a promising classifier for Boost-

Sole. However, before embedding it in handheld devices, its

resource consumption needs to be examined. To do so, we

have conducted a new battery of tests on a smartphone. To

put results into context, we have compared MB-RF with the

two following best classifiers that shown accuracy around 95%

in the 4s window length (SVM and RF). The three models

(trained with the Weka software) were deployed on an android

device (Samsung S7-Edge). The average response time along

with memory, CPU, and battery usages are reported.

Table VII presents the Average Response Time (ART) and

the memory usage of the three algorithms. It is clear from this
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(a) Normal Walk (b) Toe Walk (c) Shuffle Walk

Fig. 10: Data visualisation

TABLE IV: Average accuracy of different classification algorithms using different window lengths

Win. (s)\classifiers SVM RF MB-RF MB-LMT Stacked kNN

1 72.16% 79.06% 78.62% 75.28% 64.14% 69.47%
2 90.40% 91.74% 91.74% 90.63% 83.89% 87.45%
3 93.30% 95.09% 95.54% 91.07% 91.51% 87.91%
4 94.62% 96.41% 96.86% 93.27% 89.26% 87.84%
5 93.96% 91.28% 91.28% 89.93% 89.91% 85.82%
6 93.92% 94.59% 95.27% 93.24% 88.39% 85.57%
7 97.30% 100% 100% 93.69% 91.21% 84.62%
8 98.20% 100% 99.10% 95.50% 89.67% 87.45%
9 97.75% 94.38% 98.88% 94.38% 87.39% 86.27%

10 97.73% 97.73% 96.59% 96.59% 67.71% 80.86%

(a) SVM (b) Random Forest (c) MultiBoostAB-RandomForest

Fig. 11: Classifiers resource consumption in Android

TABLE V: Metrics of MultiBoostAB-RF for 4s window length

Class Precision Recall F-Measure ROC Area

Shuffle Walking 0.961 0.987 0.974 0.996
Normal Walking 0.986 0.920 0.952 0.988
Toe Walking 0.961 1.000 0.980 0.998
Weighted Avg. 0.969 0.969 0.968 0.994

TABLE VI: Confusion matrix

Class Shuffle Walking Normal Walking Toe Walking

Shuffle Walking 0.9867 0.0133 0.0000
Normal Walking 0.0400 0.9200 0.0400
Toe Walking 0.0000 0.0000 1.0000

table that MB-RF has a better response time and less memory

storage. With regards to the CPU, memory, and battery usage,

Fig. 11 shows the results obtained with the android profiler

tool in the onStart method. It is clear from this figure that

SVM consumes a lot of resources (high battery and memory

consumption with almost 50% extra CPU usage). For RF, we

can see a bit more memory and energy usage than MB-RF.

TABLE VII: Average response time and memory usage

MultiBoostAB-RF RandomForest SVM

ART (ms) 0.458893563 1.611349833 0.727204667
RAM (MB) 1.3 1.8 1.9

VII. CONCLUSION AND FUTURE WORK

In this paper, a smart insole based system for automatic

human gait analysis, dubbed BoostSole, was proposed. The

aim was to develop a low-cost, objective, and reliable system

to help physicians in continuous analysis of walk patterns.

Obtained results demonstrated the capacity of BoostSole to

provide accurate rates while consuming fewer resources. Nev-

ertheless, BoostSole can be enriched by adding more sensors

to be able to distinguish a wider array of gait types across
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heterogeneous populations. Furthermore, using flexible and

miniaturized chips can make BoostSole more practical and er-

gonomic. Moreover, while the local communication might not

require strong security, remote communications with the server

need to be investigated for proper security and less bandwidth

consumption. Finally, we are planning to expertise BoostSole

with health specialists. Investigating other on-device learning

algorithms such as deep federated learning is also planned.
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