& s

Position Papers of the Federated Conference on
Computer Science and Information Systems pp. 17-22 ISSN 2300-5963 ACSIS, Vol. 22

DOI: 10.15439/2020F209

Increasing the Reusability of loT-aware Business Processes

Robert Wehlitz, Florian Jauer, Ingo R68ner
Institute for Applied Informatics (InfAl),
Goerdelerring 9, 04109 Leipzig, Germany
Email: {wehlitz, jauer, roessner}@infai.org

Abstract—The Internet of Things (IoT) is based on
connected devices which are often heterogeneous in terms of
supported communication protocols, interfaces and message
formats. loT-aware business processes, which are executed by
process engines, are often bound to specific device types. This
decreases their reusability when they are ought to be deployed
in multiple IoT scenarios where the ability of supporting
different device types is an important requirement. In this
paper, we introduce a novel approach on how to overcome the
heterogeneity of IoT devices, thus increasing the reusability of
IoT-aware business processes. The contribution of this work to
information systems research is twofold: First, we present a
device abstraction model as the basis to define business process
tasks across heterogeneous device types without the need of
dealing with their technical implementations. Secondly, we
propose a system architecture which supports the modeling,
deployment, execution and reuse of IloT-aware business
processes.

1. INTRODUCTION

THE vision of the Internet of Things (IoT) is based on
the ubiquitous utilization of electronic devices which
are equipped with sensors or actuators and are connected to
the Internet. Market analysts estimate that the number of
these IoT devices will increase to around 38.6 billion world-
wide by 2025 [1]. All of them are sources of data, which
provide businesses and customers with possibilities to gain
valuable insights into commercial value creation and the ev-
eryday life of people. For instance, in the smart home do-
main, businesses are enabled to collect and analyze more de-
tailed data about customers and their behavior in order to in-
dividualize and improve products and services [2]. Cus-
tomers, in turn, may benefit from smart home solutions en-
abling them to analyze and reduce their energy consump-
tion, secure their homes, remote control appliances for more
convenience or live a longer self-determined life at home in
old age [3].

The integration of heterogeneous IoT devices with ser-
vices, applications and business processes represents a major
challenge in this context. Heterogeneity hereby means that
IoT devices often support different communication proto-
cols, interfaces to access device functionality and message

This work is partly funded by the European Regional Development Fund
(ERDF) and the Free State of Saxony (Séachsische Aufbaubank — SAB).

©2020, PTI 17

Bogdan Franczyk
Leipzig University, Grimmaische Str. 12,
04109 Leipzig, Germany

Wroctaw University of Economics, ul. Komandorska

118-120, 53-345 Wroctaw, Poland
Email: franczyk@wifa.uni-leipzig.de

formats for providing sensor data and receiving device com-
mands [4]. In our previous work [5], we presented an archi-
tectural concept on how to cope with heterogeneity issues
related to loT-aware business processes by leveraging [oT
middleware and device management functionality in con-
junction with system components for business process auto-
mation. However, this approach has its limitations when
reusing executable IoT-aware business processes for differ-
ent loT device types, which provide similar functionality
and should therefore be interchangeable from a user per-
spective. In this paper, we introduce a device abstraction
model which enables to define business process tasks across
heterogeneous IoT device types. Furthermore, we adapt the
architecture presented in [5] to support the modeling, de-
ployment, execution and reuse of IoT-aware business pro-
cesses.

The remainder of this paper is structured as follows: First,
we outline the background for our research, introduce an ap-
plication scenario in order to illustrate why the reusability of
IoT-aware business processes can be important, and provide
an overview of related work (Sect. 2). In Sect. 3, we present
our device abstraction model and describe its classes as well
as their relationships with each other. We then introduce our
system architecture proposal and point out how an increase
of the reusability of executable loT-aware business pro-
cesses is achieved (Sect. 4). Finally, in Sect. 5, the paper
concludes with a short summary of the findings and an out-
look on future work.

II. BACKGROUND

Within the scope of this paper, we define loT-aware busi-
ness processes as sequences of tasks, events and decisions
which integrate IoT devices as process resources in order to
achieve a certain process goal. In this regard, we focus on
processes that are described using a machine-readable for-
mat, e.g. Business Process Model and Notation (BPMN) 2.0,
and can be executed by process engines for automation pur-
poses. Against this background, business process tasks are
assignable to [oT devices and can be completed by them us-
ing their sensing or actuation capabilities. loT-aware busi-
ness processes may also be consumers of events, which are
detected based on processing sensor data streams and may

18

have an impact on their control flow. Additionally, deci-
sions, e.g. threshold value analysis, within a running process
instance can be made automatically by evaluating sensor
values against predefined rule sets.

To illustrate the reusability problem regarding executable
IoT-aware business processes and to show how our ap-
proach works, we use the example of smart home as a
user-centric [oT domain. In this example, smart home ser-
vices, such as automatic light or heating control, are defined
using a process modeling language and are executed by a
process engine. loT-aware business process models, thus,
define and represent the internal logic of smart home ser-
vices.

Let us assume a smart home scenario in which two rooms
are equipped with smart lamps. To simplify matters, room A
has several smart lamps of type A from manufacturer A and
room B has several smart lamps of type B from manufac-
turer B. All smart lamps provide the same functionalities,
which are: Turning the light on or off, change the light color
and dim the light. These functionalities can be remote con-
trolled via a Wi-Fi connection. However, smart lamps of
type A require an additional gateway device which receives
commands over the Message Queuing Telemetry Transport
(MQTT) communication protocol whereas each smart lamp
of type B provides a REST-API in order to be controllable
via HTTP requests. Additionally, the accepted message for-
mat of each interface differs strongly between smart lamps
of type A and B. For instance, the gateway for smart lamps
of type A expects the value “1” to be published to a specific
internal MQTT topic structure for turning on a lamp. The
smart lamps of type B, for obtaining the same effect, expect
a JavaScript Object Notation (JSON) payload including the
property “light” with the value “on” to be posted to a spe-
cific REST endpoint.

In order to hide this complexity from developers of smart
home services, we use the method of abstraction. Therefore,
we distinguish between three different device abstraction
levels.

At level zero, the device instance level, a specific device
of a certain user is described and no further abstraction is
made, e.g. smart lamp of type 4 with ID A132 of user U.

At level one, the device type level, device instances of the
same type are abstracted to a device type, e.g. smart lamp of
type 4 from manufacturer A.

At level two, the device class level, heterogeneous device
types, as described in our example above, are mapped by a
device class, e.g. smart lamps of type A from manufacturer
A and smart lamps of type B from manufacturer B are ele-
ments of the device class smart lamp.

When an IoT-aware business process in our smart home
scenario is to include smart lamps, for instance, to control
the room light automatically, a decision has to be made at
which abstraction level the devices should be integrated.
This has a strong impact on the reusability of the whole
process. Modeling business process tasks for IoT devices at
the device instance level requires the same process to be

POSITION PAPERS OF THE FEDCSIS. SOFIA, 2020

modeled twice: For room A and B. In addition, the process
model has to be adapted and redeployed every time this set-
ting changes even slightly. This is the case if, for instance, a
smart lamp is broken at some time and has to be replaced by
a new one. To increase the reusability of the defined
process, smart lamps should be integrated at least at the de-
vice type level. Nonetheless, the process needs to be mod-
eled for each room due to the different types of smart lamps,
but a replacement of single device instances would not af-
fect the model scope. However, the highest degree of
reusability is achieved by modeling process tasks for [oT de-
vices at the device class level. In this case, the process needs
to be modeled only once to be deployable for both, room A
and B. Moreover, an additional integration of smart lamps of
type C from manufacturer C at a later time would be cov-
ered by the model scope as well, if those lamps also support
the defined functionalities of the device class smart lamp.

Research in the field of IoT-aware business processes is
still at its beginning. A state-of-the-art report carried out by
[6] shows that numerous publications which focus on the
modeling of IoT services (e.g. [7]) and loT-aware business
processes exist (e.g. [8]). However, technical aspects regard-
ing the utilization of heterogeneous IoT devices within exe-
cutable business processes have not yet been sufficiently in-
vestigated. Although some approaches cover implementa-
tion and execution aspects, they are mostly limited to the in-
tegration of wireless sensor networks [4], which do not pro-
vide actuation capabilities, or are based on translations from
BPMN to program code (e.g. [9]). Therefore, the concrete
implementation of abstract process models in order to de-
ploy and execute them in IoT scenarios remains a major
challenge, which is still open [10]. In our previous work [5],
we already tackled this challenge by designing a system ar-
chitecture, which combines an IoT middleware, device man-
agement and components for business process automation.
However, this approach, like many other related works, has
the limitation that IoT devices can only be integrated as
business process resources at the device type level, which
has a negative impact on the reusability of loT-aware busi-
ness processes (c.f. the example above). For this reason, we
have improved our concept and extended it by a device ab-
straction model, which covers syntactical and semantic as-
pects of IoT devices. With regard to the latter, we are aware
that many semantic middleware solutions and ontologies,
e.g. SensorML and Semantic Sensor Network (SSN), for
IoT systems exist. But in order to enable IoT device integra-
tion in business processes at the device class level, we had to
design our own model which is partly based on classes and
properties of the oneM2M Base Ontology
(www.onem2m.org). This ontology, compared to others,
proved to be the most suitable starting point for mapping
concrete service implementations with generic device func-
tions.

ROBERT WEHLITZ ET AL: INCREASING THE REUSABILITY OF IOT-AWARE BUSINESS PROCESSES

0..1

Hub ‘ Device Function Concept Characteristic
id: string id: string i id: string id: string id: string ",
name: string 0.1 . local_id: string “ rdf_type: string 0.* rdf_type: string T rdf_type: string h
hash: string 0.* name: string name: string 0.1 name: string | name: string
device_local_ids: string[] device_type_id: string concept_id: string characteristic_ids: type: string
o string[] min_value: number
h Servi base_characteristic_id: max_value: number
enyice string value:
o id: string string | boolean | integer
1 rdf_type: string sub_characteristics:
DeviceType local_id: string Content Characteristic[]
DeviceClass id: string npnte sty id: string 01
rdf_type: string AESEHpHGIL Aing 1 content_variable: B
id: string = . 1.* aspects: Aspect[] =g ’
e » ame: string — S ContentVariable 0.2* 0.1
rdf_type: string 1 0. i . 1 rotocol_id: strin,
—J b description: strin p = & 0.*| serialization: strin, :
. p g g
name: string : > e inputs: Content]] -~ ContentVariable
image: string) protocol_segment _id: 1
| services: Service[] 0.+ outputs: contentl] string — id: string
device_class: DeviceClass functions: fun_ctlon[] 1/ name: string 1%
interaction: string 0..* type: string
0.* characteristic_id: string
1 value:
¥ 1 string | boolean | integer
A ¢ Protocol ProtocolSegment sub_content_variables:
SPEC id: string e ContentVariable[]
id: string name: string g id: stung) serialization_options:
rdf_type: string handler: string = name: string stringf]
name: string protocol_segments: - unit_reference: string
ProtocolSegment([]
Legend: Syntactic Semantic } Syntactic & Semantic

Fig. 1 Class diagram of the device abstraction model

III. DgevicE ABSTRACTION MODEL

After we outlined the background for our research and
gave an overview of related work in the previous section, we
present our device abstraction model in Fig. 1.

Our device abstraction model consists of 13 classes which
are used to map properties of IoT devices to an internal data
structure. In this context, we distinguish between syntactical
and semantic aspects of the model. Syntactical aspects ad-
dress technical details on, for instance, required message
formats and are highlighted green in the diagram. Semantic
aspects, highlighted in blue, address context information
about, for instance, what is measured by a sensor, respec-
tively, what is moved or controlled by an actuator. Classes
which are highlighted in yellow cover both, syntactical and
semantic aspects.

Diving into the model, a DeviceClass (e.g. smart lamp)
represents a set of DeviceTypes (e.g. smart lamps of type A
from manufacturer A and smart lamps of type B from man-
ufacturer B) which provide similar functionalities (e.g.
change the light color). A DeviceType, in turn, represents a
set of similar physical Devices (e.g. smart lamps of type 4
from manufacturer A with local ids from Al to A9999)
which may be connected to a Hub, also known as gateway,
for data transmission. A DeviceType has one or more indi-
vidually implemented Services (e.g. setColorService) which
expose one or more generic Functions (e.g. setColorFunc-
tion) and support event- or/and request-based interactions.
A Service has to be linked to an Aspect that is a real-world

phenomenon (e.g. room lighting) it relates to. A Service also
may have several inputs (e.g. color value) and outputs (e.g.
response code). Both require a Content (i.e. a payload)
which is serialized (e.g. using XML or JSON) for data ex-
change, placed within a ProtocolSegment (e.g. header or
body) and transmitted over a Protocol (e.g. HTTP or
MQTT). A Content consists of one ContentVariable which
describes the internal structure of a Content (e.g. { “name”:
“color”, “type”: “string” }) and can be nested in order to
map more complex structures. In the case of an XML serial-
ization, the serialization options field of a ContentVariable
can be used to define whether it is an XML attribute or the
content of an XML tag. ContentVariables can be linked to a
Characteristic which can be nested as well. Characteristics
(e.g. color definitions, such as RGB, HSB or Hex) define
different ways of how a Concept (e.g. color), which is a
property of an Aspect (e.g. room lighting), can be repre-
sented. Therefore, it is also possible to declare a base char-
acteristic for each Concept. Finally, a Concept can be linked
to Functions in order to indicate which property of an As-
pect is measured or changed by a Function (e.g. setColor-
Function changes the Concept color of Aspect room light-
ing).

The presented device abstraction model enables its users
to map the most important syntactical properties of IoT de-
vices and to enrich them with useful context information.
Furthermore, the main advantage of the model is that con-
crete service implementations are abstracted and, thus, de-

20

coupled from generic IoT device functionalities, which, in
turn, allows defining and using abstract device classes.
Hence, heterogeneous IoT devices, which support different
communication protocols, interfaces and message formats,
can be used in different deployments of the same IoT-aware
business process.

IV. SyYSTEM ARCHITECTURE

In the previous section, we presented our device abstrac-
tion model and described its classes as well as their relation-
ships with each other using the example of smart lamps. In
the following, we introduce our architectural concept for an
IoT-aware Business Process Management (BPM) system
(see Fig. 2), which instantiates the device abstraction model
to support the modeling, deployment, execution and reuse of
IoT-aware business processes. The architecture comprises

POSITION PAPERS OF THE FEDCSIS. SOFIA, 2020

13 different components (shown in white) whereby twelve
are supposed to run in a cloud environment and one is de-
ployed on IoT devices (shown in grey) in local networks.
The process designer component enables the graphical
modeling of executable loT-aware business processes with a
suitable notation and metamodel, such as BPMN 2.0. It gen-
erates machine-readable definition files of process models
according to drawn process diagrams. To define a business
process task for IoT devices, the user selects the task ele-
ment and assigns a generic Function (c.f. Sect. 3) to it. The
process designer retrieves Functions and other semantic
metadata about IoT devices, i.e. DeviceClass, Aspect and
Concept, from the semantic repository and enriches the ma-
chine-readable definition files with them. This allows com-
posing and reusing business process models at design time
independently of the implementation details of device types

loT-aware BPM System g]
Retrieve "
Deener | semantical > 2OeC
9 Metadata P y
Save/Load Retrzieve
Moz::lels Semantical Metadata
Retrieve
Process Model | Provide _____. >) Process Semantical
Repository Models Deployment Metadata
F{etrievé‘ 5
Devices Deploy:Models
7z £]
Device Process Converter
Repository Engine
Retrieve
B ; _Converted"""7
Retrieve . =77 Values
Message Structure __»___Fetch/CompIete
T e Tasks
2] Retrieve Process 7 Message
Marshaller [Seseze Request------- Task Worker Publish Broker
Message .- Device
Commands . A A
Publish i
Device Commands Consume
s, Publish Sggts;r
Sensor Data : :
Streaming Platform Consume Publish
Platform Consgme Connector Device Sensor
[Device - Commands Data
Commands __.--——= N : :
Local Network et) Send Send
‘Send Device gy Device Sensor
.- Commands o o Commar\)’ds Data
Data : : : :
Hub 2] .- Edge Device 2 | 2]
Edge Device
Client Connector Client Connector
Send Send
Sensor Device
Data Commands
; Vv
£]
Edge Device

Fig. 2 Component diagram of the IoT-aware BPM system

ROBERT WEHLITZ ET AL: INCREASING THE REUSABILITY OF IOT-AWARE BUSINESS PROCESSES

and instances. Furthermore, it enables to deploy the same
business process model multiple times for device instances
of different device types.

Created model definitions are stored in the process model
repository and provided to the process deployment compo-
nent for implementation purposes. The process deployment
component parses definition files and identifies for each
business process task which concrete user devices, that are
registered in the device repository, are able to complete the
task. In order to achieve this, the semantic repository is
queried to match metadata about DeviceClasses, Functions,
Aspects and Concepts with metadata about DeviceTypes and
Services. The cross-type result set, which contains device in-
stances that are able to execute the task, is presented to the
user who then can make the task assignment and define in-
put values for Services (e.g. the color for setColorService),
if required. Thereafter, the business process model is en-
riched with metadata about device types and instances (i.e.
IDs of Device, DeviceType and Service) and deployed to the
process engine, which ensures that process instances are ex-
ecuted according to the underlying model.

The business process task execution is done by the
process task worker component. It fetches pending execu-
tion jobs from the process engine and informs it as soon as a
job has been completed allowing the engine to proceed with
the next process step. The process task worker also requests
device type-specific message formats (i.e. Content with
ContentVariables) from the marshaller component and pub-
lishes them together with device instance-related data (i.e.
ID of the Device) as device commands to the streaming plat-
form. The marshaller component can pass input values re-
quired by a Service to the converter component, which re-
sponds with values that were converted from one Charac-
teristic to another (e.g. conversion of RGB values into
HSB). This is necessary if the format or unit of input values
given by an application is different from those expected by
the target device. The streaming platform provides an inter-
face by which the platform connector, that is responsible for
handling the communication between the IoT-aware BPM
system and edge devices, consumes pending device com-
mands and forward them to client connectors. Client con-
nectors run on edge devices themselves or on hub devices.
They are responsible for the registration and discovery of
IoT devices and may also pass sensing data from local net-
works on to the loT-aware BPM system. Furthermore, they
forward device commands to edge devices. The platform
connector publishes incoming sensor data to the streaming
platform where they can be consumed by other platform ser-
vices or applications. In the case of IoT devices which use
publish/subscribe-based communication protocols, such as
MQTT, a suitable message broker can serve as an intermedi-
ary component to forward device commands and sensor data
between the platform connector and edge devices.

V. ConcLusioN AND OUTLOOK

In this paper, we highlighted the challenge of coping with
heterogeneous IoT devices in a business process context.
For this, we used the example of smart home as a user-cen-
tric IoT domain in which executable IoT-aware business
processes define and represent the internal logic of smart
home services. We introduced three different levels of de-
vice abstraction (device instance, device type and device
class) for overcoming heterogeneity issues and discussed
how each of them affect the reusability of loT-aware busi-
ness processes. We then presented a device abstraction
model for mapping the properties of IoT devices to a data
structure which covers both, semantic and syntactical as-
pects. Moreover, it enables the decoupling of generic device
functionalities from concrete service implementations
which, in turn, increases the reusability of executable
IoT-aware business processes. Afterwards, we introduced an
architecture for an loT-aware BPM system, which instanti-
ates the device abstraction model in order to support the
modeling, deployment, execution and reuse of IoT-aware
business processes.

In the future, we want to evaluate our approach by pilot-
ing a software prototype of the IoT-aware BPM system in
conjunction with a larger amount of real-world IoT devices.
In this context, other application domains than smart home,
such as smart manufacturing and Industry 4.0, might be of
interest. Against this background, we expect to gain more
insights into the applicability, scalability and flexibility of
the device abstraction model and the system architecture.
Furthermore, we want to extend the architecture in order to
achieve interchangeability of IoT devices, not only at the
process deployment stage but even at process runtime. This
would be beneficial if, for instance, an IoT device has a mal-
function and has to be replaced instantly by another suitable
one during a running process instance.

REFERENCES

[1] Strategy Analytics, “Number of internet of things (IoT) connected
devices worldwide in 2018, 2025 and 2030 (in billions)”, Statista Inc.,
https://www.statista.com/statistics/802690/worldwide-connected-
devices-by-access-technology, last accessed 2020/07/17.

S. Khoshafian, D. Schuerman, “Process of Everything”, iniBPMS —
Intelligent BPM Systems — Impact and Opportunity L. Fischer, Ed.
Future Strategies Inc., Lighthouse Point, 2013, pp. 67-82.

Zion Market Research, https://www.zionmarketresearch.com/news/
smart-home-market, last accessed 2020/07/17.

C. Chang, S. N. Srirama, R. Buyya, “Mobile Cloud Business Process
Management System for the Internet of Things”,ACM Computing
Surveys, vol. 49, no. 4, pp. 1-42, 2016. doi:10.1145/3012000

R. Wehlitz, 1. RoBner, B. Franczyk, “Integrating Smart Devices as
Business Process Resources — Concept and Software Prototype”, in
Service-Oriented Computing — ICSOC 2017 Workshops L. Braubach,
J. M. Murillo, N. Kaviani, M. Lama, L. Burgueno, N. Moha, M. Oriol,
Eds. Heidelberg: Springer-Verlag, LNCS, vol. 10797, pp. 252-257,
2018. doi:10.1007/978-3-319-91764-1_20

N. Brouns, S. Tata, H. Ludwig, E. S. Asensio, P. Grefen, “Modeling
IoT-aware Business Processes — A State of the Art Report”, IBM
Research Division, San Jose, 2018.

G. Fortino, W. Russo, C. Savaglio, M. Viroli, M. Zhou, “Modeling
Opportunistic IoT Services in Open IoT Ecosystems”, in WOA, pp.
90-95,2017.

[2]

[3]
[4]

(3]

(6]

(7]

21

22

(8]

S. Meyer, A. Ruppen, L. Hilty, “The Things of the Internet of Things
in BPMN”, in Advanced Information Systems Engineering
Workshops, A. Persson, J. Stirna, Eds. Springer International
Publishing, pp. 285-297, 2015. doi:10.1007/978-3-319-19243-7 27
F. Martins, D. Domingos, “Modelling IoT behaviour within BPMN
Business Processes”, in Procedia Computer Science, Elsevier B.V.,
pp. 1014-1022, 2017. doi:10.1016/j.procs.2017.11.131

POSITION PAPERS OF THE FEDCSIS. SOFIA, 2020

[10] C.Janiesch, A. Koschmider, M. Mecella, B. Weber, A. Burattin, C. Di

Ciccio, A. Gal, U. Kannengiesser, F. Mannhardt, J. Mendling,
A. Oberweis, M. Reichert, S. Rinderle-Ma, W.-Z. Song, J. Su,
V. Torres, M. Weidlich, M. Weske, L. Zhang, “The Internet-of-Things
Meets Business Process Management: Mutual Benefits and
Challenges”, arXiv eprint, 2017. arXiv:1709.03628

