Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 23

Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems

Optimized Quasi-Monte Carlo Method Based on Low Discrepancy Sequences for Sensitivity Analysis in Air Pollution Modelling

, , ,

DOI: http://dx.doi.org/10.15439/2020F108

Citation: Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 23, pages 2528 ()

Full text

Abstract. An optimization version of the van der Corput sequence has been used in our sensitivity studies of the model output results for some air pollutants with respect to the emission levels and some chemical reactions rates. Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is very significant for improving the reliability of these models. Clearly, the progress in the area of air pollution modeling,is closely connected with the progress in reliable algorithms for multidimensional integration.

References

  1. G. Dimitriu: Global Sensitivity Analysis for a Chronic Myelogenous Leukemia Model: Proc. 9th International Conference NMA’2018, Borovets, Bulgaria, August 20-24, 2018, LNCS 11189, Springer, Jan 2019. http://dx.doi.org/10.1007/978-3-030-10692-8_42
  2. I. Dimov, R. Georgieva, Monte Carlo algorithms for evaluating Sobol sensitivity indices, Mathematics and Computers in Simulation, Volume 81, Issue 3, 2010, Pages 506-514, ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2009.09.005.
  3. H. Hamdad, Ch. Pzerat, B. Gauvreau, Ch. Locqueteau, Y. Denoual, Sensitivity analysis and propagation of uncertainty for the simulation of vehicle pass-by noise, Applied Acoustics Vol. 149, Elsevier, pp. 85-98 (June 2019). http://dx.doi.org/10.1016/j.apacoust.2019.01.026
  4. T. Homma, A. Saltelli, Importance Measures in Global Sensitivity Analysis of Nonlinear Models, Reliability Engineering and System Safety 52, 1996, 1–17, https://doi.org/10.1016/0951-8320(96)00002-6.
  5. S. Poryazov. A suitable unit of sensitivity in telecommunications. TELECOM 2011, 13-14.10.2011, Sofia, ISSN 1314-2690, p. 165–172.
  6. Sloan I.H. and Kachoyan P.J., Lattice methods for multiple integration: Theory, error analysis and examples, SIAM J. Numer. Anal. 24, pp. 116–128, 1987, https://doi.org/10.1137/0724010.
  7. I.H. Sloan and S. Joe, Lattice methods for multiple Integration, (Oxford University Press 1994).
  8. Sobol I.M., Tarantola S., Gatelli D., Kucherenko S., Mauntz W., Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety, 2007, 92, 957–960, https://doi.org/10.1016/j.ress.2006.07.001.
  9. van der Corput, J.G. (1935), “Verteilungsfunktionen (Erste Mitteilung)” (PDF), Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam (in German), 38: 813821, Zbl 0012.34705
  10. Wang Y., Hickernell F.J. (2002) An Historical Overview of Lattice Point Sets. In: Fang KT., Niederreiter H., Hickernell F.J. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56046-0 10.
  11. Zheleva, I., Georgiev, I., Filipova, M., & Menseidov, D. (2017, October). Mathematical modeling of the heat transfer during pyrolysis process used for end-of-life tires treatment. In AIP Conference Proceedings (Vol. 1895, No. 1, p. 030008). AIP Publishing LLC, https://doi.org/10.1063/1.5007367.
  12. Z. Zlatev, Computer treatment of large air pollution models, KLUWER Academic Publishers, Dorsrecht-Boston-London, 1995.
  13. Z. Zlatev, I. T. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam, 2006.