Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 23

Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems

A New Optimized Stochastic Approach for Multiple Integrals in Option Pricing

, , ,

DOI: http://dx.doi.org/10.15439/2020F109

Citation: Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 23, pages 2124 ()

Full text

Abstract. In the present paper we evaluate European style options with an exponential payoff function with an optimized lattice rule based on a new optimal generating vector. A brief introduction of the theory of lattice rule has been given. We compare the performance of the new stochastic approach with a new optimal generating vector for multiple integrals up to 50 dimensions.


  1. N. Bahvalov (1959) On the approximate calculation of multiple integrals, Journal of Complexity, Volume 31, Issue 4, 2015, Pages 502-516, ISSN 0885-064X, https://doi.org/10.1016/j.jco.2014.12.003.
  2. F. Black and M. Scholes (1973) The Pricing of Options and Corporate Liabilities, The Journal of Political Economy 81(3), 637–659, http://dx.doi.org/10.1086/260062.
  3. P.P. Boyle (1977) Options: a Monte Carlo Approach, Journal of Financial Economics 4(3), 323–338, https://doi.org/10.1016/0304-405X(77)90005-8.
  4. Centeno, V., Georgiev, I. R., Mihova, V., & Pavlov, V. (2019, October). Price forecasting and risk portfolio optimization. In AIP Conference Proceedings (Vol. 2164, No. 1, p. 060006). AIP Publishing LLC., https://doi.org/10.1063/1.5130808.
  5. L. K. Hua and Y. Wang, Applications of number theory to numerical analysis, (Springer 1981).
  6. N.M. Korobov, Number-theoretical methods in approximate analysis (Fizmatgiz, Moscow, 1963).
  7. Kuo, F.Y., Nuyens, D. Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation. Found Comput Math 16, 16311696 (2016). https://doi.org/10.1007/s10208-016-9329-5.
  8. Lai Y., Spanier J. (2000) Applications of Monte Carlo/Quasi-Monte Carlo Methods in Finance: Option Pricing. In: Niederreiter H., Spanier J. (eds) Monte-Carlo and Quasi-Monte Carlo Methods 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59657-5_19