Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 23

Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems

Conceptualization of an AI Based Assistant to Support the Compatibility of Family and Paid Work

, , , , ,

DOI: http://dx.doi.org/10.15439/2020F45

Citation: Communication Papers of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 23, pages 5764 ()

Full text

Abstract. The goal of the presented intelligent AI-based assistant is to simplify the reconciliation of paid work and family. In times of the corona pandemic and the challenges it poses, solutions are needed to mitigate the impact on workers and families and to strengthen the compatibility of work and family life. We are developing a conceptual reference model of proven methods and technologies for the generation of information that can be queried by interested parties via an bot service, thus simplifying professional and family challenges. Essentially, we provide a framework and starting point for research, development, and evaluation of an AI-based chatbot for the reconciliation of paid work and family.

References

  1. H. N. Io and C. B. Lee, “Chatbots and conversational agents: A bibliometric analysis,” in 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017, pp. 215–219.
  2. P. Böttinger and J. zu Putlitz, Die Zukunft der Medizin: Disruptive Innovationen revolutionieren Medizin und Gesundheit. Mit einem Geleitwort von Hasso Plattner. Berlin: MWV Medizinisch Wiss. Ver, 2019. [Online]. Available: https://books.google.de/books?id=42rKDwAAQBAJ
  3. F. Resch and P. Parzer, Entwicklungspsychopathologie und Psychotherapie — Kybernetische Modelle zur funktionellen Diagnostik bei Ju- gendlichen. Berlin Heidelberg New York: Springer-Verlag, 2015.
  4. S. Kaiser and M. J. Ringlstetter, Work-Life Balance - Erfolgversprechende Konzepte und Instrumente für Extremjobber. Berlin Hei- delberg New York: Springer-Verlag, 2010.
  5. S. Peters and J. v. Garrel, Arbeits - Zeitsouveränität für Führungskräfte von Morgen - Vereinbarkeit von Beruf und Privatheit. München: Rainer Hampp Verlag, 2013.
  6. M. Boniol, M. McIsaac, L. Xu, T. Wuliji, D. K., and J. Campbell, “Gender equity in the health workforce: Analysis of 104 countries.” Health Workforce Working paper 1., 2019. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/311314/WHO-HIS-HWF-Gender-WP1-2019.1-eng.pdf?ua=1
  7. M. Lukasczik et al., Compatibility of Work and Family Life of Employees in the Healthcare Sector: An Issue in Health Services Research. Gesundheitswesen (Bundesverband der Ärzte des Öffentlichen Gesundheitsdienstes (Germany), 2013.
  8. K. P. Jerg-Bretzke, L., H. C. Traue, and K. Limbrecht-Ecklundt, “What you will”: Results of an Empirical Analysis of the Need to Improve Work-life Balance for Physicians. Berlin: MWV Medizinisch Wiss. Ver, 2018.
  9. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Global Edition. CL, may 2019. [Online]. Available: https://www.xarg.org/ref/a/1292153962/
  10. T. Nolle, S. Luettgen, A. Seeliger, and M. Mühlhäuser, “Analyzing business process anomalies using autoencoders,” Mach. Learn., vol. 107, no. 11, p. 1875–1893, Nov. 2018. [Online]. Available: https://doi.org/10.1007/s10994-018-5702-8
  11. C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 665–674. [Online]. Available: https://doi.org/10.1145/3097983.3098052
  12. L. Barreto and E. Mota, “Self-organized inductive reasoning with nemus,” CoRR, vol. abs/1906.06761, 2019. [Online]. Available: http://arxiv.org/abs/1906.06761
  13. Y. Jiang and M. Bansal, “Avoiding reasoning shortcuts: Adversarial evaluation, training, and model development for multi-hop QA,” CoRR, vol. abs/1906.07132, 2019. [Online]. Available: http://arxiv.org/abs/1906.07132
  14. M. Qu and J. Tang, “Probabilistic logic neural networks for reasoning,” CoRR, vol. abs/1906.08495, 2019. [Online]. Available: http://arxiv.org/abs/1906.08495
  15. S. Liu, D. Maljovec, B. Wang, P. Bremer, and V. Pascucci, “Visualizing high-dimensional data: Advances in the past decade,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 3, pp. 1249–1268, 2017.
  16. C. Seifert et al., Visualizations of Deep Neural Networks in Computer Vision: A Survey, ser. Studies in Big Data. Springer, 2017, pp. 123–144.
  17. P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer, “Visualization of high-dimensional point clouds using their density distribution’s topology,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 11, pp. 1547–1559, 2011.
  18. C. Heine et al., “A survey of topology-based methods in visualization,” Comput. Graph. Forum, vol. 35, no. 3, p. 643–667, Jun. 2016.
  19. J. Wang, L. Gou, H. Shen, and H. Yang, “Dqnviz: A visual analytics approach to understand deep q-networks,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 288–298, 2019.
  20. B. C. Kwon et al., “Retainvis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records,” CoRR, vol. abs/1805.10724, 2018. [Online]. Available: http://arxiv.org/abs/1805.10724
  21. V. Dibia and Ç. Demiralp, “Data2vis: Automatic generation of data visualizations using sequence to sequence recurrent neural networks,” CoRR, vol. abs/1804.03126, 2018. [Online]. Available: http://arxiv.org/abs/1804.03126
  22. A. Niekler et al., “ILCM - a virtual research infrastructure for large-scale qualitative data,” in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA), May 2018. [Online]. Available: https://www.aclweb.org/anthology/L18-1209
  23. A. Jacovi, O. Sar Shalom, and Y. Goldberg, “Understanding convolutional neural networks for text classification,” in Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 56–65. [Online]. Available: https://www.aclweb.org/anthology/W18-5408
  24. S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text classification,” in AAAI, 2015.
  25. J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
  26. J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,” CoRR, vol. abs/1812.09449, 2018. [Online]. Available: http://arxiv.org/abs/1812.09449
  27. L. Azzopardi, M. Dubiel, M. Halvey, and J. Dalton, “Conceptualizing agent-human interactions during the conversational search process,” 2018.
  28. L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “SuperAgent: A customer service chatbot for e-commerce websites,” in Proceedings of ACL 2017, System Demonstrations. Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 97–102. [Online]. Available: https://www.aclweb.org/anthology/P17-4017
  29. T. Okuda and S. Shoda, “Ai-based chatbot service for financial industry,” Fujitsu Scientific and Technical Journal, vol. 54, no. 2, pp. 4–8, 2018.
  30. E. H. Almansor and F. K. Hussain, “Survey on intelligent chatbots: State-of-the-art and future research directions,” in CISIS, 2019.
  31. N. Bilski and T. Schmid, “Verantwortungsfindung beim einsatz maschinell lernender systeme, njoz 2019, 657-661,” vol. 19, p. 657, 05 2019.
  32. B. J. Wagner, “Rechtliche Analyse der Kommunikationsströme zwischen Assistenzsystemen,” in Konnektivität von Assistenzsystemen: Eine vertrags- und datenschutzrechtliche Analyse kollaborativer Softwareagenten im Internet of Things. Wiesbaden: Springer Fachmedien Wiesbaden, 2020, pp. 65–436. [Online]. Available: https://doi.org/10.1007/978-3-658-29628-5_3
  33. H. Harkous, K. Fawaz, K. G. Shin, and K. Aberer, “Pribots: Conversational privacy with chatbots,” in Twelfth Symposium on Usable Privacy and Security ({SOUPS} 2016), 2016.
  34. J. v. Brocke, Konstruktionstechniken zur Referenzmodellierung - Enzyklopaedie der Wirtschaftsinformatik, 01 2018.
  35. A. Vaswani et al., “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762
  36. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
  37. D. Takeuchi and K. Tran, “Improving squad 2.0 performance using bert + x,” 32nd Conference on Neural Information Processing Systems (NIPS), vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
  38. M. E. Peters et al., “Deep contextualized word representations,” CoRR, vol. abs/1802.05365, 2018. [Online]. Available: http://arxiv.org/abs/1802.05365
  39. A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by generative pre-training,” https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf, 2018.
  40. Y. Jernite, S. R. Bowman, and D. A. Sontag, “Discourse-based objectives for fast unsupervised sentence representation learning,” CoRR, vol. abs/1705.00557, 2017. [Online]. Available: http://arxiv.org/abs/1705.00557
  41. L. Logeswaran and H. Lee, “An efficient framework for learning sentence representations,” CoRR, vol. abs/1803.02893, 2018. [Online]. Available: http://arxiv.org/abs/1803.02893