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Abstract—Smart Grids offer multiple benefits: efficient energy
provision, quicker recoveries from failures, etc. Nevertheless,
there is risk of data tampering, unsolicited modification of the
data of the smart meters. The main aim of this paper is to
provide a model for processing the smart meter data that flags
any energy consumption level that could be indication of data
tampering. The proposed model is time-sensitive, allowing for
tracking the energy usage along time, thus making possible the
detection of long-lasting abnormal levels of energy consumption.
Such model can be integrated in an anomaly detection system
and in a semantic web reasoner.

I. INTRODUCTION

S
MART Grids (SGs) are modern power grids based on

the integration of cyber and physical systems that enable

efficient transmission of electricity, constant monitoring and

self-healing properties in case of failures, with the overall aim

to provide smart services and reduced costs for utilities and

consumers [1], [2].

From the side of the connection between consumers and

service operators, an important part of SGs is the Advanced

Metering Infrastructure (AMI) that is constituted by smart

meters and the communication infrastructure for dealing with

bi-directional communication between smart meters, service

operators and energy consumers/prosumers. Smart meters be-

came over time a central point for the provision of smart

services to energy consumers. However, the wide diffusion

has also increased several concerns for service operators, such

as the needs of securing the devices, dealing with privacy

concerns about data usage, and avoiding potential risks of

energy theft.

In this paper, we deal with potential compromission of smart

meters with the purpose of altering the power consumption

readings in so-called data tampering activities with the aim

to gain some benefits or to harm the overall network stability

by means of data injection attack [3]. Attackers can either

compromise the hardware devices locally, injecting false data

packets sent to control centers or modify data exchanged in

other parts of the SGs infrastructure in so-called data injection

attacks [3].

The proposed model is intended to be used as the basis for

the implementation of algorithms to prevent data tampering
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from the side of energy service providers. The main charac-

teristics that the model offers are twofold. Firstly, it can model

a minimum and maximum energy consumption thanks to the

modal operators. This allows to flag any energy usage that

might be too big or too small and set up an alarm. Furthermore,

the model also is able to track statements regarding energy

usage along the time, allowing for the implementation of time-

sensitive algorithms. This aspect increases the probability of

detecting a real case of data tampering, as any peak or valley

in the consumption would not be enough to set off an alarm.

Peaks and valleys in energy usage are to be expected, but not

when they last for a long time. Finally, it is important to note

that the model has been implemented from a perspective of

converting the data generated by the nodes into the semantic

web. This means that one could be able to use the data

generated by those devices, processed by the model, and

input it into a semantic web reasoner, allowing for further

automation and also a much better and extensive usage of the

naturally generated data.

We have the following main contributions in this paper:

• Definition of a formal model based on temporal logic for

data tampering of smart meters data;

• Theoretical and practical proofs of concept of the model

based on sample data from UMass Smart* Dataset [4];

The paper is structured as follows. In Section II we define

the concept of SGs, the importance of smart meters and the

concept of data tampering for either energy theft or for reasons

of false data injection attacks. In Section III we go through

several related works of modelling/detecting data tampering

for smart meters. In Section IV we define the temporal logic

model for data tampering for smart meters, while in section

V we give both a theoretical proof and a practical one based

on the publicly available datasets of power consumption data.

In Section VI we provide the discussion about the formal

results of the model. In Section VII we discuss the impact

of the model and the results in the general context of smart

metering infrastructure, while in Section VIII we provide the

final conclusions of the paper.

II. ADVANCED METERING INFRASTRUCTURE & DATA

TAMPERING

A SG is a modern power grid enabling two-way power flow

and bi-directional communication between power suppliers
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Fig. 1. Overview of the Advanced Metering Infrastructure (AMI) [5]

and consumers [2]. An efficient transmission of electricity, fast

restoration in case of failures, and overall reduced costs for

utilities are key aspects supported by the integration of cyber

and physical systems [1]. The adoption of SGs leads to lower

power costs for consumers, reduced peak demand, increased

integration of large-scale renewable energy systems. Real-time

monitoring and recovery of power generation and distribution

is another key characteristic, as the actual state of the grid is

monitored and reported to the network, adapting the power

output to the real needs. SGs are also important to increase

the usage of renewable sources (e.g., solar energy), as excess

energy generated can be sold.

Decentralization of the SG led to the introduction of mi-

crogrids. A microgrid is an independent and small network of

electricity users (consumers / prosumers) that can carry out

operations independently from the centralized grid and even

isolate itself from the rest of the power network in case of

failure of the grid [6]. As it can be seen from Fig. 1, devices

and sensors also play an important role in the context of SG, as

they support smart energy scenarios, such as households using

a solar-power system (with batteries and sensors) to decide

about the best times to recharge Electric Vehicles (EV) [6].

Smart meters are a key element to allow bi-directional com-

munication inside the AMI in SGs [7]–[10]. They constitute a

cyber-physical device that can register power consumption and

transmit back information to Distribution System Operators

(DSOs). The smart meters allow one household to fully em-

brace the smart home concepts, by bringing several benefits to

consumers / prosumers and DSOs: first of all, the availability

of power consumption information allows consumers to make

more reasoned choices about the best power consumption

patterns allowing savings on energy costs. Furthermore, DSOs

can remotely access smart meter readings, reducing the costs,

and possibility of human mistakes. Additionally, wasting of

energy can be reduced, by balancing the power needs where

needed [8], [9]. The overall view of smart meters in the context

of SGs can be seen in Fig. 2, where smart meters can be

placed in the context of Home Area Networks (HAN) to

integrate the different devices in a smart home. Furthermore,

Fig. 2. Overview of Smart Meters and AMI infrastructure (adapted from [8])

they can be part of Neighbourhood Area Networks (NAN)

to integrate several households and make possible prosumer /

consumer communication, and Wide Area Networks (WAN)

to cover communication with data centers and DSOs. Data

concentrators are an important component of the AMI that

allows the connection between different smart meters and

service providers [7], [9], [10]. All these connections and the

way they are implemented, constitute the AMI [7], [9].

Together with the benefits, there are also some potential

drawbacks in the adoption of more advanced power metering

devices and in general AMI. The large diffusion of smart

meters and the enhanced functionalities offered increased the

needs of a balance between securing the devices, keeping

privacy concerns about data usage, and avoiding potential risks

of energy theft.

Attacks to smart meters are often done with the aim of

some data tampering activity: either on the physical device

or on the data registered transmitted to achieve either some

economical benefit or to harm the overall stability of the

network. Data tampering activities are often referred to as false

data injection attacks in the context of cyber-physical security

of the SG. Attackers can change the smart meter measurements

by either compromising the hardware devices locally, injecting

false data packets sent to control centers or by changing data

exchanged in other parts of the SGs infrastructure [3].

Data tampering activities targeted at AMI can be summa-

rized in Table I, where we can see the cyber and physical

attacks that can lead to some effects on power measurements

reported by smart meters. Compromissions can be both derived

512 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



from physical or cyber aspects connected to the AMI [11],

[12]. In this paper, we are focused on the effects on power

measurements, such as altering the reported power consump-

tion to the energy provider.

III. RELATED WORKS

There are several research works that deal with data tam-

pering in the AMI. Many of these papers focus on either

energy theft detection, data tampering / data injection attacks,

aggregation of data and / or frameworks for the detection /

prevention of data attacks to smart meters in the AMI.

Li et al. [13] were proposing an approach to aggregate

data from smart meters keeping privacy concerns in mind. A

signature-based scheme, together with an incremental verifi-

cation protocol is used to deal with potential dat tampering in

itinere on data derived from the smart meters.

Hock et al. [14] were proposing an anomaly detection

model using multiple sources to detect smart meters that were

tampered with. The approach is based on the comparison of

several time series, showing advantages over analyzing a single

power consumption time series.

McLaughlin et al. [11], [12] proposed a framework for the

detection of energy theft in the context of AMI, combining

data from smart meters and sensors to increase detect capa-

bilities. Combining power consumption data traces with data

from logs and cyber events proved to increase the detection

rate of malicious activities.

Liu et al. [15] use colored Petri net to model information

flows between different components in the smart meters.

Considering a threat model, authors propose a detection mech-

anism against false data injection attack that can be used to

detect any data tampering activity.

The model proposed in the current paper can be seen as a

temporal model that can be used on the inception of the data

generated from smart meters. As such, it can be considered

as an aggregation to the work done in Li et al. [13] rather

than an alternative. Furthermore it can complement anomaly

detection approaches (e.g., Hock et al. [14]) with some formal

reasoning on which to base the algorithms for the detection

of malicious activities for data tampering in the AMI.

IV. MODEL FOR SMART METERS DATA TAMPERING

DETECTION

In this section, we will present the temporal logic model

to be used as basis for algorithms for smart meters data

tampering detection and processing of the generated data. In

the upcoming sections we will discuss theoretical and practical

proof of concepts of the model.

For any simple statements p, q, ..., any complex statements

A, B, ..., the unary connectives ¬ (Negation), � (Necessity), ♦

(Possibility), P (In the past), F (In the future), and the binary

connectives ∧ (Conjunction), ∨ (Disjunction), → (Entailment),

the following recursive forming rules apply:

• (a) For any simple statement p, p is a well-formed

statement. Furthermore, if A = p, then A is well-formed

statement.

• (b) If A is a complex statement and ∗ is a unary

connective, then ∗A is a complex statement.

• (c) If A and B are complex statements and ∗ a binary

connective, then A ∗B is a complex statement.

• (d) There are no more statements than those defined by

the clauses (a), (b) and (c).

By simple and complex statements we are referring to any

kind of data that any device of the AMI might produce. In

the current case we are focusing on the idea of implementing

the model for data tampering on smart meters, but any reader

would be able to identify statements that allow to reflect

different aspects that give context to any action (e. g., weather

data). Furthermore, while the model counts with a nice array of

connectives, we have excluded any high order connectives (e.

g., ∀x, for all x), as to keep the model to a minimum, therefore

making its implementation easy as only simple operations

would be required. Nevertheless, despite the simplicity of

the model, it still allows for the processing of complex and

interesting statements thanks to the expressiveness and variety

of connectives. For example, for any reader that might be

interested in using the model for patterns from a single smart

meter could do so by using the recursive definition and add

as many connectives to their statements as needed. Also, if a

reader would be interested in aggregating multiple sources, the

connective for Conjunction would allow for it. As an addition

to the recursive definition of the connectives, we highlight that

by ⊤ we mean constant true as customary.

A model M is the structure M = 〈K, T, |=〉, where

K is the set of devices (smart meters) a, b, c, ...; i. e.,

K = {a, b, c, ..}; each element of K is a set in itself that

includes a minimum and maximum power consumption, m

and h respectively, among other characteristics i1, i2, i3, ...;

i. e., a = {m, h, i1, i2, i3, ...}. T is a set of temporal points

t1, t2, t3, ...; i. e., T = {t1, t2, t3, ...}. Finally, |= is a relation

from K to the set of statements such that the following clauses

apply:

(1) a |= A ∧B if and only if (iff) a |= A and a |= B

(2) a |= A ∨B iff a |= A or a |= B

(3) a |= ¬A iff a 6|= A

(4) a |= A → B iff a |= ¬A or a |= B

(5) a |= �A iff a |= m

(6) a |= ♦A iff a |= h

(7) a, t |= PA iff ∃s, s ∈ a, with s < t, and a, s |= A,

and ∀u, u ∈ a if s < u < t, then a, u |= A

(8) a, t |= FA iff ∃s, s ∈ a, with t < s, and a, s |= A,

and ∀u, u ∈ a, if t < u < s, then a, u |= A

This model M is able to express multiple notions that are

of use when considering data tampering in the SGs domain;

specifically, it is based on the communication of power con-

sumption values from the smart meters. In the first place, it is

necessary to point out that the model is built under the idea that

every smart meter can, and will, produce statements regarding

their consumption. These statements are divided into two
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TABLE I
TYPE OF DATA TAMPERING ATTACKS [11], [12]

Cyber Physical Effect on Power Measurements

Compromise meters through remote network exploit Break into the meter Stop reporting entire consumption

Modify the firmware/storage on meters Reverse the meter Remove large applicances from measurement

Steal credentials to login to meters Disconnect the meter Cut the report by a given percentage

Exhaust CPU/memory Physically extract the password Alter appliance load profile to hide large loads

Intercept/alter communications Abuse optical port to gain access to meters Report zero consumption

Flood the NAN bandwidth Bypass meters to remove loads from measure-
ment

Report negative consumption (act as a generator)

categories: simple statements, represented by lower-case letters

p, q, ..., and complex statements represented by upper-case

letters A, B, C, ...; simple statements are produced directly

by the devices themselves while complex statements are to

be obtained from the aggregation of simple statements. These

statements are assigned either true or false according to the

device where they are produced. a |= p and a 6|= p represent

that the statement p is valid and not valid on the device a

respectively. These statements are to be processed according to

the classical propositional connectives of conjunction, disjunc-

tion, negation and entailment as customary. This is represented

by clauses (1)-(4). (1), the clause for conjunction (∧, and),

states that the conjunction of two statements is valid (in the

device a) iff both statements are valid (in the device a). (2),

the clause for disjunction (∨, or), states that the disjunction

of two statements is valid iff any of those two statements

is valid. (3), the clause for negation (¬, not), states that the

negation of a statement is valid iff said statement is not valid.

Finally, (4), the clause for entailment (→, if...then...), states

that a conditional statement is valid if any, the negation of the

first statement or the second statement, are valid. Up to this

point, the model is pretty straight forward and includes little

to no novelty regarding customary processing of data.

The remaining clauses, (5)-(8), introduce the more interest-

ing aspects. Clause (5), the clause for necessity, states that a

necessary statement is true iff the argument of said statement

is valid according to the minimum set by the device. That

means that every device a would have a established minimum

consumption m that would, in its turn, generate a statement

A. This statement, therefore, is to be considered as necessarily

valid, �A, iff it holds according to the minimum m. The same

holds for clause (6), the clause for possibility, with the great

difference that it is considered against the maximum set by

the device, h.

Clause (7), the clause for ”In the past”, states that a

statement is in the past iff there is a past temporary moment

in which the statement was valid and for each temporary past

moment between the first one and the present, the validity of

the statement holds. This means that given a statement A is

valid in a device a, in a temporary moment t, iff the statement

is valid in a past temporary moment s and in the device a,

and also for each temporary moment u, such that s < u < t,

the validity of A holds in a. The same holds for clause (8),

the clause for ”In the future” with the great difference resides

that the additional temporal moments s and u are set in the

future and, therefore t < u < s.

All in all, this model allows us to establish a minimum

consumption statement A that is to be necessary, �A, whose

validity ensures that the data cannot be tampered giving back a

value that is too low. Also, the model allows the establishing

of a maximum that cannot be trespassed, ¬♦A, that would

be able to determine any tampering in the data consumption

regarding the higher values. Both minimum and maximum are

set outside of the boundaries of the formal model, as they are

dictated by real-world actions, physical parts of the system (e.

g., the maximum energy consumption established by contract).

This further expands on the versatility of the model, as it

can be set to almost anything that might be wanted, be it

a simple numeric value, be it a range of values, with ease.

Also, the model is not only able to consider and validate

these examples, but also is able to track them along time,

as it is able to determine not only if something is valid in the

past or the future, PA and FA respectively, but also validate

those statements according to very specific temporary points

t, and therefore making the flagging of tampering much more

precise. This is due to the facts that spikes over the maximum

and under minimum are to be expected, but they cannot be

validated for a long time.

To finalize this section there is a point that need to be

addressed: the implicit comparison operator built in the valida-

tion of the statements. As m and h represent a numeric value

and there are statements strictly linked to them, there has to be

a comparison operator of sorts. Nevertheless, as it can be seen

in the model above, the comparison operator does not exist.

This is mostly due to the fact that the comparison can happen

with disregard to this kind of operator: it happens but dealing

on absolute values; i. e., instead of comparing two different

values, it compares the validity of the statements with regard

to a physically set boundary. This helps to keep the model as

simple as possible, lowering its computational complexity and

making it easier to implement.

A. On the relation of the proposed model with LTL

A really interesting point to be make is about the rela-

tionship of the model with LTL (Linear Temporal Logic). It

could be argued that the presented model is, indeed, related to
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LTL and that is, without a doubt, a correct interpretation, as

both share the same kind of temporal dimension: a linear one.

Nevertheless, the proposed model is more than just LTL. It

should be regarded as a fragment of LTL plus an extension of

said fragment; i. e., the fragment comprised of the connectives

∧, ∨, →, ¬, P and F , (excluding the connectives U and S)

and extended with the modal connectives � and ♦. Because

this, the model is not introduced with relation to LTL, as that

would be detrimental to its understanding. This reason is the

same why LTL is presented as an individual model and not as

just an expansion of classical propositional logic. The same

could be said for any temporal or real-logics. Despite all this,

any tools supporting specification and proving for existing

temporal logics should be easily applicable to the common

fragment of the temporal model that we have defined.

V. PROOF OF CONCEPT

In this section, we will give two different proof of concepts.

One based off a theoretical example, in which we will go over

an ideal household a, and a practical example, for which we

will use the data of UMass Smart* Dataset [4]. We begin with

the theoretical one and will progress into the practical later.

To keep the proofs of concept as simple as possible

we will provide simple examples with the breaching of a

minimum/maximum for a long time by single datapoints.

Nevertheless, the model is expressive enough to track patterns.

For example, the reader might want to consider a case in

which after a consumption over the maximum, the energy

usage is back within the established limits and this happens

up to three times with exactly the same energy consumption.

This could be represented by the complex statement (P¬♦r →
s)∧(P¬♦r → s)∧(F¬♦r → s)) where ¬♦r is a consumption

above the maximum and s a regular energy usage. As such,

the model allows to design and apply customized patterns to

fit the specificity of the AMI in which data tampering activities

are to be detected.

A. Theoretical Proof of Concept

Let us consider a to be a small and regular household.

As any household, this one has an upper limit on energy

consumption at once established by the contract. This limit

is established in h in the previous model (cf. clause (6) and

its definition) and it is a simple statement p that equals to said

upper limit; e. g., p = ”the consumption is under 3kW”.

Similarly, a lower limit m (cf. clause (5) and its definition)

is also established. This lower bound is not as easy to pinpoint

as it is possible to not have clear data on it since its inception.

Nevertheless, this problem might be solved with the advent of

many smart devices, like fridges, washing machines and many

other household items. These devices are expected to be able

to convey their consumption in real time as statements. This

would allow to calculate a minimum based on those devices

that are to be running at all times; e. g., a fridge. All this

items on their own should provide multiple statements re-

garding consumption that can be summed up in an aggregator

before leaving the household; e. g., the fridge might produce

q = ”the consumption is 350W”, the electric heating might

produce r = ”the consumption is 1kW”; and therefore, the

complex statement is to be A = q∧r. Obviously, this complex

statement A is to be established in m as we pointed before.

All this allows for monitoring peaks and lows in consump-

tion. For that matter, clause (6) would allow to detect any peak

higher that the maximum that we have established. When the

statement ¬♦p is validated for the node a, a |= ¬♦p, we

know that the consumption data are being tampered, as it is

impossible for the consumption to be as high: the complex

statement ¬♦p indicates that is impossible for that to happen.

In the same vein, any time that the statement �A is not

validated, a 6|= �A, it indicates that the consumption has gone

under a minimum that is not expected, as there is minimal

consumption that should happen constantly. With these in

mind, we could track the peaks and valleys of the ideal

household a that we have defined above, being able to set off

an alarm when the consumption goes into abnormal territory.

It is obvious that peaks and valleys are bound to happen

from time to time and not all of them should be due to

data tampering. For that matter, the model introduces clauses

(7) and (8) that allows to track the abnormal consumption

as time goes by. The previous statements could be modified

so they are read as P¬♦p and F�A. This means that the

abnormally high consumption from before has been going on

for some time. Even more, the validation of this statement

in the household that we have set should be reading as

a, t |= P¬♦p, indicating that since the time point t the

consumption has been too high. This would be able to tell us

that the data of household has been tampered if t is far away

enough in time. In the same sense, the not validation of F�A

would be the anticipation of some tampering in the long run:

a, t 6|= F�A means that the abnormally low consumption �A

is being constantly validated. This, in particular, rather than

establishing the revision of something that has been happening

for some time to set off an alarm, would be useful to indicate

in which time point the alarm should be set off.

All the statements that we have used for this theoretical

example can be seen summarized in Figure 3. Also, as this

figure points out, the statements that are outputted by the

household are to be processed in some way or another, be it

a semantic web reasoner as mentioned above, be it a manual

processing. One thing might draw the attention of the reader

from the diagram is the explanation of a, t 6|= F�A. This is

due to the fact that we are predicting what will happen in

the future. Nevertheless, what this mean is that said statement

is able to track the minimum consumption into the future; i.

e., the statement allows for flagging a too low consumption

somewhere in the future.

B. Practical Proof of Concept

Let us consider the case of HomeA from the UMass Smart*

Dataset (2017 release) [4]. As we have stated before, these

data are extracted directly from real smart meters and real

households, so this further validation reinforces the usefulness

and of the model and its real-world application. For this proof
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a |= ¬♦p:=”The consumption of the household a is not

above its maximum”

a 6|= �A:=”The consumption of the household a is under its

minimum”

a, t |= P¬♦p:=”The consumption of the household a at the

moment t has not been above its maximum in the past”

a, t 6|= F�A:=”The consumption of the household a at the

moment t will be below its minimum in the future”

From household a

To the processing of data

Fig. 3. Household a Data Diagram

of concept, we will divide it into two different parts. The

first one would be focused on showing how the model works

with the preexisting data, while the second will focus on a

hypothetical data injection attack.

1) Preexisting Data: For this example, we focus on the data

stored in the file HomeA-meter3 2016, the one with the meter

reading occurring every minute. Despite being real-world data,

we are still missing some important values, like the minimum

and maximum, m and h in the model respectively. Therefore,

we will extrapolate this from the data we already have. As

we have pointed above, we are considering single datapoints

for the minimum and maximum but, nevertheless, it could

be adapted to be a value equal to a standard deviation over

the mean as we will show later. Since we are dealing with

a regular household we will assume that there is no data

tampering in the dataset and, from the file, we can assume

that m = ”0.00010kW” and h = ”3.50000kW”. These

values are obtained from the data: there is no value under

0.00010kW as the lowest consumption can be found at Date:

2016-08-02, Time: 15:09:00 with the consumption equal to

0.00013kW; also, there is no value above 3.50000kW as the

highest consumption can be found at Date: 2016-05-09, Time:

17:38:00 with the consumption equal to 3.14308kW.

Once we have set the upper and lower bound we introduce

the operators of the model that allow for the description of

minimum and maximum. For the case of the minimum, for the

consumption p, where p is the consumption of the data from

Date: 2016-10-07, Time: 06:51:00 and is p = ”0.00386”. Then

we have that HomeA |= �p, as p remains over the minimum

we have set. For the case of the maximum, for the consumption

q, where q is the consumption of the data from Date: 2016-

05-13, Time: 17:25:00 and is q = ”2.92368”. Then we have

that HomeA 6|= ¬♦q, as q remains below the maximum set

in h. For the case of the time-sensitive connectives is easy

to see how they are implemented from the time points that

we have selected. Assuming that we want to check out the

validity of the minimum consumption, �p, in the past, P�p,

HomeA |= �0.00386kW :=”The consumption of HomeA is

not under its minimum”

HomeA 6|= ¬♦2.92368kW :=”The consumption of HomeA

is under its maximum”

HomeA, 06 : 51 : 00 |= P�0.00386kW :=”The consumption

of HomeA at 06:51:00 has not been under its minimum

since the past”

HomeA, 17 : 25 : 00 6|= F¬♦2.92368kW :=”The

consumption of HomeA at 17:25:00 will be below its

maximum towards the future”

From HomeA

To the processing of data

Fig. 4. HomeA Preexisting Data Diagram

we would set the time point t as t = ”06 : 51 : 00” and go

as back we might be interested, in this case we set s = ”04 :
51 : 00” for a time span of two hours. Since for every time

point u between t and s the consumption does not go under

the minimum, as it can be seen in the dataset, we can affirm

that HomeA, t |= P�p; i. e., the consumption of HomeA has

not gone under the minimum in the past at the time point t

(since a time point s). Additionally, for the case of checking

the maximum in regards to a future time point, we firstly set

the time point t′ as t′ = ”17 : 25 : 00” and the future time

point s′ as s′ = ”21 : 30 : 00” giving a time span of 4

hours and 5 minutes. Since for every time point u′ between t′

and s′ the consumption is under the maximum we know that

HomeA, t′ 6|= F¬♦q; i. e., the consumption of HomeA has

not gone over the maximum at time point t′ (towards a time

point s′).

All that has been described for this practical proof of

concept based on the preexisting data can be seen in Figure 4.

2) Simulated Data Injection Attack: Now, we will show

how the model works in the case that a data injection attack

might happen at HomeA. For this case, we will consider two

different data injection attacks and, to showcase the flexibility

of the model, we will set up the maximum to be equal to

the mean plus three times the standard deviation. In this

case the mean is 0.02166kW while the standard deviation is

0.21316kW. The minimum would be set up to be a really low

value, as the mean minus three times the standard deviation

would give back a negative value, something that is impossible

in this case. Obviously, this statistic approach will not work

appropriately given the fact that the dataset that we are using

is not normally distributed, but will suffice to show how the

model works. With this in mind the minimum and maximum

are as follows: m′ = ”0.00009kW” and h′ = ”0.66114kW”.

The first one would consider that the energy consumption

p′ at Date: 2016-07-10, Time: 04:51:00 until Time: 06:51:00
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HomeA 6|= �0.00008kW :=”The consumption of HomeA is

under its minimum”

HomeA |= ¬♦0.78409kW :=”The consumption of HomeA

is above its maximum”

HomeA, 06 : 51 : 00 6|= P�0.00008W :=”The consumption

of HomeA at the 06:51:00 has been under its minimum

since the past”

HomeA, 17 : 25 : 00 |= F¬♦0.78409kW :=”The

consumption of HomeA at 17:25:00 will be above its

maximum towards the future”

From HomeA

To the processing of data

Fig. 5. HomeA Simulated Data Injection Attacks Diagram

has been tampered so it reads p′ = ”0.00008kW”. Since we

know that the minimum m′ = ”0.00009kW”, it automatically

follows HomeA 6|= �p′, thus flagging the consumption at any

time point given of that time span as abnormal. Furthermore,

since the consumption have been modified for time span, from

s = ”04 : 51 : 00” to t = ”06 : 51 : 00”, it allows the model

flag it as abnormal in the current time point t with regards to

a time point in the past s; i. e., HomeA, t 6|= P�p′. All in all,

the model would detect that, at the time point t, the energy

consumption has been abnormally low since the time point s.

The second simulated data injection attack would take place

at Date: 2016-05-13, Time: 17:25:00 until Time: 21:30:00,

tampering the energy consumption q′ to q′ = ”0.78409kW”.

Since the maximum has been set as h′ = ”0.66114kW” this

would allow for the model to give back the flagging of the

consumption as abnormally high at any time point of the

previous time span; i. e., HomeA |= ♦¬q′. Furthermore, if

we consider the time point t′ = ”17 : 25 : 00” as the initial

time point, the model would be able to track this towards a

future time point s′ = ”21 : 30 : 00” and, thus it would mark

the consumption as abnormally high for the time span since

t′ until s′; i. e., HomeA, t′ |= ♦¬q′.
These simulated data injection attacks are available in the

shape of a diagram to the reader in Figure 5. Additionally, it is

important to mention that these attacks come to show how the

model would work with a high tolerance, as it would detect

really small differences, like in the case of the minimum, while

also detecting some not so small such as the attack on the

maximum.

VI. FORMAL RESULTS

The fragment M0 of the model M that includes the con-

nectives ∧, ∨, ¬, →, P, F is sound, complete, decidable

and satisfiable. This is due to the first four connectives being

the connectives of classical propositional logic. For the last

two, the temporal connectives this results also apply. This

is due to the fact that the temporal dimension has been

added following the work done in [16], which makes them a

conservative extension of the previous model. With this said,

they necessarily preserve any properties that the base model

might have. Therefore, the whole fragment is, as pointed

above, sound, complete, decidable, and satisfiable. This formal

results guarantee that the model will not get stuck in an infinite

loop, that it would be able to process any valid statement no

matter what, and also the fact that well-formed statements can

be validated by the model.

Also, it should be recalled that the temporal dimension

added following [16] is a Linear Temporal Dimension. This

implies that there is just one flow of time, not multiple as

in the case of a Branching Temporal Dimension. This further

expands on the simplicity of the model as, while the branching

time option could be really interesting, also requires more

computational power, as it creates a different flow of time for

each event that we might want to track thanks to the model.

With regards to the missing fragment, the one of the

connectives �, ♦, the same result should follow, but for that

matter the model should be strengthened with a relational

operator R. Since this model aims at being a simple model

of low computational complexity, this relation should be

avoided. Nevertheless, since the main validation terms of the

connectives, m and h, are expected to be based on real-life

events instead of theoretical ones, the same results should

follow, but their proofs exceed the capabilities of a formal

system.

VII. DISCUSSION

The proposed model has been developed with the aim to

deal with smart meters data tampering potentially being the

basis for algorithms for anomaly detection and a semantic

web reasoner. However, it is not only ideal to prevent the

submission of false data, it can also constitute a validator

to process regular generated data from the AMI. The model

would allow for service providers to keep the whole network

under surveillance to further support additional data monitor-

ing processes. Furthermore, the definition of the model is as

minimal as possible so its real-world implementation is not

huge tax on any preexisting running process. Also, the fact

that the model has been endowed with a temporal dimension

helps when dealing with questions that might fall outside the

scope of other processing tools. This is even more evident

when compared with the data that is already available, like

the one of UMass Smart* Dataset [4] that we used in the

practical proof of concept.

A point that needs to be addressed is the integration of the

model with the semantic web and therefore, with the semantic

web reasoners. The statements that are part of the model are

considered to be as statements from IoT devices. Generally

speaking, this means that these statements are easily converted

into semantic web statements, making them processable by

any kind of semantic reasoner. This conversion from IoT into

the semantic web is due to an Internationalized Resource
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Identifier (IRI) that gives uniquely identifiable names to the

thing and also specifies the location of the resource, based on

the Web Ontoly Language (OWL). All in all, the model is not

introduced only with the idea of detecting data tampering, but

also to implement an automation of so and the AMI in general.

This can be more obvious if one takes a look at all the clauses

of the model, as it might be possible to have a model with

only (3) and (5)-(8) to process the data tampering, but in this

case, the model is extended so a semantic web reasoner has the

possibility of going beyond just data tampering. It is interesting

to mention that there are semantic web reasoners that have

been already developed with the idea of working the energy

consumption data that is the base of SGs. A good example

of what these can reasoners do is [17], where the authors

introduce the OEMA ontology for unifying the energy domain,

which leads to the automation of the energy performance and

contextual data processing. Let us add that the proposed model

is independent of any ontology, it can be used to work with

many different ones, as it provides the framework for the

reasoning, rather than the statements that can be processed

and, therefore, adding to its flexibility.

It is also worth mentioning how the model flexibility is one

of its main advantages. As the model is quasi-formal, meaning

that there is a part based on its interaction with the physical

world, the constraints established can be bent in whatever way

a service provider of a SG might need. For example, when

establishing the maximum and minimum consumption for any

prosumer, the aforementioned methods might not work. This

is due to the fact that the minimum consumption of a prosumer

might, and is expected to be, negative. Nevertheless, this can

be extrapolated from the data of the energy production of the

solar panels. Thus, modifying the validity of m and h, the

formal notions of the model that represent the minimum and

maximum consumption of the element a of the network.

Going further into the flexibility of the model, for two

different households a and b, if those two households have

the same minimum and maximum, m and h, then the model

would be able to assign the corresponding statement to each

household. Furthermore, in the case that the minimum and

maximum are different, the model is not just THE model, but

rather A model, meaning that there could be multiple iterations

of the same model for different entities, but with the same

structure. Additionally, given that both m and h are determined

by the iteration of the model, the same semantic web reasoner

could be used to process the data of multiple models at the

same time.

To conclude this section, it is important to note how the

time-sensitive aspect of the model, does not relay on accessing

time points that have not already happened; i. e., time points

in the future. Rather than that, what the model offers is the

option of tracking changes with the passing of time, i. e., the

F connective, or checking with past time points, i. e., the P

connective, to ensure the validity of the statements that are

happening in the current time point.

VIII. CONCLUSION

This paper has introduced a time-sensitive model that allows

for the detection of anomalies in energy consumption from

smart meters in the context of data tampering activities. The

model not only offers the detection of said anomalies, but

also their tracking along the time dimension, allowing for the

flagging of irregularities that are sustained in time. This model

has been shown to be able to detect any case of data tampering

in smart meters, as it would not automatically target any peak

or valley in the consumption, but rather those that prolong their

existence over time. The effectiveness of this very model has

been shown through a proof of concept, at first theoretically

and based on a real dataset afterwards. Furthermore, the model

can be taken as the basis for the implementation of a semantic

web reasoner that is not just focused on data tampering, but

also allows for processing any other information produced by

the smart meters that might be part of the whole advanced

metering infrastructure.

There are multiple lines of investigation that can be fol-

lowed from here; the main ones to be explored include the

implementation of an ontology and a semantic web reasoner

based upon the model described. Together with this support,

the data-tampering detection model described would be tested

within an anomaly detection framework, thus allowing more

data to be obtained for further validation. The model also could

be implemented in different domains like the communication

solution that appeared in [18]. It is also of interest to modify

the model so the temporal dimension may be changed from a

linear one to a branching one, thus allowing for the tracking of

multiple time spans of different households at the same time.
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