
Thespis: Causally-consistent OLTP

Carl Camilleri, Joseph G. Vella, Vitezslav Nezval

Computer Information Systems

University of Malta, Malta

Email: {carl.camilleri.04, joseph.g.vella, vitezslav.nezval}@um.edu.mt

Abstract—Data Consistency defines the validity of a data set
according to some set of rules, and different levels of data consis-
tency have been proposed. Causal consistency is the strongest type
of consistency possible when data is stored in multiple locations,
and fault tolerance is desired. Thespis is a middleware that
leverages the Actor model to implement causal consistency over a
DBMS, whilst abstracting complexities for application developers
behind a REST interface. ThespisTRX is an extension that
provides read-only transaction capabilities, whilst ThespisDIIP
is another extension that handles distributed integrity invariant
preservation. Here, we analyse standard transactional workloads
on the relational data model, which is richer than the key-value
data model supported by the Thespis interface. We show the
applicability of the Thespis approach for this data model by
designing new operations for the Thespis interface, which ensure
correct execution of such workloads in a convergent, causally-
consistent distributed environment.

I. INTRODUCTION

T
HE CAP theorem [1], [2] proves that having both avail-

ability and partition tolerance within dispartite databases

(DBs) that implement Strong Consistency (SC) [3] is not

possible. SC is the strongest type of consistency offered by tra-

ditional distributed database management systems (DDBMSs),

that manage databases across multiple nodes.

Distributed data centres have led to a wide adoption of DBs

that forego strong data consistency in favour of availability

and partition tolerance to provide the scalability and high

availability properties sought by enterprise-scale applications.

Popular DBs in this area offer Eventual Consistency (EC) [4],

a weak consistency model which guarantees that given no new

WRITE operations, all nodes (i.e. distributed partitions) of the

DB eventually converge to the same state.

EC is relatively easy to achieve, and does not suffer from

the performance limitations of distributed algorithms, such as

Paxos [5], that attempt to achieve a degree of availability and

SC in a distributed environment. However, EC shifts data safety

and consistency responsibilities to the application layer, giving

rise to a new set of problems [6].

Causal Consistency (CC) [7] is weaker than SC, but stronger

than EC, and has been proven to be the strongest type of

consistency that can be achieved in a fault-tolerant, distributed

system [8]. Informally, CC implies that readers cannot find a

version of a data element before all the operations that led to

that version are visible [9].

II. PROBLEM DOMAIN

CC is sufficiently strong, and sufficiently performant, for

most enterprise applications [10]. However, we believe its

adoption in the industry is compounded by a number of

aspects, including:

1) Lack of support for rich data modeling, with CC DBs

supporting data sets based on the key-value data model,

or abstract data types.

2) Programmer accessibility, given that existing CC DBs

require engineering applications specifically around their

semantics or client libraries, and do not sufficiently

abstract the programmer from the complexities of dis-

tributed data management [11].

3) Database lock-in, with the CC DB storing data in native

formats which are incompatible with other consumers.

We propose a middleware that achieves CC, stores the data in

a relational database management system (RDBMS), and inte-

grates with applications through intuitive APIs, abstracting the

complexities of CC as much as possible. In this paper, we also

analyse online transactional processing (OLTP) workloads that

are traditionally used to benchmark widely-adopted RDBMSs,

and propose the semantics that such a middleware should offer

to enable an application to perform the same function within

a CC DDBMS.

III. DEFINITIONS

This section identifies some terminology and provides rel-

evant definitions, as used throughout the rest of the paper.

Replica. A replica denotes a copy of a database. Our context

assumes that each replica is a full copy of the database.

Data Centre/Node. A Data Centre (DC), or node, refers to

a physical location that hosts one of the replicas of a database.

Distributed Database. A distributed database (DDB) is

considered to be a database which resides in multiple nodes.

Database Operation. A database operation denotes an

activity that is performed by an application against some API

offered by the database, or by the overlying middleware.

Operation Latency. The operation latency is the time

elapsed between when a client submits a database operation

to when the result of that operation arrives back at the client

(typically quoted in milliseconds).

System Throughput. The throughput achieved from a

particular setup (i.e. system implementation installed on a

specific infrastructure) is the number of operations served in

a period of time (typically quoted in requests per second).

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 261±269

DOI: 10.15439/2021F34

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 261



Data Freshness. Data freshness refers to how long it

takes clients connected to a remote DC to be able to read

the result of a DB operation that changes state (typically, a

WRITE operation) in the local DC. In most implementations,

data freshness is traded for throughput and operation latency

optimisation i.e. a higher throughput and lower latency are

preferred over reading the latest changes from remote DCs.

Causal Consistency. A system is causally-consistent if all

operations that are causally-related are seen in the same order

across all the nodes in the DDB [7]. Two operations a and b are

deemed to be potentially causally-related, denoted by a → b

(i.e. a leads to b), if at least one of three criteria holds [12]:

1) Thread of Execution: Given a process P , operations

within the same process are causally-related i.e. a → b if

P performs a, then it performs b.

2) Reads from: Given a WRITE operation a, if b reads the

result of a, then a → b.

3) Transitivity: If a → b, and b → c, then a → c.

Conversely, the order of concurrent operations across

the different nodes is not guaranteed. Concurrent operations

are those that are not related through causality, and are

therefore essentially unrelated with respect to the data items

read and/or written [7]. Two operations a and b are deemed to

be concurrent if a 9 b and b 9 a, and so can be replicated

in any order across the DDB cluster, without violating CC.

Conflict Handling. In order for a DDB to support high

availability with low latency, WRITEs need to be accepted

at any node without requiring co-ordination, at least in the

critical path, with other nodes [9]. A state of conflict causes

consistency between different nodes to be broken. A conflict

is declared when the same data element in two non-colocated

replica gets updated concurrently. Two operations on the same

data element are conflicting if they write a different value,

and are not related by causality [7] i.e. they are concurrent.

Concurrent and conflicting operations, in the context of a DDB,

can therefore be defined as follows:

• Let Θ1 and Θ2 define a WRITE operation on a data item

identified by key k, in DC1 and DC2 respectively.

• Let Θ1 = put(k, v1).
• Let Θ2 = put(k, v2).

∴ Θ1 and Θ2 are concurrent and conflicting operations.

Various approaches for conflict detection and conflict res-

olution have been put forward [13], [14], [15]. The Last-

Writer Wins (LWW) is a popular conflict resolution technique

where the most recent update is retained in case of conflict.

A database which offers CC as well as conflict detection

and resolution, and therefore convergence, is said to provide

causal+ consistency (CC+) [16].

IV. LITERATURE REVIEW

A. Causally-Consistent Databases

In COPS [16], application clients are co-located with a

cluster of servers that store a full replica of the DB. A WRITE

operation is placed in a queue and sent to peer DCs, where it

is stored if all its dependencies are also stored. Dependencies

of a WRITE operation are tracked by a client-side library that

tracks a context identifier. Within a context, dependencies of a

WRITE operation are defined as the latest version of all keys

that have so far been interacted with, guaranteeing causality.

Conflicts are handled using a LWW approach.

COPS-GT [16] extends COPS with support for read-only

transactions. Clients can request the values of a set of keys,

rather than that of a single key, and the DDBMS returns a

causally-consistent snapshot of the requested keys. COPS-

GT, like COPS, uses a sequentially-consistent key-value store,

but changes the client library, the DB and the semantics of

the READ and WRITE operations. Keys are mapped to a set

of versions for that key, rather than one value as in COPS.

Each version is mapped to a value and a set of dependencies,

encoded as pairs of <key,version>, thus supporting READ and

WRITE operations in a transactional context.

Bolt-On [9] describes a custom middleware on top of

Cassandra, a commercially-available EC DB with a columnar

data model which handles replication. Bolt-On implements

explicit causality, offloading dependency tracking to the client.

Data items are tagged with a set of tuples, each indicating a

process identifier and its monotonically-increasing identifier.

The dependencies of a WRITE operation are the versions of

the keys read to produce that operation. Each client holds

an interest set, the keys that it needs to read, and a resolver

process maintains a causally-consistent view of the keys within

this set by fetching the latest versions of the data items and

their dependencies.

GentleRain [17] provides CC over a key-value, multi-

versioned, sharded and replicated DB. It depends on a custom

replication protocol to propagate WRITEs across DCs. Depen-

dency tracking is efficient, as the only meta-data stored with

a WRITE operation is a timestamp and a server identifier. Any

READ operation can only access versions of data that are

created in the local DC, or versions that have been created

in remote DCs and replicated across all DCs. This guarantees

causality by ensuring that when reading a version, the items

which have led to its creation (i.e. its dependencies) are present

in all DCs.

Wren [18] takes a somewhat similar approach to [17], but

uses Hybrid Logical Clocks (HLC) [19] to timestamp events

in a more reliable manner. Furthermore, Wren implements

transactional CC, allowing clients to perform read transactions

as well as running multiple WRITE operations atomically.

B. Benchmark Workloads

DBMS query workloads are segmented into two broad

modes [20], [21]. Online transactional processing (OLTP)

workloads consist of WRITE queries that modify small

amounts of data, and READ queries that process a few records

and project the majority of the attributes available [22]. In

OLTP, short response times are crucial to avoid user frustra-

tion and business impact [23]. In contrast, Online analytical

processing (OLAP) workloads typically consist of read-only

queries that traverse a large amount of records, performing

aggregations and projecting a small set of attributes [22].

262 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



TABLE I
TPC-C TRANSACTIONS

Transaction Characteristic Minimum Percentage of mix

New Order read-write 45%

Payment read-write 43%

Order Status read-only 4%

Delivery read-write 4%

Stock Level read-only 4%

The TPC-C [24] workload simulates a DB which models a

number of geographically-distributed brick and mortar ware-

houses, each associated to one or more districts. A number of

terminals perform transactions on stock available in each ware-

house. A TPC-C workload is characterised by five transactions

over nine tables containing synthetic data [25], as summarised

in Table I. The benchmark specification also defines that an

execution should comprise transactions chosen at random, but

the final transaction set should maintain a minimum percentage

for each type of transaction. Each transaction consists of a

number of queries, as shown in Table II [26]. The workload

can be throttled by two parameters. The scale factor (sf)

specifies the number of records that are generated within the

DB. The scale factor determines the number of warehouses

available, which in turn determines the number of records

generated in the other tables. Conversely, the number of

terminals determines the number of parallel threads that the

workload generator spawns to execute concurrent transactions.

Hence, larger scale factors imply that TPC-C queries are heav-

ier (e.g. record selections operators applied to larger tables),

but possibly less contentious (a larger number of records

reduces the probability of contention), whilst a larger number

of terminals increases the number of concurrent transactions,

and thus the probability of contention. Finally, TPC-C defines

a set of tests that should be executed to confirm that the

system under test guarantees suitable Atomicity, Consistency,

Isolation, and Durability (ACID) properties.

The TPC-E [27] workload simulates a DB used by a financial

brokerage firm that stores customer-related information (e.g.

accounts, holdings, watch lists), broker information (e.g.,

trades, trade history), and financial market data (e.g., com-

panies, securities, related news items, last trades). The TPC-

E data model consists of 33 tables and twice the number of

columns when compared to TPC-C, and is seeded with pseudo-

real data based on the U.S. and Canada census from 2000,

as well as census data and actual listings on the NYSE and

NASDAQ stock exchanges [28]

The Smallbank [29] benchmark simulates a banking appli-

cation that sustains transactions relative to financial accounts.

The access pattern of the workload is skewed to define a small

number of "hot" accounts upon which most transactions are

executed. By nature of the application, transactions in this

benchmark involve small number of records.

V. MIDDLEWARE FOR CAUSAL CONSISTENCY

As shown by our review of the literature, current approaches

to CC offer very specific interfaces, depend on custom DBs,

and offload data-handling functionality to client applications

in a way that makes CC non-trivial to implement and use. The

majority of the approaches also deal with a simple key-value

data model. Although this data model can be the building block

of more complex schemas, application developers are used to

richer data model structures.

Thespis [30] is a middleware that provides CC as well as

conflict detection and resolution, thus achieving CC+. Data is

stored in a database which offers SC and a rich data model with

effective querying and reporting capabilities on data generated

by OLTP systems, but no support for horizontal scalability

(i.e. the underlying database does not offer the possibility to

scale out on more than one node out of the box). This fits

the description of a RDBMS. Relational databases are widely

used in production systems, and offer a richer data model with

effective querying and reporting capabilities on data generated

by OLTP systems. Hence, although not mandatory for the

Thespis approach, the implementation assumes that: a) the

main data backing engine is a RDBMS; and b) that the client

is an application handling “objects”, primarily instances of

business-domain models.

Thespis tackles several objectives: it enables the use of CC

without requiring major application re-engineering, stores data

in a format accessible to other systems that need to consume

it (e.g. reporting modules), and considers efficiency such that

performance overheads of CC guarantees do not outweigh the

benefits of using a DDBMS.

These objectives are tackled through the fusion of a number

of concepts, most importantly:

1) The Actor Model [31], which organises logic in terms

of a hierarchical society of “experts” that communicate

together via asynchronous message passing. An actor

consists of a) a mailbox where incoming messages are

queued; b) an actor’s behaviour, or the behavioural logic

that is executed in response to a received message; and

c) an actor’s state, in other words the data stored by the

actor at a given point in time. Actors process one message

at a time, and exist in the context of Actor Systems [32],

where hierarchies can form.

2) Command Query Responsibility Segregation (CQRS)

[33], a software design pattern that applies the concept

of Command Query Separation (CQS) [34] in order to

maintain separate data models for READs and for WRITEs.

3) Event Sourcing (ES) [35], another pattern where all data

changes are captured as a sequence of events that are

stored in an event log and that, when applied in order,

provide a view of the system state at a particular point

in time.

Figure 1 illustrates the Thespis middleware that offers an

API allowing two operations, READ and WRITE. All operations

employ the Actor model to deal with both concurrency issues.

Firstly, the actor-based implementation ascertains that

READs happen concurrently. Secondly, it also ascertains that

WRITEs on the same object, and in the same replica, happen

in a set sequence. The hierarchical nature of Actor Systems

CARL CAMILLERI ET AL.: THESPIS: CAUSALLY-CONSISTENT OLTP 263



is also exploited to reflect a causally-consistent view of the

underlying database. The Writer Actor and Reader Actor

are responsible for storing actor states and retrieving business

objects from the underlying DB respectively. The Replication

Actor is responsible for replicating actor state changes from

one replica to the other. The core Middleware actor system

holds a set of actors which provide a view of the underlying

DB to the application. Finally the actor system adopts a "child-

per-entity" approach, spawning one Entity Actor per type of

business object (e.g. DB table), supervising dedicated Entity

Instance Actors for each business object instance. The state

of the Entity Instance Actor is made up of two elements: the

Entity Instance and the Event Log. The events in the Event

Log can be applied to the Entity Instance governed by the

Entity Instance Actor to retrieve the latest (causally-consistent)

version of the entity.

The middleware snapshots data changes in the DB only

when received in all the DCs. WRITEs are captured in the

middleware layer and, given a new version of an entity being

created by any WRITE operation, a set of events representing

the new state, compared to the previous version, are extracted.

Finally, the system incorporates a replication protocol,

again founded on the Actor model, which encapsulates two

algorithms, one running on the Originating Server (i.e. the

server where a new event is created), the other on the Remote

Server, or the server which is receiving an event from an

Originating Server. Key to the replication protocol, and to

enforce causality, is the Stable Version Vector (SVV). The SVV

is simply a vector of length M , where M is the number of peer

DCs. Each element SV VDC in the vector is the latest observed

timestamp from the corresponding peer DC. Specifically, the

vector element SV VDCN
[M ] denotes the latest timestamp

observed from DC M within DC N .

Details of the implementation, performance evaluation and

correctness assessment of the Thespis middleware are given

in our previous work [30]. Results show that the Thespis

approach achieves CC+, availability and partition tolerance.

Furthermore, inline with the PACELC theorem [36], Thespis

can provide CC, whilst optimising operation latency under

normal conditions, as well as tolerating network partitions or

node failures.

A. Read-only Transactions

ThespisTRX [37] adds to Thespis the functionality for when

multiple entities need to be retrieved from the underlying DB,

potentially in multiple operations whilst preserving causality.

Our example in the context of a social media application

[37] shows a common encounter of Time-To-Check-Time-To-

Use (TOCTOU) race conditions using the Thespis API, and

underlines the need for this extension.

ThespisTRX builds on the Thespis approach with three

main additions. First of all, two new system components are

introduced, namely:

1) The Transaction Coordinator, which is responsible to

track transactions that are running in the local node at

any point in time;

2) The Entity Version Log, which is responsible to hold

versions of entities that may be required by all currently-

running transactions, and which can easily be queried.

Both new components are implemented within the middleware,

of which an instance exists in each DC.

Secondly, the middleware API is extended to support three

new operations. STARTTRAN and ENDTRAN signal the start

and end of a read transaction respectively, whilst READTRX

is essentially an overload of the standard READ operation

that takes an additional parameter TransactionId. Thirdly, the

logic in the business application is slightly adjusted to signal

the start and end of a transaction, and passes the transaction

identifier to all read operations.

Thirdly, given this model, the logic in the business applica-

tion is slightly adjusted too: the business application signals

the start and end of a transaction, and adds the transaction

identifier to all of its read operations.

Details of the implementation, performance evaluation and

correctness assessment of the ThespisTRX extension are dis-

cussed in [37]. The results from empirical evaluation show

that read latency is similar in both Thespis and ThespisTRX,

confirming that READs do not interfere with the WRITEs in

ThespisTRX that maintain the Entity Version Log. WRITEs

have a slightly higher latency in ThespisTRX, which is ex-

pected due to the need to store additional meta data (i.e.

Entity Version Log) in order to support transactional reads.

Nonetheless, the reduction in throughput varies between 1.8%

(for read-heavy workloads) and 4.8% (for write-heavy work-

loads), and therefore does not prohibit the use of ThespisTRX

for the same workloads as Thespis.

B. Distributed Integrity Invariant Preservation

Integrity Invariants are application-specific operation pre-

conditions, or rules that determine whether an operation on

a data element should be accepted or not. A DDBMS such

as Thespis [30] achieves low latency and high availability by

allowing operations to be accepted at any DC, and propagated

to other DCs asynchronously. The result of an operation

accepted at any replica can be propagated to a remote replica

at a time when the operation’s pre-condition no longer holds

[38], leading to an anomaly in the integrity invariant.

ThespisDIIP [39] is an extension of Thespis that brings

distributed integrity invariant preservation (DIIP), over and

above the original CC+ guarantees. Focus is given to integrity

invariants for data values that must be satisfied according to a

Linear Arithmetic Inequality (LAI) constraint [40]. These are a

set of problems that involve resource allocation [41], such as

operations on bank accounts (integrity invariants define that

withdrawals cannot request more than the available funds)

and order fulfillment operations (an order can be accepted

only if there is enough stock). Although important in real-

world applications [42], these types of integrity invariants are

not I-confluent [43], meaning they cannot be preserved by

concurrent transactions without co-ordination.

ThespisDIIP employs data-value partitioning (DVP) [44] and

takes a novel approach to achieve DIIP by exploiting the

264 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



Fig. 1. Thespis Middleware System Model

structure of the underlying RDBMS to trigger background DVP

operations when needed.

Design, implementation and benchmarking details are given

in [39], where it is shown that the asynchronous operation

latency in ThespisDIIP is short enough to eliminate waiting

time in the critical path of a typical enterprise application.

VI. APPLICATIONS TO OLTP WORKLOADS

The API offered by the Thespis middleware, as well as its

extensions, is well-suited towards atomic workloads, such as

YCSB [45], which is used to benchmark Thespis [30] and its

extensions [37], [39], but more sophisticated OLTP workloads

require richer semantics.

From the list of benchmarks described in our review of the

literature, TPC-C is the oldest specification of a transactional

workload, however it is also one that is established, and

referred to in recent related and orthogonal works in the

literature [46], [47]. We thus choose to focus on the TPC-

C benchmark in this paper. First, we analyse its queries and

subsequently design the necessary semantics to handle them

through extensions to Thespis.

Table II summarises the TPC-C transactions and queries.

Each of the latter is marked according to a relevant cluster for

which semantics are proposed.

A. Primary Key Selection Operations

Queries that return zero or one records based on a predicate

on the relation’s primary key are trivial and can be satisfied

by the Thespis API [30], or any CC DB using a key-value data

model. These are marked with † in Table II.

B. Set Selection Operations

Marked with § in Table II, these are queries where the

predicate is not based on a primary key, and that thus can

return 0 or more records. This is considered feasible to achieve

in the Thespis approach, whilst still preserving CC, as shown in

Algorithm 1. Given a query Q, first the set of entity instances

that match are looked up in the RDBMS. The query is also

sent to every Entity Instance Actor that is active in memory.

Each Entity Instance Actor returns a message containing a set

comprising of one element (the version of the entity instance

that the Actor represents) if the version of the entity matches

the query. Alternatively, the message represents the empty set.

The final result is then the set of entity instances returned

from the DB, removing those that are represented by an Entity

Instance Actor where an empty result set was returned, and

adding those entity instances which are not returned from the

DB but are returned from their Entity Instance Actor.

Algorithm 1 Set Selection Query Algorithm

Let S1 = the result of query Q from the RDBMS

Let S2 = the result of query Q executed against the Entity

Instance Actors

result = (S1 − (∀s2 ∈ S2 where s2.results = ∅)
⋃
((∀s2 ∈ S2 where

s2.results <> ∅))

C. Record Creation Operations

Operations that create a new record are also satisfied by the

Thespis API and state-of-the-art CC DBMSs. New records are

always created in a causally-consistent context, and therefore

the underlying CC+ DBMS is required to manage replication

and resolve any potential conflicts. Three queries in the TPC-C

benchmark, marked with ¶ in Table II, fall under this segment.

D. Sequence-Management Operations

The query marked with ⊙ is such an operation, which

increments a field with every transaction to always ensure a

sequential, monotonically increasing, and unique value.

Although this is managed well by an RDBMS, a special

operator is needed by a CC DBMS. The following operator is

proposed to satisfy such requirements:

η : uint64 =

4 bits
︷ ︸︸ ︷

{DC id}

48 bits
︷ ︸︸ ︷

{physical time}

12 bits
︷ ︸︸ ︷

{logical time}

Operator η is essentially a hybrid logical clock (HLC)

[19] that generates monotonically-increasing values at the

microsecond granularity tracking of physical time. The value is

prefixed by the unique identifier of the DC where the operation

is accepted, essentially allowing the CC DBMS to span across

CARL CAMILLERI ET AL.: THESPIS: CAUSALLY-CONSISTENT OLTP 265



TABLE II
TPC-C TRANSACTIONS AND QUERIES.

† PRIMARY KEY SELECTION. § SET SELECTION. ¶ RECORD CREATION. ⊙ SEQUENCE MANAGEMENT. > VALUE INCREMENT. ⊎ VALUE ASSIGNMENT.
⊠ RECORD DELETION. ± JOINS, AGGREGATES ETC.

Transaction Procedure

New Order

1) Select(whouse-id) from Warehouse †

2) Select(dist-id,whouse-id) from District †

3) Update(dist-id,whouse-id) in District ⊙

4) Select(customer-id,dist-id,whouse-id) from Customer †

5) Insert into Order ¶

6) Insert into New-Order ¶

7) For each item (10 items):

a) Select(item-id) from Item †

b) Select(item-id,whouse-id) from Stock †

c) Update(stock-id,whouse-id) in Stock >

d) Insert into Order-Line ¶

Payment

1) Select(whouse-id) from Warehouse †

2) Select(dist-id,whouse-id) from District †

3) a) Case 1: Select(customer-id,dist -id,whouse-id) from Customer † OR
b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer §

4) Update(whouse-id) in Warehouse >

5) Update(dist-id,whouse-id) in District >

6) Update(customer-id,dist-id,whouse-id) in Customer ⊎

7) Insert into History ¶

Order Status

1) a) Case 1: Select(customer-id, dist-id,whouse-id) from Customer †

b) Case 2: Non-Unique- Select (customer-name, dist-id,whouseid) from Customer §

2) Select (Max (order-id) ,customer-id) from Order ±

3) For each item in the order:

a) Select (order-id) from Order-Line †

Delivery

1) For each district within the warehouse (i.e. ten times):

a) Select (no-o-id) from New-Order †

b) Delete(order-id) from New-Order ⊠

c) Select (customer-id) from Order †

d) Update(order-id) from Order ⊎

e) For each item in the order (i.e. ten times):

i) Update (delivery-date) from Order-Line ⊎

f) Select (Sum (amount)) from Order-Line ±

g) Update(balance) from Customer >

h) Update(delivery-cnt) from Customer >

Stock Level 1) Select (d-next-o-id) from District †

2) Select count(distinct (s-i-id)) from OrderLine,Stock ±

a maximum of 16 DCs, which is deemed sufficient for our use

cases. Finally, reserving 12 bits for the logical time part of

the HLC, accepting a maximum value of 4096, is also deemed

sufficient, based on results that show that this rarely exceeds

100 [19] even in the worst case of clock skew.

This operator satisfies two of the three requirements of

the TPC-C workload: it generates a monotonically increasing

and unique value at any point in time however, the values

are not guaranteed to be sequential. This latter guarantee

could be achieved through co-ordination between the DDBMSs

nodes, resulting however in the loss of high availability and

throughput of the DDBMS. Thus, we see the η operator being

useful in the CC DBMS, where application semantics can relax

the sequential constraint.

Another approach is a UID generator [48], where part of

the acceptable range of values in the sequence is allocated to

each DC, that in turn can generate sequential values from its

allocation. This is a simpler approach however it assumes that

the number of DCs is static and known beforehand, and does

not support a cluster that can shrink or grow to the needs of

the application.

E. Value-Increment Operations

Trivially, we define value-increment operations as those

operations that increment the value of a field in a tuple, such

as those marked with > in Table II. A special operator is

also required by a CC DBMS to handle such operations. The

following operator is proposed to satisfy such requirements:

γ(t) : int64 =

n−1∑

0

[v0, v2, v3, ..., vn−1]

Essentially, the operator γ(x) yields a Grow-Only Counter

[49], that stores a value v for every DC participating in the

cluster. Executing γ(t) at DC x increments the value vx by t.

Grow-Only Counters are conflict free replicated data types

(CRDTs) that support increment operations in a distributed

environment without co-ordination [49]. Therefore, they allow

a CC DDBMS to execute such operations safely, without

266 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



introducing co-ordination and losing on high availability and

performance.

F. Value-Assignment Operations

Value-assignment operations set an absolute value of a

field in a tuple. Such queries, marked with ⊎ in Table II,

are equivalent to WRITE operations in a CC DDBMS and

do not strictly require any special semantics. However, some

OLTP workloads may need to enforce stronger consistency on

such operations in order to avoid lost updates, specifically

the effects of concurrent operations which are subsequently

resolved via the LWW strategy by the CC DDBMS. Such

consistency guarantees have been shown to be incompatible

with a distributed, highly-available environment [50].

Thespis (with the ThespisDIIP extension [39]) already sup-

ports application-specific configuration to enforce invariants

that satisfy LAI constraints. We extend this configuration fur-

ther in order to define fields that require a strong consistency,

and therefore co-ordination between nodes. This is in-line with

other approaches to multi-level consistency in the literature

[51] [52] and we believe that it is an important feature that

makes a CC DDBMS applicable to common OLTP workloads

where, for some operations, strong consistency is preferred

over operation latency or high availability.

G. Record Deletion Operations

Operations that delete records, such as the one marked with

⊠ in the Delivery transaction, are achievable by the same

semantics as a WRITE operation of the Thespis API, and

therefore inherit the same causal consistency guarantees.

H. Operations involving Joins, Aggregates, Sorting etc.

OLTP queries may comprise other relational algebra oper-

ations, such as joins, aggregates and sorting. Such queries in

the TPC-C workload are marked with ± in the Stock Level

and Order Status transactions.

Join operations can be considered equivalent to a Cartesian

product of two relations, followed by a set selection operation

[53] and are therefore achievable with the same semantics.

Similarly, aggregates and sorting can be implemented in the

actor system using a combination of set selection operation se-

mantics and corresponding aggregate or sorting logic. Building

on the semantics of operations that have already been defined

ensures that CC is guaranteed.

VII. DISCUSSION

The original REST interface of Thespis allows the execution

of workloads using a key-value data model. However, we have

now shown that the Thespis approach scales to handle also

richer data models, such as the relational data model, given

that the operators discussed in Section VI are made available

in the Thespis API.

With these operators, our analysis shows that it is possible

to satisfy the semantics of all the TPC-C transactions in

Thespis. Specifically, a client application can interface with

Thespis to execute the TPC-C workload in a CC+ distributed
environment, thus benefiting from the scalability and high

availability properties of a CC+ DBMS.

However, it is important to highlight that Thespis still

remains a distributed CC+ DDBMS and therefore foregoes a

number of guarantees that a SC RDBMS offers, and that the

TPC-C benchmark requires. Most importantly, being a dis-

tributed CC+ DBMS, Thespis does not conform with the ACID

guarantees that the official TPC-C specification mandates.

The first area of divergence relates to atomicity guarantees.

Given that Thespis only supports read-only transactions, via

the ThespisTRX extension, multiple WRITE operations are

always treated distinctly. Therefore, Thespis does not provide

full support for the atomicity criteria that the TPC-C benchmark

requires for its transactions.

Furthermore, Thespis guarantees CC, the strongest level of

consistency that a DDB can guarantee whilst also supporting

high availability. As expected, this level of consistency is not

sufficient to guarantee the consistency requirements of TPC-C,

which is expected and in-line with orthogonal literature [46].

The isolation requirements of TPC-C are also not adhered

to under Thespis, where there is no notion of transactions.

A higher level of conformity is guaranteed through the

ThespisTRX extension, which protects read-only transactions

from phenomena such as phantom and non-repeatable reads.

However, the lack of support for WRITE transactions does not

prohibit other phenomena such as dirty writes.

Lastly, being a DDB that can accept WRITE operations at

multiple DCs, Thespis does not satisfy the durability require-

ments of TPC-C. Specifically, any WRITE operation (such as

record creation, value assignment and record deletion opera-

tions) can be overwritten by the LWW conflict resolution oper-

ation. Given the possible occurrence of conflicts, and the fact

that these cannot be prohibited without losing high availability,

the effects of a WRITE operation cannot be deemed sufficiently

durable in Thespis to conform with the requirements of the

TPC-C benchmark.

VIII. CONCLUSIONS

The problem domain is well studied and different ap-

proaches have been proposed, including domain specific lan-

guages [54], data types that support various consistency levels

[55], and instructions expressed in the application’s third-

generation language [48], [56].

We tackle the problem by proposing a middleware that

scales an RDBMS into a CC+ DDBMS, and sits behind an API

that is accessible to application developers through an easy

interface, abstracting the complexities of CC.

An important contribution of this paper is the analysis of the

TPC-C benchmark, a popular OLTP workload, and the proposal

of further extensions to the Thespis API that increase the scope

of the operations permitted by the CC middleware. We also

innovatively show how these extensions allow execution of the

OLTP queries in the context of a CC DDBMS whilst retaining an

easy-to-use API. We also further analyse the TPC-C workload

and highlight areas where Thespis suffers from the intrinsic

properties of a CC+ DDB, and therefore does not adhere to the

requirements of the TPC-C specification. Nonetheless, given

CARL CAMILLERI ET AL.: THESPIS: CAUSALLY-CONSISTENT OLTP 267



that CC is deemed as a sufficiently strong consistency for

enterprise applications, a CC+ DDBMS remains an important

tool for such problem domains that are able to forego ACID

guarantees for other desirable properties such as scalability

and high availability.

Finally, future work consists of the implementation of the

semantics proposed in this paper, as well as the execution

of suitable benchmarks and a discussion of their respective

results. A similar analysis of other transactional workloads,

such as the ones mentioned in our review of the literature, is

also a future direction of research.

ACKNOWLEDGMENT

This work is partly funded by the ENDEAVOUR Scholarship

Scheme (Malta), part-financed by the European Union –

European Social Fund ESF under Operational Programme II

– Cohesion Policy 2014-2020.

REFERENCES

[1] E. A. Brewer, “Towards robust distributed systems,” in Proceedings

of the nineteenth annual ACM symposium on Principles of distributed

computing, ser. PODC ’00, vol. 7, 2000. doi: 10.1145/343477.343502.
ISBN 1581131836

[2] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT

News, vol. 33, no. 2, pp. 51–59, 2002. doi: 10.1145/564585.564601
[3] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-

dition for concurrent objects,” ACM Transactions on Programming

Languages and Systems, vol. 12, no. 3, pp. 463–492, July 1990. doi:
10.1145/78969.78972

[4] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, pp. 40–44, January 2009. doi: 10.1145/1435417.1435432

[5] L. Lamport, “The part-time parliament,” ACM Transactions on Com-

puter Systems, vol. 16, no. 2, pp. 133–169, May 1998. doi:
10.1145/279227.279229

[6] M. M. Elbushra and J. Lindström, “Eventual consistent databases: State
of the art,” Open Journal of Databases (OJDB), vol. 1, no. 1, pp. 26–41,
January 2014.

[7] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
memory: Definitions, implementation, and programming,” Distributed

Computing, vol. 9, no. 1, pp. 37–49, 1995. doi: 10.1007/bf01784241
[8] P. Mahajan, L. Alvisi, and M. Dahlin, “Consistency, availability, and

convergence,” University of Texas at Austin Tech Report, vol. 11, 2011.
[9] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal

consistency,” in Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of Data. ACM, 2013. doi:
10.1145/2463676.2465279 pp. 761–772.

[10] K. Spirovska, D. Didona, and W. Zwaenepoel, “Optimistic causal
consistency for geo-replicated key-value stores,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 3, pp. 527–542, March
2021. doi: 10.1109/tpds.2020.3026778

[11] S. Braun, A. Bieniusa, and F. Elberzhager, “Advanced domain-driven
design for consistency in distributed data-intensive systems,” in Proceed-

ings of the 8th Workshop on Principles and Practice of Consistency for

Distributed Data. ACM, April 2021. doi: 10.1145/3447865.3457969
pp. 1–12.

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.
doi: 10.1145/359545.359563

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer

Systems (TOCS), vol. 31, no. 3, p. 8, August 2013. doi: 10.1145/2491245
[14] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.

Spreitzer, and C. H. Hauser, “Managing update conflicts in Bayou, a
weakly connected replicated storage system,” ACM SIGOPS Operating

Systems Review, vol. 29, no. 5, pp. 172–182, December 1995. doi:
10.1145/224057.224070

[15] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, April 2010. doi: 10.1145/1773912.1773922

[16] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage
with cops,” in Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, ser. SOSP ’11. Association for Com-
puting Machinery (ACM), 2011. doi: 10.1145/2043556.2043593. ISBN
9781450309776 pp. 401–416.

[17] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proceedings

of the ACM Symposium on Cloud Computing. ACM, November 2014.
doi: 10.1145/2670979.2670983 pp. 1–13.

[18] K. Spirovska, D. Didona, and W. Zwaenepoel, “Wren: Nonblocking
reads in a partitioned transactional causally consistent data store,”
in 2018 48th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN). IEEE, June 2018. doi:
10.1109/dsn.2018.00014 pp. 1–12.

[19] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone,
“Logical physical clocks,” in Lecture Notes in Computer Science, M. K.
Aguilera, L. Querzoni, and M. Shapiro, Eds. Springer International
Publishing, 2014. doi: 10.1007/978-3-319-14472-6_2 pp. 17–32.

[20] S. Elnaffar, P. Martin, and R. Horman, “Automatically classifying
database workloads,” in Proceedings of the eleventh international con-

ference on Information and knowledge management - CIKM '02. ACM
Press, 2002. doi: 10.1145/584792.584898 pp. 622–624.

[21] L. Li, G. Wu, G. Wang, and Y. Yuan, “Accelerating hybrid transaction-
al/analytical processing using consistent dual-snapshot,” in International

Conference on Database Systems for Advanced Applications. Springer
International Publishing, 2019. doi: 10.1007/978-3-030-18576-3_4 pp.
52–69.

[22] M. Bach and A. Werner, “Hybrid column/row-oriented DBMS,” in
Advances in Intelligent Systems and Computing. Springer International
Publishing, September 2015, pp. 697–707. doi: 10.1007/978-3-319-
23437-3_60

[23] N. Poggi, D. Carrera, R. Gavalda, E. Ayguadé, and J. Torres, “A
methodology for the evaluation of high response time on e-commerce
users and sales,” Information Systems Frontiers, vol. 16, no. 5, pp. 867–
885, October 2014. doi: 10.1007/s10796-012-9387-4

[24] F. Raab, “TPC-C - the standard benchmark for online transaction
processing (OLTP),” in The Benchmark Handbook for Database and

Transaction Systems (2nd Edition), 1993.
[25] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki, “From

A to E: analyzing TPC’s OLTP benchmarks: the obsolete, the ubiqui-
tous, the unexplored,” in Proceedings of the 16th International Con-

ference on Extending Database Technology - EDBT '13, 2013. doi:
10.1145/2452376.2452380 pp. 17–28.

[26] S. T. Leutenegger and D. Dias, “A modeling study of the TPC-c
benchmark,” ACM SIGMOD Record, vol. 22, no. 2, pp. 22–31, June
1993. doi: 10.1145/170036.170042

[27] T. P. P. C. TPC, “Tpc benchmark e,” 2010.
[28] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,

I. Pandis, and R. Stoica, “TPC-E vs. TPC-C: Characterizing the new
TPC-E benchmark via an I/O comparison study,” ACM SIGMOD Record,
vol. 39, no. 3, pp. 5–10, February 2011. doi: 10.1145/1942776.1942778

[29] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” ACM Transactions on Database Systems, vol. 34,
no. 4, pp. 1–42, December 2009. doi: 10.1145/1620585.1620587

[30] C. Camilleri, J. G. Vella, and V. Nezval, “Thespis: Actor-Based Causal
Consistency,” in Database and Expert Systems Applications (DEXA),

2017. 28th International Workshop on Big Data Management in Cloud

Systems. IEEE, August 2017. doi: 10.1109/dexa.2017.25 pp. 42–46.
[31] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formal-

ism for artificial intelligence,” in Proceedings of the 3rd international

joint conference on Artificial intelligence. Morgan Kaufmann Publishers
Inc., 1973, pp. 235–245.

[32] G. Agha, Actors: A Model of Concurrent Computation in Distributed

Systems. The MIT Press, 1986. doi: 10.7551/mitpress/1086.001.0001
[33] G. Young, “CQRS documents by Greg Young,” 2010. [Online].

Available: https://github.com/keyvanakbary/cqrs-documents
[34] B. Meyer, Eiffel: The Language. Prentice-Hall, Inc., December 1992.

ISBN 0-13-247925-7. doi: 10.1016/0950-5849(92)90131-8
[35] M. Fowler, “Event sourcing,” December 2005. [Online]. Available:

https://martinfowler.com/eaaDev/EventSourcing.html

268 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



[36] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story,” Computer, vol. 45, no. 2, pp.
37–42, February 2012. doi: 10.1109/mc.2012.33

[37] C. Camilleri, J. G. Vella, and V. Nezval, “ThespisTRX: Causally-
consistent read transactions,” International Journal of Information Tech-

nology and Web Engineering (IJITWE), vol. 15, no. 1, pp. 1–16, January
2020. doi: 10.4018/ijitwe.2020010101

[38] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, and N. Preguiça,
“IPA: Invariant-preserving applications for weakly-consistent replicated
databases,” Proceedings of the VLDB Endowment, vol. 12, no. 4, pp.
404–418, December 2018. doi: 10.14778/3297753.3297760

[39] C. Camilleri, J. G. Vella, and V. Nezval, “ThespisDIIP: Distributed in-
tegrity invariant preservation,” in International Conference on Database

and Expert Systems Applications. Springer International Publishing,
2018. doi: 10.1007/978-3-319-99133-7_2 pp. 21–37.

[40] D. Barbará-Millá and H. Garcia-Molina, “The demarcation protocol: A
technique for maintaining constraints in distributed database systems,”
The VLDB Journal - The International Journal on Very Large Data

Bases, vol. 3, no. 3, pp. 325–353, July 1994. doi: 10.1007/bf01232643
[41] N. Krishnakumar and A. J. Bernstein, “High throughput escrow algo-

rithms for replicated databases,” ser. VLDB ’92. Morgan Kaufmann
Publishers Inc., 1992. ISBN 1558601511 pp. 175–186.

[42] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Feral concurrency control: An empirical investigation of
modern application integrity,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. ACM, May 2015.
doi: 10.1145/2723372.2737784 pp. 1327–1342.

[43] P. Bailis, A. Fekete, M. J. Franklin, and A. Ghodsi, “Coordination
avoidance in database systems,” Proceedings of the VLDB Endowment,
vol. 8, no. 3, pp. 185–196, 2014. doi: 10.14778/2735508.2735509

[44] N. Soparkar and A. Silberschatz, “Data-valued partitioning and virtual
messages,” in Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems - PODS '90. ACM Press,
1990. doi: 10.1145/298514.298587 pp. 357–367.

[45] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of

the 1st ACM symposium on Cloud computing - SoCC '10. ACM Press,
2010. doi: 10.1145/1807128.1807152 pp. 143–154.

[46] K. Rahmani, K. Nagar, B. Delaware, and S. Jagannathan, “CLOTHO:
directed test generation for weakly consistent database systems,” Pro-

ceedings of the ACM on Programming Languages, vol. 3, no. OOPSLA,
pp. 1–28, October 2019. doi: 10.1145/3360543

[47] A. Chikhaoui, K. Boukhalfa, and J. Boukhobza, “A cost model for hybrid
storage systems in a cloud federations,” in Proceedings of the 2018

Federated Conference on Computer Science and Information Systems

(FedCSIS), ser. Annals of Computer Science and Information Systems,
M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 15. IEEE,
September 2018. doi: 10.15439/2018F237 pp. 1025–1034.

[48] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back into eventual
consistency,” in Proceedings of the Tenth European Conference on

Computer Systems, April 2015. doi: 10.1145/2741948.2741972 pp. 1–
16.

[49] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A
comprehensive study of convergent and commutative replicated data
types,” Ph.D. dissertation, Inria–Centre Paris-Rocquencourt; INRIA,
2011. [Online]. Available: https://hal.inria.fr/inria-00555588

[50] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly available transactions: Virtues and limitations,” Pro-

ceedings of the VLDB Endowment, vol. 7, no. 3, pp. 181–192, November
2013. doi: 10.14778/2732232.2732237

[51] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when nec-
essary,” in 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’12), 2012. ISBN 9781931971966 pp. 265–278.
[52] A. Bouajjani, C. Enea, M. Mukund, G. Shenoy, and S. Suresh, “Formal-

izing and checking multilevel consistency,” in International Conference

on Verification, Model Checking, and Abstract Interpretation. Springer
International Publishing, 2020. doi: 10.1007/978-3-030-39322-9_18 pp.
379–400.

[53] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
7th ed. Pearson, June 2015. ISBN 0133970779

[54] M. Milano and A. C. Myers, “Mixt: A language for mixing consistency
in geodistributed transactions,” in Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-

tion, vol. 53, no. 4. ACM, June 2018. doi: 10.1145/3192366.3192375
pp. 226–241.

[55] B. Holt, J. Bornholt, I. Zhang, D. Ports, M. Oskin, and L. Ceze,
“Disciplined inconsistency with consistency types,” in Proceedings of

the Seventh ACM Symposium on Cloud Computing, October 2016. doi:
10.1145/2987550.2987559 pp. 279–293.

[56] M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Sal-
vaneschi, “Rethinking safe consistency in distributed object-oriented
programming,” Proceedings of the ACM on Programming Languages,
vol. 4, no. OOPSLA, pp. 1–30, November 2020. doi: 10.1145/3428256

CARL CAMILLERI ET AL.: THESPIS: CAUSALLY-CONSISTENT OLTP 269


