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Abstract—In many scheduling environments, some jobs have
higher priority than others. Such scenarios are theoretically
modelled by associating jobs with weights, or by having prece-
dence constraints that limit jobs’ processing order. In this paper
we define and consider a new model, motivated by real-life
behaviour, in which the priority among jobs is defined by
a dominance hierarchy. Specifically, the jobs are arranged in
hierarchy levels, and high ranking jobs are ready to accept only
outcomes in which the service they receive is better than the
service of subordinate jobs. We first define the model and the set
of feasible schedules formally. We then consider two classical
problems: minimizing the maximal tardiness and minimizing
the number of tardy jobs. We provide optimal algorithms or
hardness proofs for these problems, distinguishing between a
global objective function and a multi-criteria objective.

I. INTRODUCTION

J
OB Scheduling problems are considered to be a fun-

damental and well studied field in theoretical computer

science. The study of the combinatorial optimization problems

induced by various scheduling environments is motivated by

numerous real-life applications arising in production planning,

traffic control, cloud computing services, and many more.

A typical scheduling problem instance involves assigning a

set of n independent jobs on m parallel machines in a way

that optimally utilizes the machines and achieves high quality

of service for the jobs. These objectives are mathematically

modelled by minimizing a predefined objective function, such

as the makespan (maximal completion time of some job),

total completion time, lateness, etc. We refer to [18] for

a comprehensive survey of various models of scheduling

problems.

In many scheduling environments, the jobs are not treated

in a fair way. Naturally, some jobs have higher priority than

others. Such scenarios are theoretically modelled in two ways:

(i) jobs are associated with weights that reflect their priority.

The jobs’ performance measure is scaled by the weight,

thus jobs with higher weight get better quality of service.

(ii) the scheduling instance includes a directed acyclic graph

describing precedence constraints among jobs. A directed edge

from job j1 to job j2 implies that the processing of j2 can start

only after the processing of j1 is completed.

In this paper we study a scheduling setting, motivated by

real-life behaviour, in which the priority among jobs is defined

in a different way. Our model reflects real-life environments

in which the schedule is not determined completely by the

system. Traditionally, scheduling problems have been studied

from a centralized point of view, that is, a centralized authority,

‘the scheduler’ determines the assignment. Many modern

systems provide service to multiple strategic users, who may

influence the possible outcomes. As a result, non-cooperative

game theory has become an essential tool in the analysis

of job-scheduling applications [21], [5]. Our model studies a

natural setting, in which the users are arranged in a dominance

hierarchy, and high ranking users are ready to accept only

outcomes in which the service they receive is better than the

service of subordinate users.

In behavioral sciences, the study of dominance hierarchy is

based on the fact that different organisms have different ag-

gressiveness levels. Aggression is defined as a behavior which

is intended to increase the social dominance of the organism

relative to the dominance position of other organisms [6].

Different levels of aggressiveness lead to a dominance hier-

archy - a type of social hierarchy that arises when members

of a social group interact [4], [9]. Highly rank members of

the society have better access to valuable resources such as

mates and food. Our model is inspired by such environments.

Specifically, in our setting, the jobs are partitioned into c
hierarchical levels. High-ranking jobs can bypass subordinate

jobs if this improves their performance. Moreover, all the

jobs, from all hierarchy levels cooperate and are ready to

modify their assignment if this modification does not harm

their performance, and may help other high-ranking jobs get

an advantage over subordinate ones.

In Section II we define the model and the set of feasible

schedules formally. We also present algorithms for testing

the feasibility of a schedule with respect to jobs’ tardiness

and with respect to the lateness indicator. In Section III we

present optimal algorithms for the problem of minimizing

the maximal tardiness of a job. In Section IV we consider

the problem of minimizing the number of tardy jobs. We

distinguish between the global objective in which the goal is

to find a feasible schedule that minimizes the total number of

tardy jobs, independent of their hierarchy level, and the multi-

criteria objective, in which the primary goal is to minimize

the number of tardy highly ranked jobs, the secondary goal is

to minimize the number of tardy jobs from the 2nd rank, and

so on. For a constant number of hierarchy levels we present

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 201±209

DOI: 10.15439/2021F36

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 201



an optimal algorithm for the multi-criteria objective, and an

NP-hardness proof for the global objective.

II. PRELIMINARIES

Let J be a set of jobs. Every job Jj ∈ J has a processing

time pj , as well as a due-date dj , denoting the time in

which it should be completed. The set J consists of c sets;

J = J1 ∪ J2 ∪ . . . ∪ Jc, where Jk is a set of jobs in

the ℓ-th hierarchy level. That is, the jobs of J1 have the

highest rank, and the jobs of Jc are the most subordinate.

Let n =
∑c

ℓ=1 |Jℓ|. A schedule π on a single machine

determines a non-preemptive assignment of the jobs on the

machine. For a schedule π and a job Jj , let Sj(π), Cj(π)
denote the start time and the completion time of Jj in π. In

our setting, all the jobs are available at time 0 (no release

times), and no preemptions are allowed, therefore, for every

job j, Cj(π) − Sj(π) = pj . Also, w.l.o.g., we only consider

schedules with no intended idle. Clearly, idle segments can be

removed by shifting some jobs to start earlier. By the above,

a schedule π can be described by specifying an order of the

jobs, and Cj(π) =
∑

j′:Sj′ (π)≤Sj(π)
pj′ .

For a given schedule π, let Lj(π) = Cj(π) − dj denote

the lateness of job Jj in π. The jobs need to be ready by

their due-date; early completion of a job has no effect on the

quality of service, thus, the study of scheduling environments

in which jobs are associated with due-dates, considers mostly

the two following measurements:

1) Tj(π) = max{0, Cj(π)−dj} is the tardiness of job Jj .

2) Uj(π) ∈ {0, 1} is a binary lateness indicator indicating

whether Jj is tardy, that is, Uj(π) = 1 if and only if

Cj(π) > dj .

For a set Jℓ, let TJℓ
(π) = maxj∈Jℓ

Tj(π) be the maximal

tardiness of a job in Jℓ. For the lateness indicator we measure

the performance of a set of jobs by the number of tardy jobs

in the set, in particular, UJℓ
(π) =

∑
j∈Jℓ

Uj(π) is the number

of tardy jobs in Jℓ.

We will analyze two objective functions. The first is min-

imizing the maximal tardiness, and the second is minimizing

the number of tardy jobs. Using the common three-fields

notation for theoretic scheduling problems [10], we denote the

corresponding problems in the presence of hierarchy levels by

1|hierarchy|Tmax and 1|hierarchy|
∑

Uj .

High rank jobs can bypass and push subordinate jobs. They

also cooperate with each other. Formally, a schedule π is

considered feasible if for every hierarchy level 1 ≤ ℓ ≤ c,
and every job Ji ∈ Jℓ it holds that Ji cannot improve its

objective value by bypassing less dominant jobs, even if all

the jobs having rank at least ℓ are ready to modify their

assignment as long as they are not harmed. This general

definition has a different practical meaning depending on the

objective function. Specifically:

Definition 2.1: A schedule π is feasible with respect to

tardiness if for for every rank 1 ≤ ℓ ≤ c and every tardy

job Ji ∈ Jℓ it holds that there is no schedule π′ such that

Ci(π
′) < Ci(π) and for every job Jj ∈ ∪1≤k≤ℓJk it holds

that Tj(π
′) ≤ Tj(π). In other words, there is not schedule in

which Ji has a reduced tardiness, and no job from a higher

or equal hierarchy level has a higher tardiness.

Definition 2.2: A schedule π is feasible with respect to the

number of tardy jobs if for every rank 1 ≤ ℓ ≤ c and every

tardy job Ji ∈ Jℓ it holds that there is no schedule π′ such

that Ci(πi) ≤ di and for every job Jj ∈ ∪1≤k≤ℓJk it holds

that Uj(π
′) ≤ Uj(π). Thus, Ji completes on time and if a

same or higher hank job Jj is not tardy in π it must complete

in time also in π′.

Note that if the objective of a job is merely to minimize its

completion time, then the hierarchy induces an order according

to which jobs of different levels must be processed, and finding

an optimal solution on a single machines is an easy task.

Objective functions that depend on jobs’ tardiness are more

challenging since a job may have a high completion time and

still perform perfectly as long as it is not tardy. Thus, the order

of jobs in an optimal schedule does not necessarily agree with

their ranks. This observation is crucial in understanding the

model and the involved challenges.

The general problem we consider is finding a feasible sched-

ule that optimizes the objective function, that is, minimize the

maximal tardiness of a job, or minimizes the number of tardy

jobs. A different goal that we consider is a multi-criteria one.

Specifically, the primary goal is to optimize the schedule for

J1. Out of all feasible schedules achieving the best for J1, the

goal is to optimize the schedule for the jobs in J2, and so on.

We use the notation 1|hierarchy|(γ1, . . . , γc) the denote the

problem with the multi-criteria objective function γ. E.g., for

c = 2, in the problem 1|hierarchy|(UA, UB), the primary goal

is to minimize the number of tardy dominant jobs, and among

all the feasible schedules achieving this objective, minimize

the number of tardy subordinate jobs.

We conclude the introduction with an example that demon-

strates the optimality with respect to the general and the

multi-criteria objective function. Consider the problem of min-

imizing the number of late jobs. That is, 1|hierarchy|
∑

Uj .

Assume c = 2. Let A = {a1, a2, a3} be the set of dominant

jobs, where p1 = p2 = L and p3 = L+ 1, for some constant

L > 2. The set B of subordinate jobs includes L−1 unit-length

jobs. Note that n = |A|+ |B| = L+2. Assume further that all

the jobs in the instance have the same due-date dj = 2L. An

optimal schedule for
∑

Uj is the schedule π1, presented in the

top of Figure 1. There are 2 tardy jobs. The longer dominant

job, a3, and L − 1 subordinate jobs complete on time. The

schedule π1 is feasible, even though a1 and a2 are late. None

of these jobs can benefit from bypassing subordinate jobs, as

their total processing time is less than L. The schedule π2 in

Figure 1 is optimal for the problem 1|hierarchy|(UA, UB).
The two dominant jobs a1 and a2 are not late, and the other

L jobs are late. The above example illustrates some of the

challenges in scheduling jobs with different hierarchy levels,

and the difference from the global objective function and the

multi-criteria one.

Related work: Job scheduling on a single machine has been

widely studied. When there are no precedence constraints or
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



Fig. 1. π1 is optimal for 1|hierarchy|
∑

Uj , while π2 is optimal for 1|hierarchy|(U1, U1).

weights, the problem 1||Tmax is solved optimally by Earliest

Due-Date first (EDD) rule, that schedule the jobs in non-

decreasing order of due-date [15]. The problem 1||
∑

Uj is

solved by Moore’s algorithm [17].

When jobs are associated with weights, the problem

1||
∑

wjUj becomes NP-hard even when the jobs all have

common due-date [13]. Pseudo-polynomial time algorithms

are given in [16] and [19]. If the number of different job

weights is a constant, then 1||
∑

wjUj is solvable in poly-

nomial time [11]. The unweighted problem of minimizing the

number of tardy jobs is strongly NP-hard when the jobs’ pro-

cessing order must obey some precedence constraints. This is

true even if the precedence constraints are limited to chains and

all jobs have unit length, that is, 1|chains; pj = 1|
∑

Uj . See

[1] for a survey on algorithms for single machine scheduling

to minimize weighted number of tardy jobs.

For the maximum tardiness problem, the addition of weights

does not change the complexity of the problem, that is, the

weighted problem, 1||maxj wjTj , is solvable in polynomial

time [12], [7]. Moreover, the problem remains tractable even

in the addition of arbitrary precedence constraints [15]. On

the other hand, when a machine can process several jobs

simultaneously (batch-scheduling), the problem becomes NP-

hard [3].

Aggressiveness is a lighter notion of priority. Dominant

jobs can be processed after less dominant ones, if their

performance is not harmed. An environment in which some

jobs are aggressive is studied in [20], where a new notion of

selfish precedence constraint is defined. The paper presents

algorithms for scheduling jobs on parallel machines, where

some of the jobs are aggressive. An aggressive job do not

let non-aggressive jobs start processing before it. Additional

relaxed models of precedence constraints are studied in [14],

[2].

A. Feasibility Tests

In this section we present algorithms for testing whether a

given schedule is feasible with respect to some objective. For

a schedule π, the algorithms returns True if π is feasible, or

False due to Ji, if π is not feasible since some job Ji can

benefit from rearranging the jobs.

Algorithm 1 performs a feasibility test of a given schedule

with respect to the jobs’ tardiness. It proceeds by verifying,

for every tardy job Ji, that there is no schedule in which Ji
has a reduced tardiness and the non-tardy jobs from hierarchy

levels at least as high as Ji are not harmed, as required by

Definition 2.1.

Algorithm 1 - Feasibility test of a schedule π w.r.t Ti

1: Let Jtardy and Jin.time be, respectively, the set of tardy

and non-tardy jobs in π.

2: for each job Ji ∈ Jtardy do

3: Assume Ji ∈ Jℓ.

4: Let S1 = ∪1≤k≤ℓJk ∩ Jtardy .

5: Let S2 = ∪1≤k≤ℓJk ∩ Jin.time.

6: Let π′
i be a schedule of S1 ∪S2 \ {Ji} produced in the

following way:

7: Assign the jobs in S1 \ {Ji} as in π.

8: Add the jobs in S2 in non-increasing order of due-

date. Every job Jj is assigned, possibly with preemp-

tions, in the latest available slots in [0, dj ].
9: If π′

i includes more than pi idle slots in [0, Ci(π)] then

return False due to Ji.
10: end for

11: return True.

Lemma 2.1: Algorithm 1 returns True if and only if π is

feasible with respect to Ti.

Proof: The algorithm proceeds by checking feasibility for

every tardy job separately. Clearly, if a job Ji is not late, then

the schedule is feasible for it. If Ji is late, then S1 and S2

are the sets of tardy and non-tardy jobs that are ranked in

the hierarchy at least as high as Ji. We check whether there

exists a schedule in which these jobs are not harmed, and the

tardiness of Ji is reduced.

Assume that the algorithm returns False due to Ji. Assume

Ji ∈ Jℓ. We show that there exists a schedule π′ such that

Ci(π
′) < Ci(π) and for every job Jj ∈ ∪1≤k≤ℓJk it holds

that Tj(π
′) ≤ Tj(π).

The schedule π′ is produced from the schedule π′
i build

in steps 6–8. First, preemptions are removed: if job Jj is

preempted in π′
i, then in π′ it is processed non preemptively in

[Cj(π
′
i)−pj , Cj(π

′
i)]. Jobs that were processed in this interval

are shifted to start earlier. The tardiness of Jj does not change,

as its completion time remains Cj(π
′
i). The tardiness of the

shifted job could only decrease. After the preemption removal,

we add Ji in the earliest idle slots, possibly with preemptions.

Since the condition in step 9 is met, Ti(π
′) < Ti(π). Next,

if Ji is scheduled with preemptions, then preemptions are

removed, without harming any of the completion times, as

described above. Finally, the jobs from lower hierarchy levels

∪ℓ<k≤cJk are added in arbitrary way.

Note that it is always possible to add the jobs of S2 as

required in Step 8 of the algorithm, since they are not late
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in π, thus, there is clearly sufficient space for them on the

machine when the jobs of ∪ℓ<k≤cJk are removed.

By the condition in Step 9, the lateness of Ji in π′ is lower

than its lateness in π. Since all other jobs with at least the same

rank are not harmed, we get a contradiction to the stability of

π.

Assume that the algorithm returns True. It means that for

every tardy job ji in π, there are at most pi idle slots in

[0, Ci(π)] in a schedule in which jobs of lower rank are

removed, and each of the remaining jobs is scheduled as late

as possible. This implies that it is not possible to rearrange the

jobs in π such that Ji reduces its tardiness, without harming

the performance of at least one job with rank higher or equal

to rank of Ji. Thus, π is feasible.

We turn to consider objectives that refer to the lateness

indicator. Algorithm 2 performs a feasibility test of a given

schedule with respect to the lateness indicator. The algorithm

proceeds by verifying, for every tardy job, Ji, that there is no

schedule in which Ji completes on time and the jobs from

hierarchy levels at least as high as Ji are not harmed, as

required by Definition 2.2.

Algorithm 2 - Feasibility test of a schedule π w.r.t Ui

1: Let Jtardy and Jin.time be, respectively, the set of tardy

and non-tardy jobs in π.

2: for each job Ji ∈ Jtardy do

3: Assume Ji ∈ Jℓ.

4: Let S2 = ∪1≤k≤ℓJk ∩ Jin.time.

5: Let π′
i be a schedule in EDD order of the jobs in S2 ∪

{Ji}.

6: If no job is late in π′
i then return False due to Ji.

7: end for

8: return True.

Lemma 2.2: Algorithm 2 returns True if and only if π is

feasible with respect to Ui.

Proof: The problem 1||Tmax is known to be solvable

optimally by EDD rule. In particular, if for some instance of

1||Tmax, there exists a schedule in which no job is late, that

is, Tmax = 0, then no job is late if the jobs are processed in

EDD order. Algorithm 2 is based on the above fact.

Assume that the algorithm returns False. This implies that

for some late job, there exists a schedule of S2∪{Ji} in which

no job is late. Thus, π can be replaced by the schedule π′
i built

in step 5, followed by a schedule in arbitrary order of the jobs

that are late in π. This modified schedule is better for Ji and

does not harm the objective value of any job in ∪1≤k≤ℓJk, as

required. Thus, π is not feasible.

Assume that the algorithm returns True. It means that for

every late job in π, at least one job would be late in a schedule

in which the jobs of S2 ∪ {Ji} are processed in EDD order.

Since EDD is optimal for 1||Tmax, there is no schedule in

which none of these jobs is late. This implies that it is not

possible to rearrange the jobs in π such that Ji is not late,

without harming the performance of at least one job with rank

at least as high as Ji. Thus, π is feasible.

III. MINIMIZING MAXIMAL TARDINESS

A. The multi-criteria objective function:

1|hierarchy|(TJ1
, . . . , TJc

)

In this section we consider the multi-criteria objective

function of minimizing the maximal tardiness. Formally, recall

that for every 1 ≤ ℓ ≤ c, TJℓ
(π) = maxj∈Jℓ

Tj(π) denotes

the maximal tardiness of a job in Jℓ in a schedule π. An

optimal schedule achieves the minimal possible TJ1
and for

all ℓ > 1 it achieves the minimal possible TJℓ
among all

schedules that achieve the minimal TJk
for every 1 ≤ k < ℓ.

We present an optimal algorithm for the problem. Recall

that algorithm EDD, that schedule the jobs in non-decreasing

due-date order is optimal for the problem when there are no

hierarchy levels. The algorithm is presented for c = 2, that is,

J = A ∪ B, where A is a set of dominant jobs, and B a set

of subordinate jobs. At the end of this section we explain how

to generalize it for c > 2 hierarchy levels.

Algorithm 3 constructs an optimal schedule π in two phases.

First, all the jobs are assigned according to EDD order, and

then the schedule is turned into a feasible one, by letting some

dominant jobs pass some subordinate jobs. Recall that for a

schedule π and a job Ji, we denote by Si(π) and Ci(π) the

start time and the completion time of Ji in π.

Algorithm 3 - An optimal algorithm for

1|hierarchy|(TA, TB)

1: Schedule all jobs according to EDD order, that is, d1 ≤
d2 ≤ · · · ≤ dn.

2: Let π be the schedule produced by EDD.

3: for each job Ji ∈ A according to their order in π do

4: while Ji is late and at least one job from B precedes it

do

5: Let Jk be the job in B for which Sk(π) < Si(π),
and Sk(π) is maximal.

6: Shift the jobs scheduled in [Ck(π), Ci(π)] earlier by

pk units.

7: Schedule Jk right after Ji.
8: end while

9: end for

Theorem 3.1: Algorithm 3 produces a feasible schedule,

optimal for the bi-criteria problem (TA, TB).

Proof: Let π be the schedule produced by the algorithm

for an input A∪B. Every dominant job Ji ∈ A is considered

in the while loop. Note that in the shifts performed in step 6,

the jobs that are shifted forward are all dominant, since Jk is

the last B-job before Ji. Combining this with the initial EDD

order, we get,

Observation 3.2: In π, the jobs in A are processed in EDD

order, and the jobs in B are processed in EDD order.

The while loop terminates if Ji is not late or if it is

preceded only by A-jobs with lower or equal due-date. Also,

by Observation 3.2, in the final schedule, every B-job is

preceded by B-jobs with lower or equal due-date, or A-jobs
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that bypassed it in order to reduce their tardiness. Thus, π is

feasible.

Next note that no A-job that is processed after a B-job is

late. Thus, as illustrated in Figure 2, the schedule π begins

with a sequence of A-jobs that are processed in a row, and

are possibly late, followed a mixture of B-jobs and non-late

A-jobs. Let Jz be the last late A-job in π. Let A1 be the subset

of A-jobs that are processed sequentially in [0, Cz(π)], and let

A2 be the set of remaining A-jobs, that are not late and are

processed interleaved with B-jobs after Cz(π). We prove the

optimality of π by considering separately the prefix in which

the jobs of A1 are processed and the suffix in which the jobs

of A2 ∪B are processed.











 







Fig. 2. The structure of the optimal schedule π

Lemma 3.3: Every optimal schedule π⋆ can be modified

such that it agrees with π on the assignment of A1, without

harming its feasibility nor the objective function.

Proof: Since Jz is the last late A-job in π, which is a

feasible schedule, any solution that schedules some B-job, Jb,

in the interval [0, Cz(π)] is not feasible, as Jz may reduce

its tardiness by bypassing Jb. Thus, in any feasible schedule,

only A-jobs are processed in the interval [0, Cz(π)].
Assume that π∗ does not agree with π on the assignment

of A1, and let Ji ∈ A1 be the first job in π that has a higher

starting time in π⋆. We use an exchange argument to show

that π∗ can be converted to agree with π on the assignment of

Ji without harming its feasibility nor increasing the maximal

tardiness of jobs in A or B. Let H be the set of jobs that

are scheduled in π⋆ during the interval [Si(π), Si(π
⋆)]. Let π′

be the schedule obtained from π⋆ by moving Ji before H in

π⋆ (see Figure 3). By Observation 3.2, each of these jobs has

higher due-date than di.











 







Fig. 3. Converting π⋆ to a profile π′ that agrees with π on the assignment
of job Ji ∈ A.

The schedule π′ is feasible: By the feasibility of π∗, the

set H includes only A-jobs, as otherwise, Ji or another job

from A1 is tardy and can reduce its tardiness by bypassing

the B-jobs in H .

Since in π, the jobs of A1 are processed in EDD order, for

every Jk ∈ H , it holds that di ≤ dk and Ck(π
′) ≤ Ci(π

⋆).
Therefore, the lateness of Jk in π′ is not higher than the

lateness of Ji in π⋆, and the maximal tardiness among the

jobs in A is not harmed. The jobs that are processed after

Ci(π
⋆) are not affected by the exchange, and their tardiness

does not change.

By repeating the above exchange argument as long as π⋆

does not agree with π on the assignment of A1, we get the

statement of the lemma.

We turn to consider the jobs of B ∪ A2. These jobs are

processed after time Cz(π).
Claim 3.4: Every optimal schedule π⋆ can be modified such

that no job in A2 is late, without delaying any job in B.

Proof: Let Ji ∈ A2 be a late job in π⋆. Since π⋆ is feasible,

Ji is precedes only by A-jobs. Also, we can assume that the

machine is not idle between these jobs, as otherwise, idles

can be removed by shifting the jobs to start earlier, without

harming the feasibility or the quality of the solution. Modify

π⋆ be rearranging in EDD order Ji and the A-jobs from A2

that precedes it. From the optimally of EDD, the maximal

tardiness of the A-jobs in the resulting schedule is equal to

or lower than their maximal tardiness before the modification.

After the reorder, the order of the jobs agrees with π, and

since in π no job from A2 is late, this is true for π⋆ as well.

Based on Claim 3.4, we can assume w.l.o.g., that no jobs

in A2 is late in π⋆.

Lemma 3.5: Every optimal schedule π⋆ can be modified

such that it agrees with the assignment of A2∪B in π without

harming its feasibility nor the objective function.

Proof: We show that π⋆ can be converted to agree with π.

Specifically, we use an exchange argument for handling the

leftmost disagreement. The same argument can be applied as

long as the schedules are not identical.

Let Ji ∈ A2 ∪ B be the first job in π that has a different

starting time in π⋆. Let H be the set of jobs that are scheduled

in π⋆ during the interval [Si(π), Si(π
⋆)]. We distinguish

between two cases depending on the hierarchy level of Ji.
Assume first that Ji ∈ A2. As in the case Ji ∈ A1, let

π′ be the schedule obtained from π⋆ by moving i before H
in π⋆ (see Figure 3). We show that π′ is feasible and has

the same objective value. Consider an A-job Jk ∈ H . Since

Algorithm 3 schedules A-jobs by EDD order, for every A-job

Jk ∈ H , it holds that dk ≥ di. By Claim 3.4, Ji is not late

in π⋆, hence Ci(π
⋆) ≤ di. For every A-job Jk ∈ H , we have

that Ck(π
′) ≤ Ci(π

⋆) ≤ di ≤ dk, that is, Jk is not late in π′.

We conclude that all A-jobs in H will not be late after the

modification, therefore the maximal tardiness of the A-jobs is

not affected.

Consider now a B-job Jk ∈ H . Algorithm 3 schedules Ji
before Jk in two cases:

1) di ≤ dk. By the feasibility of π∗, Ji is not late in π⋆.

Since di ≤ dk, Jk is not late in π⋆ as well. In this

case, Jk will not be late after the modification, since

Ck(π
′) ≤ Ci(π

⋆) ≤ di ≤ dk.
2) di > dk. We show that this case never happens. Ji is

scheduled in π before Jk even-though di > dk since Jk
was delayed when some Jℓ ∈ A is considered in the
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Fig. 4. Ji ∈ B. (a) Jr is scheduled after Ji in π⋆, (b) Jr is scheduled before Ji in π⋆

while loop (possibly ℓ = i). By the algorithm, di ≤ dℓ,
and a consequent set of jobs from A are processed in

π in EDD order in [Si(π), Cℓ(π)]. Moreover, since Jk
must be delayed in order to prevent Jℓ from being late,

at least one of these jobs will be late if pk precedes one

of them, contradicting the feasibility of π⋆.

Therefore, the maximal tardiness of the B-jobs in H is not

affected by the modification.

We turn to consider the case Ji ∈ B.

Let H be the set of jobs that are scheduled in π⋆ during the

interval [Si(π), Si(π
⋆)], and let Jr be the first A-job scheduled

after Ji in π. Note that Jr has the minimal due date among

all A-jobs that follow Ji in π. We distinguish between two

cases:

1) Jr is scheduled after Ji in π⋆. Let π′ be the schedule

obtained from π⋆ by moving Ji before H in π⋆ (see

Figure 4(a)). We show that π′ is feasible and has the

same objective value. First, we show that the maximal

tardiness of the jobs in B ∩H in π′ is not higher than

the maximal tardiness of these jobs in π⋆.

For Ji, the exchange is clearly beneficial, as it is moved

to start earlier. For every other B-job Jk ∈ H , the EDD

order applied in Algorithm 3 implies that di ≤ dk, thus,

Lk(π
′) = Ck(π

′)− dk ≤ Ci(π
⋆)− dk

≤ Ci(π
⋆)− di = Li(π

⋆)

We conclude that

max(Lk(π
′), Li(π

′)) ≤ max(Lk(π
⋆), Li(π

⋆)).

Since Tj = max(Lj , 0) we get,

max(Tk(π
′), Ti(π

′)) ≤ max(Tk(π
⋆), Ti(π

⋆)).

Therefore, the maximal tardiness of a job in B ∩ H is

not harmed.

Next, we consider the jobs in A2 ∩H . Since Jr has the

minimal due date among all A-jobs that follow Ji in π,

every A-job Jk ∈ H satisfies dk ≥ dr. In addition, by

Claim 3.4, Jr is not late in π⋆. Thus,

Ck(π
′) ≤ Ci(π

⋆) ≤ Cr(π
⋆) ≤ dr ≤ dk.

Therefore, no A-job in A2 ∩ H is late in π′, and the

maximal tardiness is not affected.

2) Jr is scheduled before Ji in π⋆ (see Figure 4(b)). In

this case, let π′ be the schedule obtained by moving Ji
to precede H in π⋆, and reorder the jobs in H , such

that A-jobs in H appear first, in EDD order, and are

followed by the B-jobs in H , also in EDD order. Note

that Jr ∈ H and since it has the minimal due date among

the A-jobs that follow Ji in π, it is now processed right

after Ji.
Clearly, Ji is not late in π′. Jr is not late in π⋆ and in

π. Since it is processed after Ji in π, it is not late in

π′ either. The remaining A-jobs in H are processed in

both π and π′ in EDD order and are preceded by both

Ji and Jr. Since they are not late in π, they are not late

in π′ either. The B-jobs in H are processed last, in EDD

order. For each such job Jk, by Algorithm 3, di ≤ dk,

therefore, Lk(π
′) = Ck(π

′) − dk ≤ Ci(π
⋆) − di =

Li(π
⋆). We conclude that the maximal tardiness of the

B-jobs in π′ is not be higher than the tardiness of Ji
in π⋆. Therefore, the modification does not increase the

maximal tardiness of a job in B.

By repeating the above exchange argument, as long as

π⋆ does not agree with π, we conclude that every optimal

schedule can be modified such that it agrees with π, and its

objective value is not harmed. Also, the initial EDD order

implies the feasibility for the B-jobs. That is, no B-job can

benefit from rearranging other jobs in a way that reduces its

tardiness and does not harm any of the other jobs.

Combining Lemmas 3.3 and 3.5, we conclude that Algo-

rithm 3 produces a feasible schedule that is optimal for the

bi-criteria objective (TA, TB).

Extension for c > 2 hierarchy levels: Algorithm 4 extends

Algorithm 3 for more than two hierarchy levels. The idea is

to consider the levels one after the other. When the set Jℓ is

considered, all the sets Jℓ + 1, . . . ,Jc, can be viewed as a

single subordinate level, and is therefore treated as the class

B in the case of c = 2.
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Algorithm 4 - An optimal algorithm for

1|hierarchy|(TJ1
, . . . , TJc

)

1: Schedule all jobs according to EDD order, that is, d1 ≤
d2 ≤ · · · ≤ dn.

2: Let π be the schedule produced by EDD.

3: for ℓ = 1 to c− 1 do

4: Let B = ∪c
j=ℓ+1Jj

5: for each job Ji ∈ Jℓ according to their order in π do

6: while Ji is late and at least one job from B precedes

it do

7: Let Jk be the job in B for which Sk(π) < Si(π),
and Sk(π) is maximal.

8: Shift the jobs scheduled in [Ck(π), Ci(π)] earlier

by pk units.

9: Schedule Jk right after Ji.
10: end while

11: end for

12: end for

The proof of the algorithm follows the structure of the proof

of Algorithm 3. We show by induction that for every 1 ≤ ℓ <
c, the schedule after ℓ iterations is optimal with respect to

the multi-criteria objective of the ℓ high hierarchy levels. The

initial EDD order implies the optimality and feasibility for the

subordinate class, Jc.

B. The global objective function: 1|hierarchy|Tmax

We turn to consider the global objective function of mini-

mizing the maximal tardiness of a job. Unlike the multi-criteria

objective, here we do not give priority to the objective achieved

by highly ranked jobs, and only care about the maximal

tardiness of any job, independent of its hierarchy level.

We show that the problem is optimally solvable. In

particular, Algorithm 4, which was shown to be optimal

for 1|hierarchy|(TJ1
, . . . , TJc

), produces a schedule that

achieves the minimal tardiness of any job.

Theorem 3.6: Algorithm 4 is optimal also for

1|hierarchy|Tmax.

Proof: The proof of Algorithm 3 for c = 2, as well

as its extension for c > 2 (Algorithm 4), are based on

exchange arguments. Specifically, every optimal schedule can

be modified to a one that agrees with the schedule produced

by the algorithm. A close look at the exchange arguments

reveals that none of them harms the maximal tardiness of any

job in the instance. Thus, if π∗ is an optimal schedule with

respect to Tmax it can be converted to agree with the schedule

π produced by the algorithm, without harming its feasibility,

nor the maximal tardiness.

IV. MINIMIZING NUMBER OF TARDY JOBS

In this section we consider the objective function of mini-

mizing the number of tardy jobs. We assume that the number

c of different hierarchy levels is a constant. Our results show

an interesting distinction between the multi-criteria objective,

for which we present an optimal algorithm, and the global

objective function, for which we present a hardness proof.

Without a dominance hierarchy, Moore’s algorithm is an

optimal greedy algorithm for 1||
∑

Uj . A naive approach for

the problem with jobs’ hierarchy can be based on scheduling

the highly rank jobs according to Moore’s algorithm, then

create spaces between the jobs, such that each job is shifted

to complete as close as possible to its due date, and add the

jobs of the next level. This approach fails because Moore’s

algorithm does not take into account the due-dates of the

jobs as long as they are not late. The following example

demonstrates this issue and highlight the challenges in solving

the problem. Let c = 2. The dominant set is A = {a1, a2},

where p1 = 2, d1 = 2 and p2 = 3, d2 = 4. The subordinate

set consists of a single job B = {b}, where pb = 1, db = 1.

Executing Moore’s Algorithm on A gives the schedule [a1, a2].
No spacing is possible, thus, b must be late when added.

The resulting schedule, π1, is shown in Figure 5. UA(π1) =
1, UB(π1) = 1. Note that the same number of tardy jobs is

achieved if b is assigned before a2. The optimal solution for

this instance is the schedule π2, shown in Figure 5. We have

UA(π2) = 1, UB(π2) = 0. Note that the jobs of A are not

processed in EDD order.

 

 

Fig. 5. π1 : A schedule based on Moore’s algorithm. Both a2 and b are
tardy. π2: An optimal schedule. a1 is the only tardy job.

A. The multi-criteria objective function:

1|hierarchy|(UJ1
, . . . , UJc

)

In the problem 1|hierarchy|(UJ1
, . . . , UJc

), the goal is to

find a feasible schedule that fulfills the following conditions:

1) The number of tardy jobs from the top hierarchy level,

that is, UJ1
, is minimal.

2) For every 2 ≤ ℓ ≤ c, the number of tardy jobs from the

ℓ-th hierarchy level, that is UJℓ
is the minimal possible

among all the schedules that achieve the minimal values

of UJ1
, . . . , UJℓ−1

.

We present an optimal algorithm for a constant number of

hierarchy levels. Specifically, we reduce the problem to the

problem 1||
∑

wjUj , for which an optimal algorithm, based

on dynamic programming, is presented in [11].

Algorithm 5 - An optimal algorithm for

1|hierarchy|(UJ1
, . . . , UJc

), with constant c.

1: Assign every job a weight:

2: For each Ji ∈ Jc, let wi = 1.

3: for ℓ = c− 1 down to 1 do

4: Cℓ = 1 +
∑c

k=ℓ+1 |Jk| · Ck

5: For each Ji ∈ Jℓ, let wi = 1 + Cℓ

6: end for

7: Ignore the hierarchy levels and find an optimal solution

for 1||
∑

wjUj [11].
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Theorem 4.1: Algorithm 5 is optimal for

1|hierarchy|(UJ1
, . . . , UJc

) with a constant number of

levels.

Proof: The algorithm assign the jobs weight, such that (i)
jobs from the same rank have the same weight, and (ii) the

weight of each job in hierarchy level ℓ is equal to one plus the

total weight of jobs in lower levels. The above weights imply

that a single non-tardy job from hierarchy level ℓ contributes

to the objective function more than all the jobs in lower

levels. Thus, the multi-criteria objective function is achieved

by minimizing
∑

wjUj in the resulting weighted instance.

We show that every optimal solution for
∑

wjUj corre-

sponds to a feasible solution. Assume by contradiction that

a schedule π is optimal for
∑

wjUj , but is not feasible due

to job Ji ∈ Jℓ. This means that Ji can complete on time

by delaying jobs from lower ranks. Since the weight of Ji
is higher than the total weight of lower rank jobs, we get a

contradiction to the π’s optimality.

The algorithm in [11] assumes that the instance is given

as a list of jobs, every job, Ji, is represented by a triplet

(pi, wi, di). In the full version we show how to extend the

algorithm to handle a compact representation of the input in

which for every weight, wk we are either given a list of jobs

having weight wk, in which each job is represented by a pair

(pi, di); or we are given the amount nk of jobs having weight

wk, and a single pair (pk, dk) such that all nk jobs having

weight wk have the same processing time pk, and due-date,

dk.

The fact that an optimal poly-time algorithm exists for

instance in the above compact representation gives a nice

distinction between the multi-criteria objective and the global

objective for which we who a hardness proof already for 4
hierarchy levels.

B. The Global Objective function: 1|hierarchy|
∑

Uj

The goal in the problem 1|hierarchy|
∑

Uj is to minimize

the total number of tardy jobs, independent of their rank.

Clearly, the dominance hierarchy plays a significant role also

in the global objective problem since it induces the set of

feasible schedules.

Theorem 4.2: The problem 1|hierarchy|
∑

Uj is NP-

complete for four or more hierarchy levels.

Proof: Given a schedule, it is possible to calculate the

number of non-tardy jobs. Also, Algorithm 2 is a poly-time

algorithm for verifying the feasibility of a given schedule, thus,

the problem is in NP.

The hardness proof is by a reduction from the subset-sum

problem. Given a set of integers A = {a1, a2, . . . , anA
} and

a target value T , the goal is to decide whether A has a subset

A′ ⊆ A such that
∑

j∈A′ aj = T . The subset-sum problem is

known to be NP-hard [8].

Given an instance of subset-sum, (A, T ), we build an

instance of 1|hierarchy|
∑

Uj , consisting of four hierarchy

levels, A,B, C,D as follows.

1) The set A includes the jobs at the top of the hierarchy. It

consists of nA jobs induced by the subset-sum instance.

Specifically, every element aj ∈ A contributes to A one

jobs of length aj and due-date dj = T .

2) The set B includes a single job, to be denoted Jb, for

which pb = 2 and db = T + 1.

3) The set C includes T jobs of length 1, all having due-

date dj = T .

4) The set D of lowest level includes T jobs of length 1/T .

All these jobs have due-date dj = T + 1.

We note that the reduction is polynomial assuming a com-

pact representation of the input, that is, the value of T may not

be polynomial in n, but we do not list the jobs in B and C, only

specify their amount. Similarly, a schedule can be presented

in a compact way - if there are x jobs of length p assigned

one after the other, the schedule is presented by specifying x
and p, rather than listing all these jobs.

We turn to show the validity of the reduction. The idea

is that the jobs of D whose total length is 1 can be assigned

before their due-date only if A is a YES-instance of the subset-

sum problem. Intuitively, the job Jb ∈ B can benefit from

bypassing the jobs of C ∪ D if and only if there is one more

available slot for it in [0, T ], and such a slot exists only if the

jobs of A do not use exactly all T slots in [0, T ].











 

Fig. 6. πyes : An optimal feasible schedule of a YES-instance. π1
no and

π2
no : Non-feasible schedules of a NO-instance. π3

no and π3
no : Feasible

schedules of a NO-instance.

Claim 4.3: There exists a feasible schedule with more than

T non-tardy jobs if and only if A has a subset that sums up

to T .

Proof: Assume that A has a subset A′ such that
∑

j∈A′ aj =
T . Consider the schedule πyes, depicted in Figure 6, in which

the jobs corresponding to the elements of A′ are processed

in arbitrary order during the interval [0, T ] and the T jobs

of D are processed in [T, T + 1]. All other jobs are late and

their schedule is arbitrary. We show that πyes is feasible. The

tardy jobs of A ∪ C all have due-date T . Since the machine

processes only jobs from A in [0, T ], and the non-tardy jobs

of A′ complete their processing exactly at their due-date, it is

not possible to add any tardy job to complete on time without
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harming a non-tardy job from A′. The job Jb, whose due-date

is T + 1 cannot benefit from bypassing the jobs of D, since

their total length is 1, and pb = 2. Thus, πyes is a feasible

schedule. The number of non-tardy jobs in πyes is T + |A′|.

Assume next that A does not have a subset of total sum

T . We show that the number of non-tardy jobs in an optimal

feasible schedule is at most T . Specifically, we show that the

jobs of D are not processed in any feasible schedule.

Let πno be a schedule of a NO-instance. Consider the

interval [0, T ]. Assume by contradiction that there are more

than T non-tardy jobs in πno. Since the jobs of J \D all have

length at least 1, at most T jobs from J \ D are processed

in [0, T ]. Also, since pb = 2, if Jb is not tardy, then at most

T jobs are processed in [0, T + 1]. All the jobs that complete

after time T+1 are clearly tardy. We conclude that if there are

more than T non-tardy jobs in πno, then some jobs from D are

non-tardy. Moreover, the jobs of D are the only jobs whose

length is not integral and their total length is 1, therefore, in

every optimal feasible solution with some non-tardy jobs from

D, all the jobs from D are non-tardy. Moreover, w.l.o.g., we

assume that the jobs of D are processed sequentially in one

time slot in [0, T + 1], as otherwise, they can be shifted to

be processed sequentially; some other jobs may be shifted to

start earlier, which is clearly beneficial for them and therefore

does not harm the feasibility of the schedule.

We show that no schedule in which the jobs of D are

allocated one time slot in [0, T+1] is feasible. Assume first that

the D-jobs are assigned before time T (see π1
no in Figure 6). If

Jb is tardy, then it can remove the jobs of D and be assigned

in [T − 1, T +1], resulting in π3
no. If Jb is not tardy, then the

jobs of D will be removed by a tardy job from C, that can

assign itself in their slot, resulting in π4
no. This contradicts the

feasibility of π1
no.

Assume next that the D-jobs are assigned in [T, T +1] (π2
no

in Figure 6). If Jb is tardy, then since a subset of A of total

sum T does not exist, at least one job from C is processed in

[0, T ]. Job Jb can remove this job and the jobs of D and be

assigned in [T − 1, T +1], resulting in π3
no. If Jb is not-tardy,

then by removing the D-jobs and be processed in [T−1, T+1],
Jb can help some tardy job from C be processed before time

T . Again, we get a contradiction to the feasibility of πno.

The above analysis implies that the only possible feasible

profiles, have the structure depicted in profiles π3
no or π4

no in

Figure 6. The number of non-tardy jobs in these schedules is

at most T .

The above claim, together with the fact that subset-sum is

NP-hard, implies that 1|hierarchy|
∑

Uj is NP-hard, already

for 4 hierarchy levels.

V. CONCLUSIONS

In this paper we analyzed a natural situation in real life

scenarios, where some users are more dominant than others,

and as a result they should receive a better quality of service.

We considered the effect of having such dominance hierarchy

on two classical scheduling problems.

We first provided efficient algorithms for testing the fea-

sibility of a schedule, and then considered the problems of

(i) minimizing the maximal tardiness of a job, and (ii)
minimizing the number of tardy jobs. For the first problem we

provided an efficient algorithm for both the bi-criteria objective

and the global objective. For the second problem we provided

an optimal solution for the bi-criteria objective, and presented

a hardness proof for the global objective, when the number of

different hierarchy levels in the input set is at least four.

Our work demonstrates the challenges arising in the analysis

of systems with users’ dominance hierarchy. We believe that

this setting represents a natural phenomenon, which be studied

further, in additional resource allocation environments.
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