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Abstract—The publication of the pivotal state machine repli-
cation protocol PBFT laid the foundation for a body of BFT
protocols. We introduce a probabilistic model for evaluating BFT
protocols in the presence of dynamic link and crash failures. The
model is derived from the communication pattern, facilitating an
adaptation to other protocols. The state of replicas is captured
and used to derive the success probability of the protocol
execution. To this end, we examine the influence of link and crash
failure rates as well as the number of replicas. A comparison in
protocol behavior of PBFT, Zyzzyva and SBFT is performed.

I. INTRODUCTION

T
HE rapidly increasing connectivity of devices, as for

example envisioned by the Internet of things, entices

the development of large-scale, globally distributed systems.

The European Metrology Cloud project [1], which aims to

coordinate the digital transformation of legal metrology, is a

prime example. The scale and complexity of such systems

leads to a higher risk of failure and/or malicious behavior. The

demand for trust and reliability, however, remains unchanged.

A technique to offer higher fault tolerance and availability

for distributed systems is state machine replication (SMR).

It requires processes to find agreement on the order of state

transitions and, thus, consensus on the system state. One of

the most prominent Byzantine fault tolerant (BFT) protocols is

Practical Byzantine Fault Tolerance (PBFT) [2]. Many modern

systems, including the recent surge of blockchain applications

[3], utilize PBFT, or a variation of it, as their core consensus

algorithm, e.g., BFT-SMaRt [4], Tendermint [5], RBFT [6],

CheapBFT [7], and Hyperledger Fabric v0.6 [8].

While many advanced BFT protocols exist, the impact of

dynamic failures in general and unreliable links in particular is

often ignored. Many protocols, however, require that messages

arrive within a defined timespan, i.e., there is a bound on the

message delay. If that bound is not met, the performance of

the protocols might deteriorate. To the best of our knowledge,

there is unfortunately no technique to assess the impact of

unreliable links on the performance of BFT protocols without

requiring a comprehensive implementation. Instead, bench-

marks on either real systems or simulations are deployed.

In this paper, we fill the gap and present a probabilistic

modeling approach for BFT protocols to measure the impact

of dynamic link and crash failures on their performance. The

model is derived from the communication pattern and therefore

transferable to many BFT protocols. It predicts the system state

assuming the so-called dynamic link failure model [9], that

is, unreliable communication links with message losses and

high delays. More specifically, we assume a constant failure

probability for all links and processes, model state transitions

as Bernoulli trials, and express the resulting system state as

probability density functions. Thus, our model can provide

feedback already during the design and development phase of

BFT protocols as well as support to parameterize timeouts.

Our model validation confirms that the model accurately

predicts the probability for successful protocol executions

of PBFT as well as BFT-SMaRt [4]. Moreover, we employ

our model to Zyzzyva [10], and SBFT [11] to showcase its

applicability to other BFT protocols. In our evaluation, we

analyze the mentioned protocols, most notably PBFT, with

respect to the impact of various failures and protocol stability.

Accordingly, the paper’s contributions can be summarized as

follows:

• We develop a probabilistic model for PBFT to quantify

the performance impact in the presence of dynamic link

and crash failures. Since the model is based on commu-

nication patterns, it is implementation independent.

• We generalize our modeling approach and show that it

can be applied to other BFT protocols.

• We validate the approach in a study by comparing it to

a simulation of PBFT and BFT-SMaRt and apply it to

Zyzzyva and SBFT.

• We identify critical values for dynamic link failure and

crash failure rates at which the previously mentioned

protocols become unstable.

The remainder of the paper is organized as follows. In

Section II, we discuss related work with a focus on BFT mod-

eling and failures. In Section III, we define the system model.

Next, we describe the detailed derivation of our modeling

approach for PBFT in Section IV, and present a simulation-

based model validation in Section V. In Section VI, we use

our model to reveal structural differences between PBFT, BFT-

SMaRt, Zyzzyva, and SBFT, before we conclude the paper in

Section VII.
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II. RELATED WORK

A. Preliminaries

The main properties of BFT protocols are described by

the notions of safety and liveness [2]. Safety indicates that

the protocol satisfies serializability, i.e., it behaves like a

centralized system. Liveness, on the other hand, indicates that

the system will eventually respond to requests. In order to

tolerate f faulty processes, at least 3f + 1 processes are nec-

essary [12]. Aside from process-related failures, the network,

i.e., the communication between processes, also impacts the

performance of BFT protocols and is often overlooked.

The network can be described as either synchronous or

asynchronous. To bridge the gap between completely synchro-

nous/asynchronous systems, the term partially synchronous

was introduced [13]. A partially synchronous system may

start in an asynchronous state but will, after some unspecified

time, eventually return to a synchronous state. This captures

temporary link failures, for example. A different perspective

on a partially synchronous system is to assume a network with

fixed upper bounds on message delays and processing times,

where both are unknown a priori. The partially synchronous

system model is utilized by many BFT protocols, e.g., PBFT,

to circumvent the FLP impossibility [14] and guarantee live-

ness during the synchronous states of the system, without

requiring it at all times. Deterministic BFT protocols guarantee

safety, even in the asynchronous state, but require synchronous

periods to guarantee liveness.

To detect Byzantine behavior, most BFT protocols utilize

timeouts (and signatures). If the happy path of a protocol fails

to make progress, a sub-protocol, e.g., a view change protocol,

is triggered to recover [15]. To optimize performance, the

timeout values should depend on the bounded message delay

in the synchronous periods of the network, which plays an

important role for deployments [16]. In addition to message

delay characteristics, some networks, e.g., wireless networks,

might be susceptible to link failures, leading to message

omissions or corruptions. These failures are formally captured

by the so-called dynamic link failure model [9], where the

authors prove that consensus is impossible in a synchronous

system with an unbounded number of transmission failures.

Schmid et al. [17], [18] introduced a hybrid failure model

to capture process and communication failures and derived

bounds on the number of failures for synchronous networks.

B. BFT Models

Other modeling techniques to analyze the performance of

fault tolerant systems have previously been proposed in the lit-

erature. The framework HyPerf [19] combines model checking

and simulation techniques to explore the possible paths in BFT

protocols. While model checking usually proves correctness,

their framework uses simulations to explore the possible paths

in the model checker and evaluate the performance of the

protocol. The model is validated against an implementation

of PBFT to predict latencies and throughput.

A method to model PBFT with Stochastic Reward Nets

(SRNs) was proposed in [20]. The authors deployed Hyper-

ledger Fabric v0.6, which implements PBFT, and evaluate the

mean time to consensus against the number of nodes in the

system.

Singh et al. [21] provided the simulation framework BFT-

Sim to evaluate BFT protocols. It builds upon the high-level

declarative language P2 to implement three different BFT

protocols [2], [10], [22] as well as ns-2, to explore various

network conditions.

While the previously listed works offer the possibility to

evaluate BFT protocols, they all require comprehensive imple-

mentations of the respective protocol. The model presented in

this paper, however, is derived from the communication pat-

tern. Moreover, no simulations or measurements are required

to employ our model; all system states can be evaluated with

closed-form expressions at low computational cost. Finally, the

main focus of our work is to present a model for fault tolerant

protocols that captures the impact of unreliable communication

and varying message delays, which the other models only

considered as a minor aspect.

C. Link and Crash Failures

Fathollahnejad et al. [23] examined the impact of link

failures on their leader election algorithm in a traffic control

system to predict the probability for disagreement, based on

Bernoulli trials. As in our paper, the number of received

messages of an all-to-all broadcast is modeled with Bernoulli

trials. Their protocol, however, does not require the consecu-

tive collection of quorums which is implemented in most fault

tolerant (FT) protocols and thus the main focus of the model

presented in this paper.

Xu et al. presented RATCHETA [24], a consensus protocol

which was designed for embedded devices in a wireless

network that might be prone to dynamic link failures. They

included an evaluation with artificially induced packet losses,

measuring the number of failing consensus instances. RATCH-

ETA requires a trusted subsystem that prevents a process from

casting differing votes during the same consensus instance,

eliminating the possibility of equivocations. It therefore yields

a 2f + 1 resilience, allowing f Byzantine failures.

In addition, there is a body of literature that covers the

theoretical limits of failures of consensus protocols [18], [25],

[26], which are based on a hybrid failure model [17] and

therefore also capture link failures. Existing models, however,

rarely consider the actual impact of unreliable network condi-

tions, such as dynamic crash and link failures, on the protocol

algorithm. Since all BFT protocols have a built-in protocol

to recover from crashed processes, e.g., view changes, their

impact on the performance is tied to the frequency of the

recovery algorithm execution.

III. SYSTEM MODEL

A. Process Model

The distributed system consists of a fixed number of n

processes (we use the term process, node, and replica inter-
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changeably). Typically, no more than f processes are allowed

to be subject to Byzantine faults and n ≥ 3f + 1 replicas are

required to guarantee safety [12].

To tolerate Byzantine (or crash) failures in an asynchronous

setting, distributed systems rely on timeouts in combination

with message thresholds to make progress. Consequently, it is

common to describe the protocols in phases, i.e., system states

in which each process, e.g., awaits the reception of a certain

amount of messages or, alternatively, a timeout. Our model is

time-free in that all events are mapped to the respective phases

of the protocol.

In order to capture diverse failure cases, e.g., congestion

due to high traffic load, we introduce the term dynamic crash

failures, along the lines of the dynamic link failure model by

Santoro et al. [9]. That is, processes can become unavailable

in each phase. It is assumed that every crashed process will

recover almost immediately, upholding its pre-crash state, and

may thus be available in the next phase of the protocol.

Since most BFT protocols (including PBFT) are based on

consecutive phases, a crashed replica will remain inactive until

the protocol-specific recovery algorithm, e.g., view-change

protocol for PBFT, has recovered crashed replicas. In this

paper, dynamic crash failures are assumed to be independent

and identically distributed (i.i.d.) random variables for all

processes during each phase.

Since our model is derived from the communication pattern

of the protocol, special roles such as the primary in PBFT

which follow a different communication pattern, are incorpo-

rated into the model.

B. Network Model

We assume that each network node has a peer-to-peer

connection to all other nodes. The network model in this

paper allows for (i) messages to be delayed indefinitely, i.e.,

past the configured timeout parameter of PBFT, and (ii)

message omissions as well as corruptions, as they may appear

in e.g. wireless networks. The former case acknowledges

BFT protocols that rely on synchronous periods to guarantee

liveness and are based on timeouts to detect process and/or link

failures. PBFT, for example, makes use of timeouts to detect

if progress is being made and as a consequence to initiate the

view-change protocol. Messages that arrive after a configured

timeout can therefore be considered as message omissions. The

same applies to invalid or corrupted messages. The resulting

failure model can be described with the dynamic link failure

model [9]. While in practice many BFT protocols rely on

the network layer to guarantee reliable communication, e.g.,

TCP, they should implement means to handle lost messages

due to crashed or malicious processes. We therefore assume

unidirectional links, which implies unreliable communication.

If assumptions made regarding the bound of message delays

fail, i.e., the timeouts are not configured appropriately, the

protocol can be considered to operate in an asynchronous

network with unbounded message delays. This does not apply

if an attacker is considered to have control over the scheduling

of messages, as this could easily lead to stopping a BFT

protocol altogether [27]. As with process failures, the link

failures are assumed to be i.i.d. for all links.

IV. MODELING PBFT

The model presented in this section offers means to evaluate

PBFT in the presence of dynamic link failures and crash

failures. For the sake of clarity, we provide an overview of our

modeling approach and introduce our notation first. Next, we

unroll our model for various failure types step-by-step starting

with dynamic crash failures, before we incorporate dynamic

link failures.

A. Overview

In PBFT, the happy path consists of five phases of message

exchanges, as depicted in Figure 1. The first and last phase

consist of transmissions from and to the client. In the first

phase, the leader of the current view will collect and serialize

client requests. This is followed by a phase in which the

primary will disseminate the requests to all other replicas in

so-called pre-prepare messages. If a replica receives and

accepts a pre-prepare message, it stores that message and

enters the third phase, broadcasting and collecting a quorum,

i.e., at least 2f + 1, of prepare messages that match the

stored pre-prepare message. The fourth phase mirrors the

third phase, except with commit messages. If a quorum of

valid commit messages is collected, the node will commit

(and execute) the state transition. In the fifth and last phase of

the protocol, replicas reply to the client, confirming that the

client’s request was executed from the replicated system.

Fig. 1: Modeled view on PBFT’s happy path communication

pattern. Each phase is modeled via alternating predictions for

crash (Ci) and link failures (Ni).

Omitting client interactions, the first and last phase can

be disregarded and PBFT’s happy path can be reduced to

three phases. These phases can be summarized as a broadcast

phase and two quorum collection phases. In the following,

we assume that the primary is ready to initiate the consensus

algorithm. Consequently, only the communication between the

replicas is captured in our model.

In each phase of the protocol, the communication between

and the availability of replicas is modeled as a combination

of Bernoulli trials. More specifically, we model link and crash

failures in alternating rounds for each of PBFT’s phases, as de-

picted at the bottom of Figure 1. We use random variables Ni

and Ci to express the success probabilities for the respective

failure type in phase i.
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In a first step, only faulty nodes are modeled as crash

failures in a series of interdependent Bernoulli trials, i.e.,

N1 → N2 → N3. In a second step, we extend the model

by incorporating link failures. The communication is mod-

eled along the lines of the three transmission phases C1,

C2, and C3. Combined with the node failures, our model

yields an interleaving series of dependent system states, i.e.,

C1 → N1 → C2 → N2 → C3 → N3.

In summary, the system state of all replicas at each protocol

phase is captured by a series of probability density functions

(PDFs), each constituting the calculation of the following.

Please note, that each PDF allows for precise prediction of the

protocol behavior and can be transformed into more common

performance metrics, e.g., latency, with statistics or other

models that predict the duration of individual phases.

B. Notation

In Table I, we summarize relevant probabilities, events, and

random variables, which are used in our model. For ease of

comprehension, the link and crash failure distributions are now

reduced to single probabilities, i.e., pl and pc, respectively.

The assumption to have identical link failure probabilities

for all links is not an uncommon practice in this field of

research [21], [23], [24]. The system state of the protocol

is modeled by calculating PDFs that describe each replica’s

state. To this end, the random variables and events listed in

Table I are indexed according to PBFT’s phases. In particular,

C1, C2, and C3 represent the number of replicas that received

a pre-prepare message, received a quorum of prepare

messages and received a quorum of commit messages, re-

spectively. Additionally, the number of active replicas after

each phase is described with N1, N2, and N3. Due to the

nature of the PBFT algorithm, the distributions are dependent

on each other, i.e., a replica that crashed or failed to collect

the required messages will not be able to complete the happy

path.

A key building block of our model are Bernoulli trials.

Therefore, we use the notation B(n, p, k) =
(

n

k

)

·pk ·(1−p)n−k

to express the probability to get exactly k successes in a

Bernoulli experiment with n trials and a success probability

of p. Furthermore, we define B(n, p, [k, l]) =
∑l

i=k B(n, p, i)
as the sum over all Bernoulli trials with at least k and up

to l successes. Finally, the notations PX(x) = P (X = x)
and PX|Y (x|y) = P (X = x|Y = y) are used to abbreviate

(conditional) probabilities.

C. Modeling crash failures

We start by modeling one of the most prominent failures,

crash failures. In particular, a crash failure implies no partici-

pation of the crashed process in the phase in which the crash

occurred. Hence, the replica will neither receive nor send any

messages. In the following, the three random variables N1, N2,

and N3 are derived for a crash failure probability pc, assuming

reliable communication links.

The happy path of PBFT is initiated with the primary

broadcasting a pre-prepare message to all other replicas.

TABLE I: Model notation for PBFT.

Symbol Description Range

PROBABILITIES

pc Probability for a crash failure. [0, 1]
pl Probability for a link failure. [0, 1]

EVENTS

Cp Indicates a successful reception of a quorum of
prepare messages at the current primary.

RANDOM VARIABLES

C1 The number of replicas that have received a
pre-prepare message.

[0, n− 1]

N1 The number of replicas, excluding the primary,
that did not crash in the pre-prepare phase.

[0, n− 1]

C2,n The number of replicas, excluding the primary,
that received a pre-prepare message as well
as collected a quorum of prepare messages.

[0, n− 1]

C2 The number of replicas that received a
pre-prepare message as well as collected a
quorum of prepare messages.

[0, n]

N2 The number of replicas that did not crash in the
prepare phase.

[0, n]

C3 The number of replicas that have received a
pre-prepare message as well as collected a
quorum of both, prepare and commit mes-
sages.

[0, n]

N3 The number of replicas that have did not crash
in the commit phase and successfully executed
the algorithm.

[0, n]

For the sake of simplicity, it is assumed the primary cannot

crash during the pre-prepare phase. Since the probability

for a crash is uniform across all nodes, the PDF of the still

active replicas N1 is given by PN1
(n1) = B(n, 1 − pc, n1).

The distribution of N1 describes the number of replicas that

will now broadcast prepare messages to all other replicas

in the second phase of the protocol.

Following this procedure, the distribution of active nodes in

further phases is calculated conditioned on the previous phase,

meaning

PNi
(ni) =

∑

ni−1

B(ni−1, 1− pc, ni) · PNi−1
(ni−1). (1)

for i = 2, 3. Adding up the values of P (N3 ≥ 2f +1) allows

to predict the success probability for the happy path of PBFT.

As replicas cannot skip a phase in PBFT, a crashed replica will

not recover during the happy path rendering dynamic crashes

similar to permanent ones.

D. Modeling crash and link failures

We now extend our model by introducing link failures, i.e.,

the links are no longer considered reliable and are subject

to a link failure probability pl. The three random variables

C1, C2, and C3 are introduced to model the behavior of the

protocol during the three communication phases. Due to the

special behavior of the primary in the second phase, C2

is divided into the event Cp and random variable C2,n to

capture the communication of the primary and other replicas,

respectively. Assuming the dynamic link failure model, all

links are subject to the same failure probability pl and can be,
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as with crash failures before, described with Bernoulli trials.

In the following, we therefore start alternating between Ci and

Ni (cf. Figure 1) to model the success of the message delivery

and node availability, respectively.

Calculating C1: The primary broadcasts a pre-

-prepare message to all other replicas. Since the success

probability for each message transmission is equal to 1−pl and

independent of other transmissions, the number of successful

transmissions can be calculated with a Bernoulli trial. The PDF

of C1 is given by PC1
(c1) = B(n−1, 1−pl, c1) and describes

the number of replicas that have received a pre-preapre

message from the primary.

Calculating N1: Based on the distribution of C1, some

replicas might crash in this phase, leading to

PN1
(n1) =

n−1
∑

c1=0

PN1|C1
(n1 | c1) · PC1

(c1)

=
n−1
∑

c1=0

B(c1, 1− pc, n1) · PC1
(c1).

(2)

Calculating C2: The communication in the second phase

is composed of the following: (i) whether the primary can

collect 2f prepare messages (i.e., event Cp) (ii) the number

of non-primary replicas that collect at least 2f +1 prepare
messages (i.e., C2,n).

The primary can only collect at least 2f prepare mes-

sages if at least 2f active replicas have received the previous

pre-prepare message, i.e., N1 ≥ 2f . In this case, at least

2f transmissions of prepare messages of the N1 replicas

have to successfully reach the primary. This can be expressed

as the sum over all favorable Bernoulli trials, i.e., all trials with

at least 2f successes out of N1. The conditional probability

P (Cp |N1 = n1) for the primary to collect the prepare

message is given by

P (Cp |N1 = n1) =

{

0, n1 < 2f

B(n1, 1− pl, [2f, n]) otherwise.

(3)

For a non-primary node, i.e., a replica, to advance to C2,

two requirements need to be met: (i) the replica has received

a respective pre-prepare message, and (ii) the replica has

collected a quorum of matching prepare messages. For

a quorum, only 2f − 1 prepare messages are required,

since a replica’s own prepare message and the primary’s

pre-prepare message count towards the 2f + 1 required

messages. The previous requirements translate to

1) there cannot be more replicas that receive 2f − 1
prepare messages than replicas that have previously

received a pre-prepare message, i.e., C2,n ≤ N1,

and

2) a replica can only receive 2f − 1 prepare messages

if at least 2f replicas, including itself, have received a

pre-prepare, i.e., N1 ≥ 2f .

The calculation of C2,n can thus be divided into the fol-

lowing cases, assuming that n1 replicas have received a

pre-prepare message. First, for n1 < 2f , no replica will

be able to gather the required quorum of prepare messages,

thus, the probability for c2,n = 0 is always one. Second, if

c2,n > n1, the probability has to be zero. Finally, for all other

cases, of the n1 replicas that broadcast prepare messages,

excluding the primary, the probability for c2,n replicas to

receive 2f − 1 of those messages can be modeled as another

Bernoulli trial. The probability of success in that Bernoulli

trial is identical to a replica receiving at least 2f−1 messages

of the n1 − 1 possible. Thus, the conditional PDF of C2,n for

n1 ≥ 2f and c2,n ≤ n1 is given by

PC2,n|N1
(c2,n |n1) = B(n1, p2(n1), c2,n) (4)

with p2(n1) being the probability that a replica will receive

at least 2f − 1 prepare messages, given that n1 replicas,

including the replica itself, are broadcasting that message,

which implies they have received the pre-prepare message

as well. This can be calculated with another Bernoulli trial

to get 2f − 1 receptions from n1 − 1 messages of the other

replicas: p2(n1) = B(n1 − 1, 1− pl, [2f − 1, n]).

Combining (3) and (4) yields the conditional PDF of C2.

The calculation is split into multiple cases as follows

PC2|N1
(c2|n1) =































PC2,n|N1
(0 |n1) · P (Cp |N1 = n1), c2,n = 0

PC2,n|N1
(n− 1 |n1) · P (Cp |N1 = n1), c2,n = n

PC2,n|N1
(c2,n |n1) · P (Cp |N1 = n1)

+PC2,n|N1
(c2,n − 1 |n1) · P (Cp |N1 = n1), c2,n ≤ n1 + 1

0, otherwise.

(5)

The final PDF of C2 is given by applying the law

of total probability to (5), which yields PC2
(c2) =

∑n−1

n1=0
PC2|N1

(c2 |n1) · PN1
(n1).

Calculating N2: As with N1 and (2), the distribution

of replicas that are still active, based on C2, is PN2
(n2) =

∑n

c2=0
B(c2, 1− pc, n2) · PC2

(c2).

Calculating C3: Now, let us turn to the states C3 and N3.

In the third phase, the primary behaves in the same way as

every other replica, simplifying many calculations regarding

the communication as we do not need to mind so many

exceptions. As with C2, there are two requirements necessary

for a replica to reach C3: (i) the replica must be in state C2

and (ii) it must have received at least 2f commit messages,

not counting its own. Thus, we can conclude that

1) there cannot be more replicas that have received 2f
commit messages than replicas that have reached C2,

i.e., C3 ≤ C2, and

2) a replica can only receive 2f commit messages if at

least 2f +1 replicas, including itself, have reached state

C2, i.e., C2 > 2f .

Deriving C3 is similar to C2. The conditional probability of

C3 for c2 > 2f and c3 ≤ c2 is accordingly

PC3|C2
(c3 | c2) = B(c2, p3(c2), c3) (6)
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where p3(c2) is the probability that a replica will receive at

least 2f commit messages if c2 replicas, including itself, are

broadcasting that message, i.e.,

p3(c2) = B(c2 − 1, 1− pl, [2f, n]). (7)

Applying the law of total probability yields PC3
(c3) =

n
∑

c2=0

PC3|C2
(c3 | c2) · PC2

(c2).

Calculating N3: Finally, PN3
(n3) =

∑n

c3=0
B(c3, 1 −

pc, n3) · PC3
(c3), which denotes the PDF of all active nodes

after the last phase.

If more than 2f replicas have completed the last phase, i.e.,

P (N3 > 2f), the happy path of PBFT was successful. For the

system to provide liveness in regards to the current request,

only f + 1 replicas are sufficient.

E. Generalization

For the sake of simplicity, we so far assumed constant

failure probabilities for links and processes, i.e., pl and pc.

We also assumed in our calculations, that those probabilities

be constant for each phase of PBFT. This is not a requirement

and could be expanded to reflect more sophisticated failure

models that include time-based correlations as long as they

remain i.i.d. for each phase.

Since the model is derived solely from communication

patterns, it can be adapted to other fault tolerant protocols.

This is facilitated by the modular design of the model, i.e., the

expression of communication phases, e.g., broadcast, quorum,

as PDFs which can be combined to describe the overall

system state. To demonstrate the adaptability, we show the

application of the model to BFT-SMaRt, Zyzzyva and SBFT.

The detailed adaptations are available in the extended pre-print

of this paper [28], where we showcase how the model can

be applied to a variety of communication patterns, including

client interaction and the possibility to branch into a fast or

slow path.

We deliberately chose to highlight the model derivation

in this section, leaving the formal definition of the modular

components for future work.

V. MODEL VALIDATION

To verify the correctness of the model, a discrete-event sim-

ulator was written in Rust. The simulation is publicly available

on Github1. In a first instance, the simulator implements the

happy path of PBFT for single requests without batching. The

dynamic link failure model is realized by discarding each

message reception event with a configurable probability pl.

In addition, each node will miss all messages belonging to a

certain communication phase with probability pc, simulating

a crash failure. By doing this, we can compare the simulated

state with the predictions of our model. The simulation can

easily scale to larger numbers of nodes (above 100) since only

the state transitions in the happy path are of interest and no

actual SMR is implemented, i.e., requests are not executed.

1https://github.com/mani2416/bft_simulation

In order to validate our model with an independent source,

we also deployed the Java-based public BFT SMR library

BFT-SMaRt [4] as a reference implementation. It implements

a consensus protocol that bears a high resemblance to PBFT:

it utilizes epochs, an equivalent to the views in PBFT, and

operates in three phases with respective message types [29].

For simplicity, we stick to PBFT’s terminology, when dis-

cussing BFT-SMaRt While mostly similar, the communication

pattern of BFT-SMaRt differs from PBFT in two details,

which required minor model adaptations. Firstly, nodes do not

count the primary’s pre-prepare message as a prepare

message for the second phase. Secondly, nodes are allowed to

skip the second phase if a quorum of other nodes were able

to complete that phase. We describe the model adaptations in

the extended pre-print of this paper [28].

In order to apply dynamic link and crash failures to BFT-

SMaRt, artificial message omission probabilities were imple-

mented into the library. Accordingly, all messages are dropped

with the probability pl and each node discards all messages

of a whole phase with probability pc. The changes necessary

to implement the aforementioned failures affected the class

that is responsible for handling incoming messages only and

consisted of less than 50 lines of additional code. The library

was executed on a single computer and up to 10 replicas and

one client were instantiated to execute the requests.

Increasing the number of processes while keeping the maxi-

mum number of faulty processes constant leads to an increased

robustness of both protocols against link and crash failures,

because more messages are available to build a quorum while

the required quorum size remains equal. We therefore evaluate

both protocols for the most interesting scenario n = 3f + 1,

i.e., the minimum number of processes required to tolerate f

faulty processes.

To validate the model for a larger parameter space, we

evaluated PBFT for different numbers of processes, link failure

rates, and crash failure rates. Figures 2a to 2c show the

probability of a single (representative) process to successfully

reach phase N3 for different n, pl and pc, respectively. The

simulation results for 5,000 protocol executions are plotted

with 99% confidence intervals and model predictions are

depicted as crosses. Increasing the number of processes in

the network can have, depending on the number of processes

and failure rates, either a stabilizing or destabilizing effect on

the performance. A more detailed analysis of this behavior

is given in Section VI-C. Increasing the failure rate of either

links or processes causes a constant decrease for P (N3).
The comparison between model predictions and experimen-

tal results for BFT-SMaRt are shown in Figures 2d to 2f.

Since BFT-SMaRt implements actual SMR and the execution

was unstable due to the previously mentioned halts during

the view-change protocol, we evaluated 1,000 protocol execu-

tions for each parameter combination only (without batching).

Figure 2d depicts the measured and by the model predicted

PDF of P (N3). The impact of link and crash failures on

BFT-SMaRt is similar to PBFT. The small deviations visible

between Figures 2b and 2c and Figures 2e and 2f stem from the
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Fig. 2: Model validation results for PBFT (a-c) and BFT-SMaRt (d-f).

algorithmic differences described above. The overall results

confirm that our model predictions for PBFT and BFT-SMaRt

align accurately with the simulations and experimental results.

VI. EVALUATION

A. Protocol stability

The quorum collection phase in fault tolerant protocols

,i.e., for 2f + 1 processes to collect 2f out of 3f possible

messages (not counting its own), is inherently resilient against

link failures. A node cannot collect a quorum if at least f + 1
out of its 3f incoming links are failing. Consequently, even in

the worst case, at least f + 1 nodes with at least f + 1 link

failures, i.e., (f + 1)2 overall link failures, are necessary for

the quorum collection phase to potentially fail.

Given our model assumptions, we can calculate the theoret-

ical failure rate necessary for a quorum phase in PBFT to fail.

Since the number of processes that partake in each quorum

phase is dependent on previous phases, the boundary for each

phase is calculated as

((f + 1)− (n− E[Ni−1]))
2

E[Ni−1](E[Ni−1]− 1)
(8)

with E[Ni−1] being the expected number of nodes that are

still currently active. Depicted in Figure 3 are the predicted

probabilities for P (N3) for increasing link failures (Figure 3a)

and crash failures (Figure 3b). The line labeled "stable" marks
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Fig. 4: Contour plot of P (N3) as predicted by our model for PBFT with

n = 40; the gradient shows a vector field over pc and pl.

the boundary given by (8). The linear decrease to the left of

the boundary in Figure 3a originates from the previous phases

of the protocol. Since the first phase implements a one-to-

all broadcast, the failing nodes will increase linearly with the

failure rates. The same effect is even more pronounced for

increasing crash failures in Figure 3b, albeit with an even

steeper linear phase. Because processes cannot recover within

the happy path of PBFT, each successive phase with crash

failures will decrease the number of available nodes for further

phases, leading to the steeper decline before the boundary.

The evaluation methodology and the respective results can

be used to parameterize the protocol to ensure that the protocol

execution remains stable even for a given failure rate. Since

most BFT protocols treat delayed messages as link failures, the

model can, e.g., be utilized to fine-tune timeouts. That is, for a

given delay distribution, a timeout parameter can be translated

to a failure rate. A small timeout leads accordingly to a higher

failure rate, but at the same time is able to quickly detect

(genuinely) lost messages and make progress. For instance, let

us assume that the message delay on all links can be described

with a normal distribution of mean µ = 100ms and standard

deviation σ = 10ms. Further, we assume the result of (8) to

be 0.1 for some arbitrary protocol. The timeout that keeps the

protocol in the stable region is derived by finding an upper

bound, where the integrated PDF of the delays is equal to

1 − bstable = 0.9. In our example, the timeout should be >

87.19ms. To conclude, our model allows to evaluate various

failure scenarios and adjust parameters accordingly.

B. Impact of number of processes, link and crash failures

To better demonstrate the predictive capabilities of the

model, a contour plot of P (N3) for PBFT is provided in

Figure 4, for varying link and crash failure rates. Additionally,

the gradient is displayed, derived from the operating points for

different pl and pc, as they are predicted by the model. The

orientation of the arrows indicates the impact of variations

in either failure rate on P (N3). The more pronounced the

horizontal component of a vector, the more dominant is the

impact of crash failures on P (N3) and the same applies to the

vertical component and link failures. The contour plot allows

to quickly discern the impact of either failure rate on the

protocol. Figure 4 shows that for low link failure rates, changes

in the crash failure rate will dominate the success probability

of the protocol, while for very low rates of crash failures and

a moderate number of link failures (pl > 0.1), the link failure

rate dominates. Figure 4 also validates the observations made

in Figure 3, i.e., the crash failure rates dominates the linear

decline before the stable lines, while the link failures gain in

impact for higher failure rates.

Although it is well known that most BFT protocols do

not scale well with the number of processes due to the

quadratic message complexity, it generally offers means to

increase stability in the presence of dynamic link failures.

In the extended version of the paper [28], we show that the

probability to collect a quorum for n → ∞ converges to 0 or

1, depending on pl and the quorum size. As a consequence,

the number of nodes can increase the success probability of

the quorum collection phase for failure rates below a certain

threshold.

C. Comparison: PBFT, BFT-SMaRt, Zyzzyva, and SBFT

To showcase the adaptability of our model, we applied it

to Zyzzyva [10] and SBFT [11]. An exemplary comparison

of all protocols for different crash failure rates is given in

Figure 5b. Depicted are the overall success probabilities, i.e.,

for Zyzzyva and SBFT the combination of fast and slow
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Fig. 5: (a) happy path success probabilities of PBFT, BFT-

SMaRt, Zyzzyva and SBFT dependent on crash failure rates,

(c) and (d): detailed analysis of SBFT.

paths. To better demonstrate the capabilities of the model,

the individual success probabilities for the fast and slow

path of SBFT for different link and crash failure rates are

plotted in Figures 5c and 5d. Since SBFT allows for optional,

additional replicas, denoted as c, the model allows to quickly

assess the protocol behavior for different failure rates and

configurations of c. The plots show that SBFT outperforms

PBFT for increasing numbers of c and higher failure rates,

while PBFT is more stable if SBFT transitions from the fast

path to the slow path.

VII. CONCLUSION

The probabilistic predictions of the presented model were

validated with implementations of PBFT and BFT-SMaRt for

various numbers of processes and dynamic link and crash

failure rates. It was demonstrated with BFT-SMaRt, Zyzzyva

and SBFT, that the model can be adapted with little effort to

other communication patterns of BFT protocols. The model

gives a prediction of the distribution of process states during

execution, allowing prediction of protocol behavior (e.g. how

many view changes will occur) and therefore performance

evaluation. Additionally, if the message delay statistics are

known, the model can be deployed to tune the timeouts

for BFT protocols, since most protocols cannot differentiate

between a delayed or an omitted message, making them

indifferent in their impact on the algorithm. The model allows

to assess the impact of crash and link failures for various

operating points of a protocol to identify key boundaries

regarding protocol stability.

As was demonstrated with BFT-SMaRt, Zyzzyva and SBFT,

the model can be applied to different BFT protocols by

modifying the respective equations for the distributions or

adding further random variables should the protocol consist of

more phases (as is the case with SBFT). Further adaptations

are facilitated by the fact that a body of BFT protocols

are derived from the core structure of PBFT and consist of

interdependent phases.

In further work, we are planning to apply the model to

more BFT protocols and evaluate their performance regarding

dynamic failures. Furthermore we are exploring possibilities

to extend the model to predict more sophisticated key perfor-

mance indicators, such as throughput and latency. Lastly, we

will consider adaptations to our model in order to account for

correlated link failures, e.g., as was proposed with a model by

Nguyen [30].
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