
Abstract—With the recent expansion of specialized databases

and departure from the “one size fits all” paradigm, engineers

might decide to use multiple databases. Each database holds a

representation of a data object but offers transactions and

consistency guarantees only locally. Existing solutions either

require additional coding or do not provide global ACID

transactions. In this paper, we present fed-agent, a

transactional layer that provides global consistency and ACID

transactions for single data objects within multidatabase

systems. It requires no additional coding besides configuration

files. We show that fed-agent scales linearly and introduces an

overhead small enough for most microservice solutions.

I. INTRODUCTION

Since the mid-2000s, the database community has shifted

away from the “one size fits all” approach to database sys-

tems [1]. Many new specialized databases have emerged

over the past decade, such as VoltDB [2] and Neo4j [3].

These databases are sometimes able to outperform relational

databases by a large margin for their specialty workloads [4]

[5]. An argument can be made that to be as performant as

possible, a system should incorporate various types of data-

bases. Data objects would be stored in different representa-

tions across multiple databases, but still logically represent a

single entity. A blog post, for example, could have its con-

tent fully stored in a relational database. Its text content

could be also stored in a text search engine, while viewer-

ship statistics calculated based on it could be stored in an an-

alytical database. There needs to be a mechanism to syn-

chronize data object representations and offer global consis-

tency. It is important to note that databases usually cannot

extend their consistency and transactional properties beyond

their scope. For example, having only databases with Atom-

icity, Consistency, Isolation and Durability (ACID) transac-

tions will not automatically make all distributed transactions

ACID.

Traditionally, the two-phase commit (2PC) [6] protocol is

used for data synchronization when high consistency is re-

quired, but at the cost of lower throughput [7]. Persistent

message queues can be used instead, at the cost of less strict

consistency [8], limiting the design space, increasing devel-

opment costs, and harming the developer and user experi-

ence. Another usual approach is to implement Extract-Trans-

form-Load (ETL) processes, usually as scripts that migrate

data periodically between databases. ETL adds extra costs to

implementing and maintaining migration scripts, which are

subject to change on each schema update.

The microservice architecture is a widely used architec-

ture for building cloud-based software solutions. Microser-

vices expose an Application Programming Interface (API)

that is used to access or manipulate data stored in databases.

Each microservice knows how to transform request data into

a persistent format used by a database. If most database op-

erations are handled through API calls, the messages should

contain enough information to deduce the state of the data-

base.

In this paper, we present fed-agent, a transactional layer

acting as a proxy that aims to provide global consistency and

ACID guarantees for multidatabase systems. Other solutions

either require additional coding or do not support ACID over

multiple databases. Fed-agent does so for single data objects

with no additional code needed besides configuration files.

This way distributed transaction processing is facilitated

transparently, allowing the engineers to focus on the busi-

ness logic. In this paper we also prove that fed-agent can

provide the above perks with a low overhead and linear scal-

ing.

The rest of the paper is organized as follows. In Section II

we present the architecture and core functionalities of fed-

agent. The fed-agent evaluation results are given in Section

III. In Section IV we discuss the related work, while in Sec-

tion V we conclude the paper and discusses future work.

II. ARCHITECTURE

Fed-agent acts as a layer that unifies read and write opera-

tions on a single data object over multiple databases. It com-

municates with databases through microservices built on top

of them. This eliminates the need to write and maintain code

that translates data between various representations, as map-

pers are already implemented as a part of microservices.

Fed-agent consists of multiple nodes within a single Raft

[9] consensus group, with one leader and multiple followers.

Only the leader can accept writes, while followers can serve

read requests. In case of a leader's failure, one of the follow-

ers will become the leader so the fed-agent can continue ac-

Fed-agent – a Transparent ACID-Enabled Transactional Layer for

Multidatabase Microservice Architectures

Lazar Nikolić
University of Novi Sad, Faculty of Technical

Sciences

Email: lazar.nikolic@uns.ac.rs

Vladimir Dimitrieski
University of Novi Sad, Faculty of Technical

Sciences

Email: dimitrieski@uns.ac.rs

Proceedings of the 16th Conference on Computer

Science and Intelligence Systems pp. 489±492

DOI: 10.15439/2021F46

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 489

cepting writes. We present the high-level overview of fed-

agent architecture in Fig. 1. It shows a fed-agent cluster con-

sisting of three nodes, with fed-agent 1 being the leader. Ser-

vice 1 and Service 2 are microservices with separate data-

bases. A client sending writes to any service does so via fed-

agent 1, while reads can be served by any node. For exam-

ple, a read request can be routed to fed-agent 3.

Fed-agent identifies an operation and the data object being

read or modified based on the HTTP request’s body and

URL. For example, PUT “/users/123” implies a user object

with ID “123” is being updated with data from the body.

Rules for extracting the information from a request are de-

fined declaratively in a configuration file for each endpoint.

Fed-agent uses Multi-Version Concurrency Control

(MVCC) [10]. Every write request on a data object creates a

new version of the data object. Reads can only see commit-

ted data object versions based on its timestamp. If fed-agent

detects a microservice response contains an uncommitted

data object, it will replace it with the last committed object

available for the request’s timestamp. MVCC implementa-

tion ensures snapshot isolation level, leaving only anomalies

that happen for predicate-based operations. Since fed-agent

operates only on single data objects, these anomalies cannot

happen and serializable isolation level is ensured.

III. EVALUATION

To evaluate fed-agent, we created a setup that illustrates a

typical scenario in practice. The setup consisted of a fed-

agent cluster acting as a proxy for microservices connecting

to a database. The microservices are userservice, using Post-

greSQL 13, textservice, using Elasticsearch 7.12.1, and

geosvc using Tile38 [11]. Each microservice is written in the

Go programming language and uses only low-level database

drivers and the standard HTTP library. There are two data

object types: User and Tweet types. The User type consists

of four text fields: id, handle, email, and password. The

Tweet type consists of three text fields: id, userHandle, and

content, and two double-precision numbers representing lati-

tude and longitude. For simplicity, we store full data objects

in all databases. The services offer REST API with two op-

erations: (i) access a single data object by id and (ii) upsert a

data object. All services are developed as if used in isolation

and contain no code for distributed transactions. Distributed

transactions and coordination are covered by fed-agent con-

figuration files.

We use Yahoo Cloud Serving Benchmark (YCSB) [12]

workload in our benchmarks. YCSB consists of six work-

loads: Workload A (50/50 read/write), Workload B (95/5

read/write), Workload C (read-only), Workload D (read lat-

est), Workload E (top 100 records), and Workload F (read-

modify-write). We do not consider Workload E since fed-

agent does not currently support scans. We also add Load

workload consisting of 100% write operations.

Overheads are measured as a difference between latencies

from direct API calls to a microservice and API calls via

fed-agent proxy. For write (upsert) operations, all backend

requests are done in parallel, so we measure the difference

between the slowest microservice response and the fed-agent

proxy response.

We acknowledge some threats to validity of this evalua-

tion. Because all benchmarks were running on the public

cloud and not on dedicated hardware, benchmarks results are

subject to factors beyond our control, such as changes of net-

work topology, network hiccups, or hardware failure. To

minimize the effect, we ran each benchmark five times and

reported the average. We also set the number of operations

for each benchmark to 150000. Additionally, the bare-bones

microservices used in benchmarks are developed by us for

this sole purpose. Microservices in practice would have

more complicated logic and would be running in much more

complex architectures. Running these benchmarks in such a

system might yield different results.

We run benchmarks to analyze how network overhead,

payload size, number of fed-agent nodes, concurrency, and

contention affect fed-agent. The results are discussed below.

Network overhead. This benchmark aims to measure the

network overhead created by additional messages, so we ran

it with a single client thread. We ran this benchmarks on an

Amazon EC2 cluster of 10 t1.micro nodes. One node was

acting as a client. Three nodes were running a fed-agent

cluster. The three services connecting to distinct databases

were each running on a different node. The databases were

all running on their nodes. This benchmark considers all

YCSB workloads. The results are shown in Table 1 and

show that for a typical web-oriented microservice solution,

one can expect about 7ms overhead for writes and about 1ms

overhead for reads.

Payload size scaling. For this benchmark, we measure

how much payload size can affect latency. Setup is identical

to the one used for network overhead. YCSB Workload A is

used to measure how payload size affects both reads and

writes. Results are shown in Fig. 2.a. and Fig 2.b. Read over-

head shows no clear correlation with payload size: increas-

ing the payload size seems to yield results explained as usual

Fig 1. Fed-agent architecture overview

Fed-agent 1

Client

Delegate

Write to service 1

Service 1

Service 2

Fed-agent 3Fed-agent 2

DB 2

DB 1

Client
Read

Txn update

490 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

response time fluctuations. On the other side, write is heav-

ily affected by the payload size. Overhead increases from

about 10ms to 20ms for the first 100kB, which is the largest

jump. Increasing the payload size from 100kB starts adding

roughly 5ms per 100kB added. The main reason behind this

increase is due to writes sending Raft messages and backend

HTTP requests for every client request.

Node scaling. This benchmark measures the overhead of

Raft messages as the number of nodes increases. Only writes

are used because reads are strictly single node, meaning that

only YCSB Load workload was considered. We ran the

benchmarks on an Amazon EC2 cluster consisting of 10

t1.micro nodes all running fed-agent. We modified fed-agent

to automatically commit all transactions because delegating

HTTP requests is not affected by the number of fed-agent

nodes. We are also only interested in the network overhead,

so only a single client thread is used. The results are shown

in Fig. 2.c. Since there is no need for consensus protocol for

only one node, there is a spike in overhead when a second

node is added, going from 0.4ms to 8ms. Each node added

beyond the first adds 0.2ms-1ms latency. There is no indica-

tion this does not stay true for exceptionally large clusters,

i.e., clusters of many tens or even hundreds of nodes.

Concurrency and contention. In the concurrency bench-

mark, we measured how overhead scales with an increasing

number of concurrent users, but no contention. We define

contention as the percentage of transactions accessing hot

data that was 20% of total data objects. In the contention

benchmark, we altered contention from 0% to 100% with a

constant number of concurrent users. In both benchmarks, a

concurrent user was represented by a thread running the

YCSB Workload A benchmark. We capped the throughput

at 3000 operations/second as to not overload the system that

supported 5000 operations/second. The purpose of the

benchmark was to measure the overhead of a usual workload

and not to push the system to its limits. We ran the bench-

marks on an Amazon EC2 cluster consisting of 7 t3.2xlarge

nodes. Three fed-agent nodes, three usersvc instances using

PostgreSQL 13, and a single client instance were deployed.

PostgreSQL isolation level was set to serializable to match

that of fed-agent, so we can more accurately compare the

number of aborts.

Fig. 2.d. shows how the number of concurrent users af-

fects the overhead. For this benchmark, we ran 100% read

and 100% write workloads separately. The contention rate

was set to 0%. Read overhead is mostly affected by fed-

agent internal locking mechanism when fetching data object

versions from the version chain. There appears to be a large

spike going from 0.5s to 4s somewhere between 20 and 40

threads, which then plateaus before having a sharp drop to

0.9s at 100 threads. Our initial assumption is that at this

point, disk I/O becomes the bottleneck, effectively masking

network overhead of fed-agent. Write overhead is affected

by the same locking mechanism when inserting versions to

the chain, but also by the number of messages Raft transport

can support, with the latter being the bigger factor.

Fig. 2.e. shows how contention rate affects the overhead,

while Fig 2.f. shows how it affects the number of aborts. We

set the number of threads to 40 for the benchmark. The over-

head and the number of aborts appear largely unaffected by

contention. The number of aborts is almost ten times higher

than the baseline, which we attribute to distributed transac-

tions simply being slower and causing more conflicts. The

0.1 0.8 100 200 300 400

0

5

10

15

20

25

Response size (kB)

O
v

e
rh

e
a
d

 (
m

s)

0.1 0.8 100 200 300 400

0

0,2

0,4

0,6

0,8

1

1,2

Response size (kB)

O
v

e
rh

e
a
d

 (
m

s)

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

Number of nodes

O
v

e
rh

e
a
d

 (
m

s)

4 10 20 40 60 80 100

0

5

10

15

20

25

Read

Write

Number of threads

O
v

e
rh

e
a
d

 (
m

s)

20% 40% 60% 80% 100%

0

5

10

15

20

Contention rate

O
v

e
rh

e
a
d

 (
m

s)

20 40 60 80 100

0

0,5

1

1,5

fed-
agent

baseline

Contention rate (percentage)

A
b

o
rt

s
(t

h
o

u
sa

n
d

)

Fig 2. Benchmark results, left to right, top to bottom: a) payload size write scaling, b) payload size read scaling, c) write scaling with the number of

nodes, d) concurrency scaling , e) contention scaling, f) aborts in relation to contention

TABLE I.

AVERAGE OVERHEAD IN MILLISECONDS

Type Workload A Workload B Workload C Workload D Workload F Load

Read overhead (ms) 0.828 0.595 1.095 1.056 0.843 N/A

Write overhead (ms) 7.354 7.749 N/A 7.383 7.289 6.522

LAZAR NIKOLI ÂC, VLADIMIR DIMITRIESKI: FED-AGENT ± A TRANSPARENT ACID-ENABLED TRANSACTIONAL LAYER 491

total number of aborts is 1000-1200, which is small com-

pared to the total number of operations, which is 150000.

Summary. The expected overhead for most use cases is 7-

10ms for writes and 1ms for reads. For single-node fed-

agent deployments, overhead for both reads and writes is

less than 1ms. The highest measured overhead is 30ms for

payload sizes of 400kB. This is an extreme scenario because

most REST API payload sizes are 1-2kB [13]. In our opin-

ion, fed-agent’s overhead should be acceptable in microser-

vice architectures with usual response times that are at least

an order of magnitude higher, usually tens of milliseconds or

longer. Fed-agent scales linearly: additional nodes add no

overhead for reads and add 0.2ms-1ms overhead for writes.

IV. RELATED WORK

Distributed transactions in multidatabase systems are a

well-known topic that can be traced back to the 1980s [6]

[14]. It has seen some recent development, particularly in the

domain of distributed databases and microservices.

ReTSO [15] has an architecture similar to fed-agent and

serves as a global transaction tracker. Unlike ReTSO, fed-

agent is an integrated solution that does not use any other

components. GRIT [16] optimistically executes transactions,

capturing write and read sets and then asynchronously ap-

plying them. It is not stated whether database service han-

dling the write sets are an existing part of a microservice, or

a component specifically developed for GRIT. Calvin [7] is

conceptually similar to fed-agent but uses databases as back-

ends instead of microservices. Deuteronomy [17] separates

transactions from databases allowing it to execute them on

multidatabase systems. Typhon [18] offers snapshot isola-

tion level of access to single keys when accessed via Cer-

berus protocol, but not transparently. Dey et al [19] provides

a Java client library for tracking transaction meta-data. The

system heavily relies on test-and-set operations, limiting the

choice of databases that can be used. None of the listed sys-

tems can automatically and transparently facilitate distrib-

uted transactions, but instead require using a client library.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented fed-agent, a transactional layer

that provides ACID capabilities on single data objects over

multidatabase microservice architectures. Each microservice

can be developed to use a different database, regardless of

consistency levels or ACID properties of the database. Fed-

agent provides transparent transactions triggered automati-

cally whenever an operation matching the provided configu-

ration is detected. Microservices can be developed in isola-

tion and require no code that implements distributed transac-

tions. This brings the focus of engineers away from coordi-

nation into business logic. Our experiments show low over-

head and linear scalability for a typical microservice setup.

There are several areas in which fed-agent can be im-

proved in the future. First, we can allow users to declara-

tively define mappings between request types instead of be-

ing forced to use identical requests for all microservices.

Second, the system can be split into shared-nothing parti-

tions. Third, multi-object open transactions can be supported

by introducing operations akin to SQL BEGIN, COMMIT,

and ABORT. Fourth, operations reading ranges of data ob-

jects (scans) should also be supported as it is one of the com-

mon workloads described by the YCSB.

REFERENCES

[1] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N.

Hachem, and P. Helland, “The end of an architectural era: it's time for

a complete rewrite,” Making Databases Work: the Pragmatic Wisdom

of Michael Stonebraker, pp. 463–489, 2018.

[2] VoltDB, 10-May-2021. [Online]. Available: https://www.voltdb.com/.

[Accessed: 23-May-2021].

[3] Neo4j Graph Database Platform, 13-May-2021. [Online]. Available:

https://neo4j.com/. [Accessed: 23-May-2021].

[4] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner,

S. Madden, T. Mattson, and M. Stonebraker, “The BigDAWG

polystore system and architecture,” 2016 IEEE High Performance

Extreme Computing Conference (HPEC), 2016.

[5] P. Bakkum and K. Skadron, “Accelerating SQL database operations

on a GPU with CUDA,” Proceedings of the 3rd Workshop on

General-Purpose Computation on Graphics Processing Units -

GPGPU '10, 2010.

[6] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management

in the R* distributed database management system,” ACM

Transactions on Database Systems, vol. 11, no. 4, pp. 378–396, 1986.

[7] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.

Abadi, “Calvin,” Proceedings of the 2012 international conference on

Management of Data - SIGMOD '12, 2012.

[8] W. Vogels, “Eventually consistent,” Communications of the ACM,

vol. 52, no. 1, pp. 40–44, 2009.

[9] D. Ongaro, and J. Ousterhout, „In search of an understandable

consensus algorithm”. In 2014 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 14) , pp. 305-319, 2014.

[10] P. A. Bernstein and N. Goodman, “Multiversion concurrency control

—theory and algorithms,” ACM Transactions on Database Systems,

vol. 8, no. 4, pp. 465–483, 1983.

[11] Tile38. [Online]. Available: https://tile38.com/. [Accessed: 23-May-

2021].

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” Proceedings of

the 1st ACM symposium on Cloud computing - SoCC '10, 2010..

[13] C. Rodríguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali,

and G. Percannella, “REST APIs: A Large-Scale Analysis of

Compliance with Principles and Best Practices,” Lecture Notes in

Computer Science, pp. 21–39, 2016.

[14] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, “Overview of

multidatabase transaction management,” CASCON First Decade High

Impact Papers on - CASCON '10, 2010.

[15] F. Junqueira, B. Reed, and M. Yabandeh, “Lock-free transactional

support for large-scale storage systems,” 2011 IEEE/IFIP 41st

International Conference on Dependable Systems and Networks

Workshops (DSN-W), 2011.

[16] G. Zhang, K. Ren, J.-S. Ahn, and S. Ben-Romdhane, “GRIT:

Consistent Distributed Transactions Across Polyglot Microservices

with Multiple Databases,” 2019 IEEE 35th International Conference

on Data Engineering (ICDE), 2019. Conference on Data Engineering

(ICDE) (pp. 2024-2027). IEEE.

[17] Levandoski, J. Justin, D. Lomet, M. Mokbel and K. Zhao.

“Deuteronomy: Transaction Support for Cloud Data.” CIDR (2011).

[18] V. Arora, F. Nawab, D. Agrawal, and A. E. Abbadi, “Typhon:

Consistency Semantics for Multi-Representation Data Processing,”

2017 IEEE 10th International Conference on Cloud Computing

(CLOUD), 2017.

[19] A. Dey, A. Fekete, and U. Rohm, “Scalable distributed transactions

across heterogeneous stores,” 2015 IEEE 31st International

Conference on Data Engineering, 2015.

492 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

