
Abstract—With the recent expansion of specialized databases

and departure from the “one size fits all” paradigm, engineers

might decide to use multiple databases. Each database holds a

representation  of  a  data  object  but  offers  transactions  and

consistency  guarantees  only  locally.  Existing  solutions  either

require  additional  coding  or  do  not  provide  global  ACID

transactions.  In  this  paper,  we  present  fed-agent,  a

transactional layer that provides global consistency and ACID

transactions  for  single  data  objects  within  multidatabase

systems. It requires no additional coding besides configuration

files. We show that fed-agent scales linearly and introduces an

overhead small enough for most microservice solutions.

I. INTRODUCTION

Since  the  mid-2000s,  the  database  community  has  shifted

away from the “one size fits all” approach to database sys-

tems  [1].  Many  new  specialized  databases  have  emerged

over  the past  decade,  such as  VoltDB [2]  and Neo4j  [3].

These databases are sometimes able to outperform relational

databases by a large margin for their specialty workloads [4]

[5]. An argument can be made that to be as performant as

possible, a system should incorporate various types of data-

bases. Data objects would be stored in different representa-

tions across multiple databases, but still logically represent a

single entity. A blog post, for example, could have its con-

tent  fully  stored  in  a  relational  database.  Its  text  content

could be also stored in a text search engine, while viewer-

ship statistics calculated based on it could be stored in an an-

alytical  database.  There  needs to be a mechanism to syn-

chronize data object representations and offer global consis-

tency. It is important to note that databases usually cannot

extend their consistency and transactional properties beyond

their scope. For example, having only databases with Atom-

icity, Consistency, Isolation and Durability (ACID) transac-

tions will not automatically make all distributed transactions

ACID.

Traditionally, the two-phase commit (2PC) [6] protocol is

used for data synchronization when high consistency is re-

quired,  but  at  the cost  of  lower  throughput  [7].  Persistent

message queues can be used instead, at the cost of less strict

consistency [8], limiting the design space, increasing devel-

opment costs, and harming the developer and user experi-

ence. Another usual approach is to implement Extract-Trans-

form-Load (ETL) processes, usually as scripts that migrate

data periodically between databases. ETL adds extra costs to

implementing and maintaining migration scripts, which are

subject to change on each schema update.

The microservice architecture is a widely used architec-

ture for building cloud-based software solutions. Microser-

vices  expose an Application Programming Interface  (API)

that is used to access or manipulate data stored in databases.

Each microservice knows how to transform request data into

a persistent format used by a database. If most database op-

erations are handled through API calls, the messages should

contain enough information to deduce the state of the data-

base.

In this paper, we present  fed-agent, a transactional layer

acting as a proxy that aims to provide global consistency and

ACID guarantees for multidatabase systems. Other solutions

either require additional coding or do not support ACID over

multiple databases. Fed-agent does so for single data objects

with no additional code needed besides configuration files.

This  way  distributed  transaction  processing  is  facilitated

transparently,  allowing the engineers  to focus on the busi-

ness logic. In this paper we also prove that  fed-agent can

provide the above perks with a low overhead and linear scal-

ing.

The rest of the paper is organized as follows. In Section II

we present the architecture and core functionalities of fed-

agent. The fed-agent evaluation results are given in Section

III. In Section IV we discuss the related work, while in Sec-

tion V we conclude the paper and discusses future work.

II. ARCHITECTURE

Fed-agent acts as a layer that unifies read and write opera-

tions on a single data object over multiple databases. It com-

municates with databases through microservices built on top

of them. This eliminates the need to write and maintain code

that translates data between various representations, as map-

pers are already implemented as a part of microservices.

Fed-agent consists of multiple nodes within a single Raft

[9] consensus group, with one leader and multiple followers.

Only the leader can accept writes, while followers can serve

read requests. In case of a leader's failure, one of the follow-

ers will become the leader so the fed-agent can continue ac-
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cepting writes. We present the high-level overview of fed-

agent architecture in Fig. 1. It shows a fed-agent cluster con-

sisting of three nodes, with fed-agent 1 being the leader. Ser-

vice 1 and Service 2 are microservices with separate data-

bases. A client sending writes to any service does so via fed-

agent 1, while reads can be served by any node. For exam-

ple, a read request can be routed to fed-agent 3.

Fed-agent identifies an operation and the data object being

read  or  modified  based  on  the  HTTP request’s  body and

URL. For example, PUT “/users/123” implies a user object

with ID “123” is being updated with data from the body.

Rules for extracting the information from a request are de-

fined declaratively in a configuration file for each endpoint.

Fed-agent  uses  Multi-Version  Concurrency  Control

(MVCC) [10]. Every write request on a data object creates a

new version of the data object. Reads can only see commit-

ted data object versions based on its timestamp. If fed-agent

detects  a  microservice  response  contains  an  uncommitted

data object, it will replace it with the last committed object

available for the request’s timestamp. MVCC implementa-

tion ensures snapshot isolation level, leaving only anomalies

that happen for predicate-based operations. Since fed-agent

operates only on single data objects, these anomalies cannot

happen and serializable isolation level is ensured.

III. EVALUATION

To evaluate fed-agent, we created a setup that illustrates a

typical  scenario in practice.  The setup consisted of a fed-

agent cluster acting as a proxy for microservices connecting

to a database. The microservices are userservice, using Post-

greSQL  13,  textservice,  using  Elasticsearch  7.12.1,  and

geosvc using Tile38 [11]. Each microservice is written in the

Go programming language and uses only low-level database

drivers and the standard HTTP library. There are two data

object types:  User and Tweet types. The User type consists

of  four  text  fields:  id,  handle,  email,  and  password.  The

Tweet type consists of three text fields: id,  userHandle, and

content, and two double-precision numbers representing lati-

tude and longitude. For simplicity, we store full data objects

in all databases. The services offer REST API with two op-

erations: (i) access a single data object by id and (ii) upsert a

data object. All services are developed as if used in isolation

and contain no code for distributed transactions. Distributed

transactions and coordination are covered by fed-agent con-

figuration files. 

We use  Yahoo Cloud Serving Benchmark (YCSB) [12]

workload in our benchmarks.  YCSB consists of six work-

loads:  Workload  A (50/50  read/write),  Workload  B (95/5

read/write), Workload C (read-only), Workload D (read lat-

est), Workload E (top 100 records), and Workload F (read-

modify-write).  We do not consider Workload E since fed-

agent does not currently support scans.  We also add  Load

workload consisting of 100% write operations.

Overheads are measured as a difference between latencies

from direct  API calls to a microservice and API calls via

fed-agent proxy. For write (upsert) operations, all backend

requests are done in parallel, so we measure the difference

between the slowest microservice response and the fed-agent

proxy response.

We acknowledge some threats to validity of this evalua-

tion.  Because  all  benchmarks  were  running  on the  public

cloud and not on dedicated hardware, benchmarks results are

subject to factors beyond our control, such as changes of net-

work  topology,  network  hiccups,  or  hardware  failure.  To

minimize the effect, we ran each benchmark five times and

reported the average. We also set the number of operations

for each benchmark to 150000. Additionally, the bare-bones

microservices used in benchmarks are developed by us for

this  sole  purpose.  Microservices  in  practice  would  have

more complicated logic and would be running in much more

complex architectures. Running these benchmarks in such a

system might yield different results.

We run benchmarks  to  analyze  how network  overhead,

payload size, number of fed-agent nodes, concurrency, and

contention affect fed-agent. The results are discussed below.

Network overhead. This benchmark aims to measure the

network overhead created by additional messages, so we ran

it with a single client thread. We ran this benchmarks on an

Amazon EC2 cluster of 10  t1.micro nodes.  One node was

acting  as  a  client.  Three  nodes  were  running  a  fed-agent

cluster. The three services connecting to distinct databases

were each running on a different node. The databases were

all  running  on  their  nodes.  This  benchmark  considers  all

YCSB workloads.  The  results  are  shown  in  Table  1  and

show that for a typical web-oriented microservice solution,

one can expect about 7ms overhead for writes and about 1ms

overhead for reads.

Payload  size  scaling.  For  this  benchmark,  we  measure

how much payload size can affect latency. Setup is identical

to the one used for network overhead. YCSB Workload A is

used  to  measure  how payload size affects  both reads  and

writes. Results are shown in Fig. 2.a. and Fig 2.b. Read over-

head shows no clear correlation with payload size:  increas-

ing the payload size seems to yield results explained as usual

Fig 1. Fed-agent architecture overview
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response time fluctuations. On the other side, write is heav-

ily affected by the payload size.  Overhead  increases  from

about 10ms to 20ms for the first 100kB, which is the largest

jump. Increasing the payload size from 100kB starts adding

roughly 5ms per 100kB added. The main reason behind this

increase is due to writes sending Raft messages and backend

HTTP requests for every client request.

Node scaling. This benchmark measures the overhead of

Raft messages as the number of nodes increases. Only writes

are used because reads are strictly single node, meaning that

only  YCSB Load workload  was  considered.   We ran  the

benchmarks  on  an  Amazon  EC2  cluster  consisting  of  10

t1.micro nodes all running fed-agent. We modified fed-agent

to automatically commit all transactions because delegating

HTTP requests is not affected by the number of fed-agent

nodes. We are also only interested in the network overhead,

so only a single client thread is used. The results are shown

in Fig. 2.c. Since there is no need for consensus protocol for

only one node, there is a spike in overhead when a second

node is added, going from 0.4ms to 8ms. Each node added

beyond the first adds 0.2ms-1ms latency. There is no indica-

tion this does not stay true for exceptionally large clusters,

i.e., clusters of many tens or even hundreds of nodes.

Concurrency and contention.  In the concurrency bench-

mark, we measured how overhead scales with an increasing

number of concurrent users,  but no contention. We define

contention as  the percentage  of  transactions accessing  hot

data that was 20% of total  data objects. In the contention

benchmark, we altered contention from 0% to 100% with a

constant number of concurrent users.  In both benchmarks, a

concurrent  user  was  represented  by  a  thread  running  the

YCSB Workload A benchmark. We capped the throughput

at 3000 operations/second as to not overload the system that

supported  5000  operations/second.  The  purpose  of  the

benchmark was to measure the overhead of a usual workload

and not to push the system to its limits.  We ran the bench-

marks on an Amazon EC2 cluster consisting of 7 t3.2xlarge

nodes. Three fed-agent nodes, three usersvc instances using

PostgreSQL 13, and a single client instance were deployed.

PostgreSQL isolation level was set to serializable to match

that of fed-agent,  so we can more accurately compare the

number of aborts.

Fig. 2.d. shows how the number of concurrent users af-

fects the overhead. For this benchmark, we ran 100% read

and 100% write workloads separately.  The contention rate

was  set  to  0%. Read overhead  is  mostly affected  by fed-

agent internal locking mechanism when fetching data object

versions from the version chain. There appears to be a large

spike going from 0.5s to 4s somewhere between 20 and 40

threads, which then plateaus before having a sharp drop to

0.9s  at  100  threads.  Our  initial  assumption  is  that  at  this

point, disk I/O becomes the bottleneck, effectively masking

network overhead of fed-agent. Write overhead is affected

by the same locking mechanism when inserting versions to

the chain, but also by the number of messages Raft transport

can support, with the latter being the bigger factor.

Fig. 2.e. shows how contention rate affects the overhead,

while Fig 2.f. shows how it affects the number of aborts. We

set the number of threads to 40 for the benchmark. The over-

head and the number of aborts appear largely unaffected by

contention. The number of aborts is almost ten times higher

than the baseline, which we attribute to distributed transac-

tions simply being slower and causing more conflicts. The

0.1 0.8 100 200 300 400

0

5

10

15

20

25

Response size (kB)

O
v

e
rh

e
a
d

 (
m

s)

0.1 0.8 100 200 300 400

0

0,2

0,4

0,6

0,8

1

1,2

Response size (kB)

O
v

e
rh

e
a
d

 (
m

s)

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

Number of nodes

O
v

e
rh

e
a
d

 (
m

s)

4 10 20 40 60 80 100

0

5

10

15

20

25

Read

Write

Number of threads

O
v

e
rh

e
a
d

 (
m

s)

20% 40% 60% 80% 100%

0

5

10

15

20

Contention rate

O
v

e
rh

e
a
d

 (
m

s)

20 40 60 80 100

0

0,5

1

1,5

fed-
agent

baseline

Contention rate (percentage)

A
b

o
rt

s 
(t

h
o

u
sa

n
d

)

Fig 2. Benchmark results, left to right, top to bottom: a) payload size write scaling, b) payload size  read scaling, c)  write scaling with the number of

nodes, d) concurrency scaling , e) contention scaling, f) aborts in relation to contention

TABLE I.

AVERAGE OVERHEAD IN MILLISECONDS

Type Workload A Workload B Workload C Workload D Workload F Load

Read overhead (ms) 0.828 0.595 1.095 1.056 0.843 N/A

Write overhead (ms) 7.354 7.749 N/A 7.383 7.289 6.522
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total number of aborts is 1000-1200, which is small com-

pared to the total number of operations, which is 150000.

Summary. The expected overhead for most use cases is 7-

10ms for  writes  and  1ms  for  reads.  For  single-node  fed-

agent  deployments,  overhead  for  both reads  and writes  is

less than 1ms. The highest measured overhead is 30ms for

payload sizes of 400kB. This is an extreme scenario because

most REST API payload sizes are 1-2kB [13]. In our opin-

ion, fed-agent’s overhead should be acceptable in microser-

vice architectures with usual response times that are at least

an order of magnitude higher, usually tens of milliseconds or

longer.  Fed-agent  scales  linearly:  additional  nodes add no

overhead for reads and add 0.2ms-1ms overhead for writes.

IV. RELATED WORK

Distributed  transactions  in  multidatabase  systems  are  a

well-known topic that can be traced back to the 1980s [6]

[14]. It has seen some recent development, particularly in the

domain of distributed databases and microservices.

ReTSO [15] has an architecture similar to fed-agent and

serves as a global transaction tracker.  Unlike ReTSO, fed-

agent is an integrated solution that does not use any other

components. GRIT [16] optimistically executes transactions,

capturing write and read sets and then asynchronously ap-

plying them. It is not stated whether database service han-

dling the write sets are an existing part of a microservice, or

a component specifically developed for GRIT. Calvin [7] is

conceptually similar to fed-agent but uses databases as back-

ends instead of microservices.  Deuteronomy [17] separates

transactions from databases allowing it to execute them on

multidatabase  systems. Typhon [18] offers  snapshot isola-

tion level of access to single keys when accessed via Cer-

berus protocol, but not transparently. Dey et al [19] provides

a Java client library for tracking transaction meta-data. The

system heavily relies on test-and-set operations, limiting the

choice of databases that can be used. None of the listed sys-

tems can  automatically  and  transparently  facilitate  distrib-

uted transactions, but instead require using a client library.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented fed-agent, a transactional layer

that provides ACID capabilities on single data objects over

multidatabase microservice architectures. Each microservice

can be developed to use a different database, regardless of

consistency levels or ACID properties of the database. Fed-

agent  provides  transparent  transactions triggered  automati-

cally whenever an operation matching the provided configu-

ration is detected. Microservices can be developed in isola-

tion and require no code that implements distributed transac-

tions. This brings the focus of engineers away from coordi-

nation into business logic. Our experiments show low over-

head and linear scalability for a typical microservice setup.

There  are  several  areas  in  which  fed-agent  can  be  im-

proved in the future.  First, we can allow users to declara-

tively define mappings between request types instead of be-

ing  forced  to  use  identical  requests  for  all  microservices.

Second,  the system can be split  into shared-nothing parti-

tions. Third, multi-object open transactions can be supported

by introducing operations akin to SQL  BEGIN,  COMMIT,

and ABORT.  Fourth, operations reading ranges of data ob-

jects (scans) should also be supported as it is one of the com-

mon workloads described by the YCSB.
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