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Abstract—In this work a new numerical optimization scheme
based on a shortened time horizon approach was designed. The
shortened time horizon strategy has never been presented or
tested numerically. The new methodology was applied for a single
objective optimization task subject to a system of nonlinear
differential-algebraic constraints, which can take a form of
differential-algebraic equations (DAEs). Moreover, it was as-
sumed, that an application of a cooperated multiple shooting
with direct solution method, like direct shooting approach, does
not enable us to solve the DAE system, even on relatively small
subintervals. Therefore, the new solution procedure is based
on two main parts: i) designing of an alternative differential-
algebraic constraints, ii) parametrization of a new constraints
system by the multiple shooting approach and further simulation
of the alternative system independently on small subintervals.
Then, the simulation interval can be modified by the shortened
time horizon approach. The presented algorithm was used to
solve a highly nonlinear optimization task of a fed-batch reactor
operation.

Index Terms—numerical optimization, differential-algebraic
constraints, shortened time horizon, multiple shooting method

I. INTRODUCTION

The appropriate treatment of the nonlinear constraints can

enable us to implement new numerical procedures, helpful

in the model-based simulations [3], [4], [9]. In this work,

the attention is paid on an optimization task with differential-

algebraic constraints, which can take a form of differential-

algebraic equations (DAEs). Classically, the systems of the

nonlinear DAE constraints can be solved with the multiple

shooting approach [6], [7], [11]. Unfortunately, even the

multiple shooting methods can fail, when initial conditions

are far from the solution trajectory [1], [2], [5]. Therefore,

a shortened time horizon (STH) approach was considered as

a tool to influence a difficulty of a nonlinear optimization task.

The combination of the multiple shooing method with the STH

approach can be treated as a base to design a new efficient

optimization method subject to the nonlinear differential-

algebraic constraints.

This article is constructed as follows. In Section 2 the short-

ened time horizon approach for DAE constraints is introduced.

Then, in Section 3, the new solution procedure is presented.

This research was funded by the Department of Control Systems and
Mechatronics at Wrocław University of Science and Technology.

The results of numerical computations are discussed in Sec-

tion 4. Finally, the presented considerations are summarized

in Section 5.

II. THE SHORTENED TIME HORIZON

FOR DIFFERENTIAL-ALGEBRAIC CONSTRAINTS

In this work, a system of the nonlinear differential-algebraic

constraints is considered

(DAE)





ẏ(t) = f(y(t), z(t), u(t), p, t)
0 = g(y(t), z(t), u(t), p, t)
t ∈ [t0 tf ]

y(t0) = y0
z(t0) = z0

(1)

where the state of the DAE constraints (1) is represented

by a vector of differential variables y(t) ∈ Rny and a vec-

tor of algebraic variables z(t) ∈ Rnz with ẏ(t) = dy(t)
dt

.

Moreover, u(t) ∈ Rnu denotes a vector of input functions.

A vector of model parameters constant in time is represented

by p ∈ Rnp , t ∈ R is an independent variable and a range of

t is known a priori. The functions f and g are of C2 class and

f : Rny ×Rnz ×Rnu ×Rnp ×R → Rny

g : Rny ×Rnz ×Rnu ×Rnp ×R → Rnz
(2)

The shortened horizon approach is based on an appropriate

modification of a considered range of the assumed independent

variable. The name of this method reflects, that in many

cases time is considered as the natural independent variable.

The shortened time approach is motivated, that the number

of shooting intervals does not have to be known a priori.

Therefore, the range of the independent variable is shortened

according to the computational algorithms capabilities. Then,

with a known solution obtained for a shortened range, the

calculation can be continued iteratively for wider ranges of

the independent variable.

Assumption 1. The range of the independent variable t ∈
[t0 tf ] can be modified and parametrized by q ∈ [0 1] in

the shortened horizon approach as t ∈ [q · t0 q · tf ].
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Therefore, the formulation of the considered constraints (1)

in the context of the shortened time horizon method takes

a new form

(
DAE(q)

)





ẏ(t) = f(y(t), z(t), u(t), p, t)
0 = g(y(t), z(t), u(t), p, t)
t ∈ [qt0 qtf ]

y(t0) = y0
z(t0) = z0

(3)

A direct shooting approach is one of a common used method

to simulate the systems described by the nonlinear DAE

constraints on the assumed interval of the independent variable

(3). The mentioned approach is based on a multiple shooting,

where a range of the independent variable t ∈ [t0 tf ] is

divided on an assumed number N subintervals

ti ∈ [qti0 qtif ], i = 1, . . . , N (4)

where

qt0 = qt10 < qt1f = qt20 < · · · < qtN−1
f = qtN0 < qtNf . (5)

Then, the DAE constraints (3) can be considered on each

subinterval independently such, that

(
DAEi(q)

)





ẏi(ti) = f i(yi(ti), zi(ti), ui(ti), p, ti)
0 = gi(yi(ti), zi(ti), ui(ti), p, ti)
ti ∈ [qti0 qtif ]

y(ti0) = yi0
z(ti0) = zi0

(6)

for i = 1, . . . , N . The variables yi(t), zi(t), ui(t) and p have

a similar interpretation like in eq. (1). Moreover, the multiple

shooting approach enable us a parametrization of both the

state variables yi(ti) and zi(ti), as well as the input function

ui(ti), for i = 1, . . . , N .

Assumption 2. On the given subinterval of the independent

variable ti ∈ [ti0 tif ], the trajectory of the differential state

variable yi(ti) can be parametrized and represented by a new

state variable ỹi(ti) modeled by a system of linear differential

equation of the form

˙̃yi(ti) = Diỹi(ti), (7)

for i = 1, . . . , N , where Di is a nyi × nyi diagonal matrix.

Assumption 3. On the given subinterval of the independent

variable ti ∈ [ti0 tif ], the trajectory of the algebraic state

variable zi(ti) can be parametrized and represented by a new

state variable z̃i(ti) modeled by a system of linear algebraic

equation of the form

0 = z̃i(ti)− (Aziti + bzi), (8)

for i = 1, . . . , N , where Azi is a nzi × nzi diagonal matrix

and bzi is a vector with nzi elements.

Assumption 4. On the given subinterval of the independent

variable ti ∈ [ti0 tif ], the trajectory of the input function

ui(ti) can be parametrized and represented by a new input

function ũi(ti) modeled by a piecewise constant function of

the form

0 = ũi(ti)− (bui), (9)

for i = 1, . . . , N , where bui is a vector with nui elements.

Unfortunately, in general, the values of the initial conditions

for state variables in shooting points are unknown

xy0z0
=




y10 z10
...

...

yN0 zN0


. (10)

Therefore, the unknown initial conditions xy0z0
can be treated

as an important part of decision variables in a nonlinear

optimization task. Moreover, the parametrization variables,

which define the trajectories of the state variables and the input

function, can be used to built a matrix of decision variables

X =




y10 z10 d(Az1) bz1 bu1

...
...

...
...

...

yN0 zN0 d(AzN ) bzN buN


, (11)

where an operator d(B) denotes the diagonal elements of the

matrix B.

To solve the new system of continuous differential-algebraic

constraints, it is enough to assign arbitrary values to the

decision variables matrix (11)

(
D̃AEi(q)

)





˙̃yi(ti) = Diỹi(ti)
0 = z̃i(ti)− (Aziti + bzi)
0 = ũi(ti)− (bui)
ti ∈ [qti0 qtif ]

ỹi(ti0) = yi0
z̃i(ti0) = Aziti0 + bzi

ũi(ti0) = bui

(12)

for i = 1, . . . , N .

To determine the matrix of decision variables (11), the

additional pointwise algebraic constraints were imposed. They

were used to force a continuity of the obtained state trajectories

ỹ(t) and z̃(t), ensure consistent initial conditions, as well as

provide such models of original DAE constraints, that the

dynamics of the obtained solutions will meet the primary

constraints (1).

This approach results with a system of pointwise equality

constraints consisted with concatenated vectors of specified

restriction types

G(X) =




Gcont(X)
Gcons(X)
Gdyn(X)


 = 0, (13)

where

Gcont(X) =




ỹ1(t1f )− y20
...

ỹN−1(tN−1
f )− yN0


, (14)
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is a vector of the continuity constraints,

Gcons(X) =




g1(y10 , z̃
1(t10), ũ

1(t10), p, t
1
0)

...

gN (yN0 , z̃N (tN0 ), ũN (tN0 ), p, tN0 )


,

(15)

is a vector of the consistency constraints, as well as

Gdyn(X) =

=




D1y10 − f1(y10 , z̃
1(t10), ũ

1(t10), p, t
1
0)

...

DNyN0 − fN (yN0 , z̃N (tN0 ), ũN (tN0 ), p, tN0 )


,

(16)

is a vector of the dynamical constraints.

Corollary 5. The D̃AEi(q) model (12) is a special case

of a linear differential-algebraic system with time-dependent

coefficients



˙̃y(t)
0
0


 =




D 0 0
0 I 0
0 0 I






ỹ(t)
z̃(t)
ũ(t)


−




0
Azt+ bz

bu


 .

(17)

The proposed methodology can be used to transform the

system of highly nonlinear differential-algebraic constraints

(1) into the system of linear differential-algebraic constraints

(12) with pointwise algebraic constraints related with the

continuity, consistency and dynamical constraints (13). The

new system of constraints can be considered in the context of

nonlinear optimization task

min
X

F (X), (18)

where F is a scalar-valued objective function. The additional

assumptions related to the F function need to be reflected

in a chosen numerical optimization procedure used further

in an inner loop of the shortened time horizon optimization

algorithm.

III. THE NEW ALGORITHM

The steps of the new optimization approach were presented

as the Shortened Time Horizon Optimization (STHO) Algo-

rithm. The designed Algorithm requires some input infor-

mation, which should be supplied in the Preliminary steps.

The defined sequence {qk}
n
k=0 determines a progress of the

shortened time approach (step P 1 in the STHO Algorithm).

In the other words, the interval of the independent variable

in the kth outer loop iteration is [qkt0 qktf ]. Moreover, the

first value q0 = 0 is defined and no more used. Then, the

assumed number of shooting subintervals N is constant during

the performed computations (P 2). To start the algorithm, the

considered DAE constraints (1) are necessary to be inserted

(P 3). Moreover, the values of ny , nz and nu with a range of

the independent variable t ∈ [t0 tf ] are used to obtain the

parametrized model of the differential-algebraic constraints.

To start the outer loop, the matrix of the initial solution (11)

needs to be defined (P 4).

The STHO Algorithm

Preliminaries

P 1 Define a sequence of n+ 1 elements {qk}
n
k=0,

where q0 = 0 and qn = 1.

P 2 Define a number of shooting subintervals N ∈ N+.

P 3 Define a system of DAE constraints (1) with

values ny , nz , nu and a range of the independent

variable t ∈ [t0 tf ].
P 4 Choose the initial solution matrix X0 (11).

The outer loop

FOR k = 1, 2, . . . , n
O 1 Choose a value qk.

O 2 Define subintervals ti ∈ [qkt
i
0 qkt

i
f ],

where i = 1, . . . , N .

O 3 Define the new constraints models D̃AEi(qk).
O 4 Define the vector of algebraic constraints G(X).

The inner loop

Find X
⋆ by solving the optimization task

minX F (X)
subject to

D̃AEi(qk), i = 1, . . . N,

G(X) = 0

O 5 The obtained solution X
⋆ is the new initial

solution for the next iteration of the outer loop

X0 = X
⋆

END-FOR.

The optimization method is consisted of two main parts,

which will be referred to as an outer- and inner loop. In

the inner loop, a numerical optimization procedure solves

a parametrized task subject to the differential-algebraic con-

straints (12), as well as additional equality restrictions (13)

resulting from the multiple shooting method. The shortened

time approach is a base for the outer loop of the new algorithm.

It can take a form of a ,,for” iterations, where a q parameter

is incremented according to the assumed way. The solution

obtained as a result at a current iteration of the outer loop, is

a starting point for the inner loop in the next outer iteration.

The outer loop is mainly concentrated around a nonlinear

optimization task constructing for a given value qk (O 1). In

the steps (O 2) and (O 3), the appropriate subintervals ti with

the new models D̃AEi are defined. Then, the DAE constraints

and models D̃AEi (P 3) will be used to calculate the system of

pointwise algebraic constraints G(X) (O 4). The constraints

G(X) represent similarity between the designed model (12)

and the original DAE constraints (1).

The current task is solved in the inner loop by a chosen nu-

merical optimization procedure. The solver can cooperate with
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a numerical integrator of the differential-algebraic constraints,

although the new system of constraints (12) can be solved

analytically in many cases. A selection of efficient numerical

algorithms for constrained optimization is presented in [10].

IV. COMPUTATIONAL EXPERIMENTS

The algorithm designed in this study was implemented in

Matlab environment and applied for solving optimization task

of searching for optimal operation of a fed-batch reactor. The

considered model is consisted on the differential and algebraic

state variables

y(t) = [y1(t) y2(t) y3(t) y4(t) y5(t)]
T (19)

z(t) = [z1(t) z2(t) z3(t)]
T , (20)

as well as the objective function

max
u(t)

y1(tf )y5(tf ) (21)

The differential-algebraic constraints with initial conditions for

the differential state trajectories

y(t0) = [0.0 0.0 1.0 5.0 1.0]T (22)

are based on the work of Luus and Rosen [8]. The initial

conditions for the algebraic state variables z(t0) can be calcu-

lated based on the initial conditions of y(t0) (22). Moreover,

the input function u(t) is constrained by a pair of inequalities

0.0 ≤ u(t) ≤ 10.0 (23)

The final value of the state variable y4 is bounded by

y4(tf ) ≤ 14.35 (24)

The process duration range was assumed and equal t ∈
[0 25]. The presented objective function (21) subject to the

continuous differential-algebraic constraints, as well as the

pointwise constraint (24), was parametrized by a direct shoot-

ing method with N = 25 subintervals. The parametrization

resulted with new decision variables and continuity constraints.

The optimization task with the appropriate parametrization

and introduced constraints was solved in three different ways

• case 1: minimization of the objective function extended

by a penalty function,

• case 2: optimization with interior-point algorithm imple-

mented in fmincon Matlab function,

• case 3: solution by the STHO algorithm presented in this

work.

A. The task parametrization

According to the classical multiple shooting rules, the initial

conditions of the differential state trajectories are treated as

new decision variables. Then, the input function u(t) was

parametrized as a piecewise constant trajectory. Therefore,

the vector of decision variables X was consisted of 146

elements. Moreover, to ensure the continuity of the obtained

solution, additional 121 equality constraints were take into

account. In this set of the decision variables and constraint

functions, one decision variable together with one continuity

constraint was introduced to represent the inequality (24). This

is a basic multiple shooting parametrization used in numerical

experiments in the case 1 and case 2.

In the case 3, the parametrization appropriate for the de-

signed STHO algorithm was applied. At the beginning, the

initial conditions of the differential state trajectories ỹ(t),
as well as the input function ũ(t) are parametrized in the

same way like in the cases 1 and 2. Then, the additional

variables were introduced to obtain parametrized systems

D̃AEi: ny × N = 5 × 25 = 125 variables for matrices Di

and nz × 2×N = 3× 2× 25 = 150 variables to parametrize

the algebraic state trajectory z̃(t).
Moreover, 121 equality continuity constraints Gcont(X),

3×25 = 75 equality consistency constraints Gcons(X), as well

as 5×25 = 125 equality dynamical constraints Gdyn(X) were

introduced. Finally, the optimization task with 421 decision

variables, as well as the equality and box constraints was

considered.

B. Numerical results

The simulations were started with a similar approach, to the

one presented in the article [8]. In the case 1, the objective

function was in a form of minimized penalty function

min
X

J1 = −y251 (tf )y
25
5 (tf ) + ρ‖Gcont(X)‖22, (25)

where ‖ · ‖2 denotes a l2 norm and ρ is a penalty parameter.

In performed calculation ρ = 104. The value of the obtained

objective function was equal to J1(X
⋆) = −112.71.

In the case 2, the considered task was taken a form

min
X

J2 = −y251 (tf )y
25
5 (tf ) (26)

subject to

Gcont(X) = 0. (27)

The solution vector X
⋆ was obtained by the interior-point

algorithm implemented in the Matlab’s fmincon function. The

obtained value of the minimized objective function was equal

to J2(X
⋆) = −112.6231.

The computational calculations performed in the case 3

were more time-consuming and indicated on some benefits,

as well as disadvantages of the STHO algorithm. First of all,

the algorithm was working in the outer loop implemented as

for qk from 0.1 to 1.0 with a step 0.1

The main problem, meet at the beginning of the computations

at the first iteration of the outer loop, was to indicate the initial

solution near to a such local minimizer, which can fulfill all

the constraints G(X) = 0 based on the D̃AEi(qk) solution.

For the X0 near the local minimizer, the solution was obtained

and extended in the next iterations of the outer loop. The figs.

1-2 show the state trajectories ỹ1(t) and ỹ2(t) obtained for the

initial solution near to the local minimizer and calculated for

different values of qk.

The main drawback of the presented solution is related

to the construction of D̃AEi(qk). The models of the lin-

ear differential-algebraic constraints systems with variable
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coefficients result with solutions of a form Aeλt for the

differential state variables. Therefore, small modification in

the vector of decision variables resulted in significant changes

in the solution trajectories. Therefore, the new model of the

differential-algebraic constraints D̃AEi(qk) can show compa-

rable computational difficulties, like an original one (1).

The obtained solution trajectories seems to be piecewise

linear, especially, if larger number of subintervals is consid-

ered. Therefore, the value λ ≈ 0. This is particular true, if

the solution is calculated for higher values of the independent

variable.

Fig. 1. The trajectories of the state variables ỹ1(t) and ỹ5(t) obtained
for qk = 0.1.

Fig. 2. The trajectories of the state variables ỹ1(t) and ỹ5(t) obtained
for qk = 1.0.

V. CONCLUSION

In the presented work the STHO Algorithm for optimization

with the differential-algebraic constraints was presented. The

designed shortened time horizon approach was based on the

multiple shooting method, as well as implemented in two main

parts - outer in inner iterations. The outer iteration generates

the assumed number of subintervals and new constraints mod-

els with appropriate vector of pointwise algebraic constraints.

In the inner loop, the defined nonlinear optimization tasks

with modeled D̃AEi(qk) constraints and additional equality

constraints is solved by a chosen numerical optimization

procedure. The final solution of the inner loop is further treated

as an initial solution for the next iteration in the outer loop.

The designed algorithm was used to solve the optimization

task, where an optimal operation of the fed-batch reactor

should be found. The performed computations indicated ben-

efits and drawbacks of the designed procedure. The solution

trajectories can be found and simply extended on the wider

subintervals, if the appropriate initial solution is known a pri-

ori.
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