
The impact of vectorization and parallelization of

the slope algorithm on performance and energy

efficiency on multi-core architecture

Beata Bylina, Joanna Potiopa, Michał Klisowski, Jarosław Bylina

Institute of Computer Science, Marie Curie-Sklodowska University

Pl. M. Curie-Skłodowskiej 5

Lublin, 20-031, Poland

Email: {beata.bylina, joanna.potiopa, michal.klisowski, jaroslaw.bylina}@umcs.pl

Abstract—Calculation of land-surface parameters (e.g. slope,
aspect, curvature) is an important part of many geospatial
analyses. Current research trends are aimed at developing new
software techniques to achieve the best performance and energy
trade-off. In our work, we concentrate on the vectorization and
parallelization to improve overall energy efficiency and perfor-
mance of the neighborhood raster algorithms for the computation
of land-surface parameters. We chose the slope calculation
algorithm as the basis for our investigation. The parallelization
was achieved through redesigning the the original sequential code
with OpenMP SIMD vectorization hints for compiler, OpenMP
loop parallelization, and the hybrid of these techniques. To
evaluate both performance and energy savings, we tested our
vector-parallel implementations on a multi-core computer for
various data sizes. RAPL interface was used to measure energy
consumption. The results showed that optimization towards high
performance can also be an effective strategy for improving
energy efficiency.

Index Terms—power, energy efficiency, RAPL, slope, multicore

I. INTRODUCTION

W
ITH the growing demand for computing power new,

more performant computer architectures have emerged.

At the same time, the development of computer systems entails

an increase in electricity consumption. One way to achieve the

reduction of electricity consumption is modern, more energy-

efficient hardware. It allows for high computing performance

with lower energy consumption. Another way of achieving

energy efficiency in high performance computing (HPC) is

rethinking the software, including both runtime environments

and applications themselves. Efforts are constantly being made

to study the impact of algorithm optimizations on energy

consumption [11], [6]. Yet, there are still many algorithms

formulated in the past that now need to be rewritten to make

effective use of modern computer architectures.

Examples are various geospatial analysis algorithms. Many

of them are very time-consuming and does not scale well with

large data sets, but are applied for increasingly large areas or at

increasing resolution. Traditional GIS (geographic information

system) software implements sequential algorithms that do

not use efficiently computing power of modern computer

architectures.

The study of the effect of terrain profile on hydrological,

geomorphological, and ecological phenomena and processes

start with the calculation of topographic parameters from the

digital elevation model (DEM) [4]. The slope is one of the

basic primary parameters and it is used e.g. for computing

flow velocity for both overland and channelized flow. Other

parameters (like soil erosion and deposition, soil wetness, flow

speed) are calculated based on the slope. The slope calculation

algorithm plays a fundamental role in more advanced models,

although it is only one of the input elements for advanced

computational algorithms (like modeling rates of snowmelt

and evapotranspiration) [10]. Therefore, the high-performance

slope calculation algorithm in such complex geospatial anal-

yses is the key to speed them up. Transformations similar to

those applied by us to the slope algorithm can be used to

other related geospatial algorithms based on the neighborhood

relation (e.g. aspect, curvature, focal flow).

It is important to use performant and energy-efficient par-

allel processing on multi-core machines or hybrid cluster

systems for spatial analysis such as slope. Currently, it is

not possible to create an architecture-independent solution to

the problem of optimization of algorithms in terms of energy

efficiency because energy consumption is closely related to a

specific architecture. However, some results show that tech-

niques that optimize the performance of algorithms can also

improve energy efficiency [11].

In this article, we investigate the impact of the optimization

of the slope algorithm on performance, power and energy

consumption, and the correlation between them on multicore

architecture. We use this architecture because many cores

enable running multiple processes at the same time with

greater ease, increasing the performance of applications and

programs, especially those operating on large data size. The

slope algorithm acceleration is achieved by vector optimization

for each core and parallel implementation for multi-core

processors. The energy efficiency of the proposed solutions

is assessed for data (DEM files) of various sizes. The Intel

RAPL (Running Average Power Limit) [3], [9] interface was

used as a source of information on energy consumption.

The main contributions of this article are following:

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 283±290

DOI: 10.15439/2021F68

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 283

• Results of the tests and conclusions from the evaluation of

the execution time and acceleration of different versions

of the slope algorithm for various data sizes.

• Conclusions on the impact of the optimization techniques

on power consumption.

• Conclusions on the impact of the effect of vectorization

and parallelization on energy consumption.

• Analysis of the correlation between performance and

energy consumption.

This paper is organized as follows. Section 2 presents

related works. Section 3 is devoted to the slope algorithm.

It explains what slope is and describes the algorithm used

to calculate it. It also describes versions of the algorithm

tuned to the architecture used: version that enables the use

of vector registers and two parallel versions. In Section 4,

we concentrate on the details of conducting tests and on

the discussion and explanation of the results. In Section 5,

we present the conclusions of the conducted experiment and

further research directions.

II. RELATED WORKS

Many studies are targeted at the prediction of power con-

sumption and energy savings for various processing units.

These issues can be addressed at both the hardware and soft-

ware levels. The software-level approach involves redesigning

numerical algorithms from various fields in terms of energy

efficiency. Some examples one can find in [7], [6], [8], [2],

[1] and [11]. In this, paper we also take the software-level

approach. We focus on general-purpose processors (CPUs)

with vector units and selected geospatial algorithms.

To take full advantage of the computing potential of CPUs

while ensuring energy efficiency, both vector and multicore

processing should be used. The works [7], [6], and [8]

showed advantages and limitations of vectorization for en-

ergy efficiency. They describe the techniques of automatic

and manual vectorization of Gauss elimination and Gram-

Smith orthogonalization algorithms for multicore computers.

In our work, we investigate the energy efficiency of the code

manually vectorized with compiler directives. The directives

inform the compiler about the vectorizable instructions in an

appropriately transformed code.

In [2] and [1], the authors study energy efficiency in the

context of high-performance dense linear algebra libraries for

multicore computers and multithreading. Both works used

transformed block matrix decomposition algorithms. Energy

consumption measurements were reported along with parallel

performance numbers on multi-socket machines. The conclu-

sion was that the use of block linear algebra algorithms results

in energy savings. In our work, we study the energy efficiency

of algorithms employing loop fission transformations.

The paper [11] examines the impact of performance op-

timization on the power and energy consumption of Intel

Xeon Scalable processors. The studies were conducted on

the example of the MPDATA application (a finite-difference

solver for geophysical flows). MPDATA is a memory-bound

application and it needed optimization to utilize both vector

and multicore processing. The research showed that improving

memory access (i.e. cache reusing and data locality) for such

memory-bound applications also improves energy efficiency.

Additionally, the authors show that SIMD vectorization can

lead to energy consumption reduction and, at the same time,

increase the efficiency of calculations. They also evaluate the

CPU frequency scaling as a tool for balancing energy savings

with admissible performance losses.

In our research, we investigate the effect of vectorization

and combining it with multithreading on energy efficiency

for geospatial raster algorithms on a multi-core machine with

vector units.

III. HPC SLOPE ALGORITHM

Digital elevation model (DEM) is a digital representation

of earth’s surface. DEM and its derivatives (land-surface

parameters) are the basis of various geomorphometric analyses

[4]. The slope is one of the most important and most frequently

computed land-surface parameters.

DEM is most frequently represented as a two-dimensional

regular grid of cells. Each cell contains an elevation value.

The same representation is used for land-surface parameters,

such as the slope.

All the algorithms discussed in this section use this repre-

sentation for input and output data.

Various ways of calculating slope from DEM are discussed

in [12] and [13]. Our implementation uses the method de-

scribed in [5]. This method is also implemented in most

popular GIS software packages (ArcGIS, QGIS, GRASS GIS,

SAGA GIS).

In this section, we discuss some details of our implemen-

tation and its improvements, i.e. vectorization and paralleliza-

tion.

A. Basic algorithm

Slope at a given point can be described as the maximum rate

of change of elevation value at that point. It can be expressed

as a slope angle (between 0 and 90 degrees). The method

of determining the slope is presented by Algorithm 1. The

algorithm requires two arrays: dem stores elevation values, and

slope — computed slope values in each cell. dem is an input

array, slope is an output array. These arrays have got the same

dimensions. Additionally, we also need information about cell

size (∆x, ∆y) and the number of rows n and columns m of

arrays. ∆x means the grid interval from west to east, expressed

in the same units as the elevation in dem. ∆y means the grid

interval from south to north, expressed in the same units as the

elevation. In the basic implementation of slope, all instructions

are executed sequentially, one by one.

B. Vectorization

The slope algorithm reads its input data from the main

memory. It also writes its output to the main memory. This

results in intensive data movement to and from the main

memory. This movement severely limits the performance. To

prevent this and make better use of cache we developed a

284 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Algorithm 1: Base: Basic sequential algorithm

Input: dem — input DEM

∆x — west-to-east cell size

∆y — south-to-north cell size

n — number of rows of dem
m — number of columns of dem
Output: slope — output of the same size as dem

1 for r ← 1. . . (n− 2) do

2 for c← 1. . . (m− 2) do

3 p← ((dem[r − 1][c+ 1] + 2dem[r][c+ 1]
4 + dem[r + 1][c+ 1])
5 − (dem[r − 1][c− 1] + 2dem[r][c− 1]
6 + dem[r + 1][c− 1]))
7 /(8∆x)
8 q ← ((dem[r + 1][c− 1] + 2dem[r + 1][c]
9 + dem[r + 1][c+ 1])

10 − (dem[r − 1][c− 1] + 2dem[r − 1][c]
11 + dem[r − 1][c+ 1]))
12 /(8∆y)

13 slope[r][c]← arctan(
√

p2 + q2)

14 return slope

new version of the algorithm. The modification consisted in

transforming the inner loop. We use the loop fission technique

[14]. Algorithm 2 describes the transformed slope algorithm.

The modified version improves cache usage, reduces main

memory access, and enables the use of vector registers found

in every modern CPU. It employs the vectorization along the

c-dimension using the #pragma omp simd directive from

the OpenMP standard.

C. Parallelization

Algorithms 3 and 4 describe parallelized algorithms 1 and

2 (base and transformed). In both parallel implementations,

the outermost loop is processed in parallel using the OpenMP

standard. These versions make use of data parallelism in r-

dimension with the #pragma omp parallel for direc-

tive.

IV. NUMERICAL EXPERIMENT – METHODOLOGY AND

RESULTS ANALYSIS

A. Methodology

We benchmark four versions of the slope algorithm:

• Base (Algorithm 1) – basic sequential algorithm,

• Parallelized base (Algorithm 3) – parallel version of Base,

• Transformed with SIMD (Algorithm 2) – transformed

sequential algorithm with vectorization hints for compiler,

• Parallelized transformed with SIMD (Algorithm 4) –

parallel version of Transformed with SIMD; The code

is transformed so that it can be executed in parallel on

multiple cores and that it can be efficiently vectorized.

All versions have been implemented in C++.

Algorithm 2: Transformed with SIMD: Transformed

sequential algorithm

Input: dem — input DEM

∆x — west-to-east cell size

∆y — south-to-north cell size

n — number of rows of dem
m — number of columns of dem
Output: slope — output of the same size as dem

1 for r ← 1. . . (n− 2) do

/* calculating p */

2 #pragma omp simd

3 for c← 1. . . (m− 2) do

4 p[c]← dem[r − 1][c+ 1]− dem[r − 1][c− 1]

5 #pragma omp simd

6 for c← 1. . . (m− 2) do

7 p[c]← p[c]
8 + 2(dem[r][c+ 1]− dem[r][c− 1])

9 #pragma omp simd

10 for c← 1. . . (m− 2) do

11 p[c]← (p[c] + (dem[r + 1][c+ 1]
12 − dem[r + 1][c− 1]))/(8∆x)

/* calculating q */

13 #pragma omp simd

14 for c← 1. . . (m− 2) do

15 q[c]← dem[r + 1][c− 1]
16 + 2dem[r + 1][c] + dem[r + 1][c+ 1]

17 #pragma omp simd

18 for c← 1. . . (m− 2) do

19 q[c]← (q[c]− (dem[r − 1][c− 1]
20 + 2dem[r − 1][c]
21 + dem[r − 1][c+ 1]))/(8∆y)

22 #pragma omp simd

/* calculating slope */

23 for c← 1. . . (m− 2) do

24 slope[r][c]← arctan(
√

p[c]2 + q[c]2)

25 return slope

For tests, we used 1-meter resolution GeoTIFF files. The

area of the smallest one we denote by R. We consider GeoTIFF

files in 10 different sizes: from R to 10R, covering areas from

200 km2 to 2000 km2. The use of multiples of R facilitates

analysis of scalability in data size. The sizes of the test data

are presented in Table I. Each test area is an m×n matrix (m
columns, n rows). The data type of each element of input and

output arrays, as well as the type used for all calculations, is

a single-precision floating-point type (4 bytes).

The performance and power measurements presented in this

work were performed on a computing platform equipped with

a modern multi-core processor code-named Haswell and with

the following parameters:

BEATA BYLINA ET AL.: THE IMPACT OF VECTORIZATION AND PARALLELIZATION OF THE SLOPE ALGORITHM ON PERFORMANCE 285

Algorithm 3: Parallelized base: Parallelized basic al-

gorithm

Input: dem — input DEM

∆x — west-to-east cell size

∆y — south-to-north cell size

n — number of rows of dem
m — number of columns of dem
Output: slope — output of the same size as dem

1 #pragma omp parallel for

for r ← 1. . . (n− 2) do

2 for c← 1. . . (m− 2) do

3 . . .

/* loop body as in Alg. 1 */

4 . . .

5 return slope

Algorithm 4: Parallelized transformed with SIMD:

Transformed sequential algorithm

Input: dem — input DEM

∆x — west-to-east cell size

∆y — south-to-north cell size

n — number of rows of dem
m — number of columns of dem
Output: slope — output of the same size as in dem

1 #pragma omp parallel for

for r ← 1. . . (n− 2) do

2 . . .

/* loop body as in Alg. 2 */

3 . . .

4 return slope

processor: 2x Intel Xeon E5-2670 v3 @ 2.30GHz

(2x12 cores with HT)

RAM: 128GB (8x16GB DDR4 2133MHz ECC)

The machine is equipped with 2 processors 12 cores each.

Thus the program can be run in 24 threads (the number of

threads equals the number of cores). In addition, this processor

supports Intel Hyper-Threading (HT) technology and allows

concurrent execution of 2 threads on one processor core.

However, we do not use it during our tests.

The following software was installed during tests:

operating system: CentOS 7.6

kernel: Linux 3.10.0

GCC: 8.3.1 z OpenMP 4.5

GDAL: 2.4.0

The programs were compiled with the GCC compiler and

the optimization flag -03 turned on. The GDAL (Geospatial

Data Abstraction Library) [3] library was used to read from

and write to GeoTIFF files. In each version of the algorithm,

to help the optimization, data alignment in memory was used.

In this chapter, we also describe the impact of the algorithm

TABLE I: Characteristics of test areas

Area
Number of Number of Number of

[GB]
rows (n) columns (m) cells (m× n)

R 4000 50000 200000000 0.75
2R 8000 50000 400000000 1.49
3R 12000 50000 600000000 2.24
4R 16000 50000 800000000 2.98
5R 20000 50000 1000000000 3.73
6R 24000 50000 1200000000 4.47
7R 28000 50000 1400000000 5.22
8R 32000 50000 1600000000 5.96
9R 36000 50000 1800000000 6.71

10R 40000 50000 2000000000 7.45

modifications on power and energy consumption. The mea-

surements were performed using the Intel’s Running Average

Power Limit (RAPL) interface, which is available for all

Intel processors, starting with the Sandy Bridge architecture.

RAPL uses machine-specific registers to monitor and control

power consumption in real-time. On multi-socket systems,

RAPL provides the results for each socket (each package)

separately. RAPL also provides separate measurement values

for the memory modules (DRAM) associated with each socket.

Starting from Haswell processors which are equipped with

fully integrated voltage regulators, the accuracy of the mea-

surements returned by RAPL has significantly improved [9].

B. Execution Time

Each of the implemented algorithms requires reading the

input data and writing the results. The times of these opera-

tions do not differ between algorithms for the same data size.

Table 1 shows the average time of reading and writing data

for each input data size.

TABLE II: Average read and write time [s] for each input data

size

Area Reading [s] Writing [s]

R 0.84 4.04
2R 1.51 8.45
3R 2.24 11.50
4R 2.81 15.56
5R 4.65 20.63
6R 4.58 24.41
7R 5.98 30.17
8R 5.66 32.52
9R 7.40 37.99

10R 7.08 40.37

First, we measured the execution time of each algorithm

for different sizes of input data. Execution times are given for

calculations only — without reading and writing data. The

results are presented in Figure 1. Tests show that the transfor-

mation of the algorithm accompanied with vectorization hints

shortens the execution time by about 30% compared to the

base version. The use of parallelism reduces the execution time

much more: parallelization alone reduces the time by more

than 80% compared to the base version, while the parallelized

and vectorized version shortens execution time by almost 90%

for each test data size.

Table III shows the speedup gained by vectorization and

parallelization for selected data sizes. In table III, the pa-

286 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

T
im

e
 [

s
e
c
o
n
d
s
]

Data Size [R]

base
parallelized base
transformed with SIMD
parallelized transformed with SIMD

Fig. 1: Execution time of slope algorithms for different data

sizes

TABLE III: Relative speedup of the slope algorithms

R 5R 10R

TBase / TTransformed 1.55 1.46 1.42
TParallelizedBase / TParallelizedTransformed 1.22 1.29 1.27
TBase / TParallelizedBase 7.33 6.11 6.90
TTransformed / TParallelizedTransformed 5.81 5.40 6.16
TBase / TParallelizedTransformed 8.98 7.87 8.76

rameter TAlgorithm denotes the execution time of the given

algorithm. The table shows that the vectorization of the base

version gives a greater improvement (from 1.42 to 1.55)

compared to the vectorization of the parallelized version (from

1.22 to 1.29). The very parallelization of the base version of

the algorithm speeds up the execution about 7 times, while

the program using OpenMP pragmas and the use of SIMD

extensions (Parallelized Transformed with SIMD) is performed

on average 8 times faster and for some sizes even 9 times

faster.

C. Evaluation of Power and Energy Consumption

1) Power Consumption for Different Slope Versions: Next,

we evaluate the impact of the applied performance optimiza-

tion steps on the power consumption, which is measured with

the RAPL interface. RAPL counters are updated once every

1 ms and have an adjustable sampling rate that has been set

to 100 ms.

Figure 2 shows the power profiles of the Base algorithm

implementation for three data sizes: R, 5R, 10R. The ex-

periment was conducted on a dual-socket system, therefore

RAPL returns the measurement results separately for pack-

ages attached to each socket: Package0 and Package1, and

separately for the memory attached to the package’s inte-

grated memory controller: DRAM0 (attached to Package0)

and DRAM1 (Package1). Figure 2 shows power profiles for

the execution of the Base algorithm successively for sizes

R, 5R, and 10R. Between the runs, the system is idle for

3 seconds. The Base algorithm is sequential, so only one core

from the selected socket is being employed at any time. The

figure shows the power consumption of the system components

during program execution for the data size R (3–15 sec.), 5R

(17–71 sec.), and 10R (73–174 sec.), respectively. Data reading

times (Rread, 5Rread, 10Rread — marked in green), computation

times (Rcomp, 5Rcomp, 10Rcomp — marked in red), and results

writing times (Rwrite, 5Rwrite, 10Rwrite — marked in blue) are

shown above the power consumption graphs.

Figure 3 shows the power profiles of the execution of

four versions of the slope algorithm: Base, Transformed with

SIMD, Parallelized, and Parallelized transformed with SIMD.

Sequential algorithms (Base and Transformed with SIMD)

use exactly one core out of 24 available. Parallel versions

of algorithms (Parallelized base and Parallelized transformed

with SIMD) utilize all 24 available cores. As you can see

in Figures 3a–3d, the system is idle before and after the

execution of a program. In this state, it consumes about 39 W

(about 20 W for each socket: Package + DRAM). This is the

minimum power necessary to keep the system idle. After the

start of the program, more system components are involved

(cores, memory), which increases the power consumption. The

system returns to the idle state when it completes the program

execution. One can observe that for modified versions (Trans-

formed with SIMD, Parallelized, Parallelized transformed with

SIMD), the system returns to the idle state faster (the program

execution takes less time), and because the reading and writing

time is constant for a given size, the calculation time itself

is shorter. Graphs 3a and 3b show that the levels of power

consumption for the sequential versions of the algorithm are

close to each other. The maximum instantaneous power of the

entire system (both sockets: Package0 + DRAM0, Package1

+ DRAM1) is 83 W for the Base version and 82 W for the

Transformed with SIMD version. Graphs 3c and 3d show the

power consumption for the parallel versions. They show that

only when calculations are performed, the power consumption

increases and the cores on both sockets work simultaneously.

The maximum instantaneous power for the Parallelized base

version is 190 W, and for the Parallelized transformed with

SIMD version it is 219 W. Reading and writing data does not

differ between versions (and these are operations performed

sequentially), so the power consumption for these operations

is the same for all algorithms.

Regardless of the version of the algorithm, reading and

writing data takes the same time and power, and thus when

analyzing the average power and energy consumption, we

consider the computation alone.

Figure 4 shows a comparison of the average power con-

sumption of the considered system components (Package0 +

DRAM0, Package1 + DRAM1) by different versions of the

slope algorithm and for different data sizes. It also shows the

value of the system idle power. The graph shows that for

the sequential versions (Base, Transformed with SIMD) the

average power consumption is almost identical for each size.

Parallel versions of algorithms run faster (Figure 1) but have

higher average power consumption. The average power con-

sumption of the Parallel base version is on average 43% higher

than the Base version, and the average power consumption of

the Parallelized transformed with SIMD version is on average

31% higher than the Base version. Despite having the highest

BEATA BYLINA ET AL.: THE IMPACT OF VECTORIZATION AND PARALLELIZATION OF THE SLOPE ALGORITHM ON PERFORMANCE 287

Fig. 2: The power profiling of Base algorithm for R, 5R, 10R with RAPL

instantaneous power, the Parallelized transformed with SIMD

version has a lower (2–16%) average power consumption than

the Parallelized base version.

2) Energy consumption: In this section, we show how the

performance optimization steps affect the total computation

energy consumption.

Table IV presents a comparison of energy and performance-

related parameters for different versions of the slope algorithm

for a data size of 10R. In addition to the execution time, the

total energy consumption obtained from the RAPL interface

is given. Moreover, the performance (in Mflop/s) and the

energy efficiency (in Mflop/J) are given. Energy efficiency

is expressed as the ratio of the number of floating-point

operations to the total energy consumption.

Figure 5 shows the effect of different optimization mecha-

nisms on the total energy consumption for different data sizes.

One can see that the power consumption increases as the data

size increases.

The modification used in the Transformed with SIMD

algorithm, which removes the data dependency, allows for

more efficient access to memory and the use of vectorization

mechanisms, which results in a reduction of the computation

time (Figure 1), but also a reduction in energy consumption

(27% to 35%, 32% on average). This optimization affects

neither the maximum instantaneous power consumption (Fig-

ure 3) nor the average power consumption (Figure 4).

The optimization used in the Parallelized base version, i.e.

the use of OpenMP pragmas, allows all available cores in

the system to work simultaneously. This causes momentary

increases in power consumption (Fig. 3) and higher average

power consumption (Fig. 4). However, it also results in a

significant reduction of the computation time (Fig. 1) and

energy consumption (74%–80%, 77% on average).

In the Parallelized transformed with SIMD version, the data

dependencies are removed and vectorization is introduced into

the parallel algorithm. Compared to Parallelized base, energy

consumption is reduced by 28%. We also obtain even shorter

computation times and lower average power consumption,

with higher maximum instantaneous power.

However, the use of both parallelization and vectorization in

the Parallelized transformed with SIMD version, reduces the

execution time by almost 90% compared to the Base version

(Figure 11). Despite the high maximum instantaneous power

and higher average power consumption, we reduce energy

consumption by an average of 84% compared to the Base

version.

V. CONCLUSION

This article investigates four versions of the slope algorithm.

Their execution time, power and energy consumption, and the

correlation between performance and energy consumption are

discussed. Measurements were made on a dual-socket machine

with Intel Xeon E5-2670 processors using the Intel RAPL

interface.

Both of the proposed transformations — vectorization and

parallelization — reduce the computation time. The results

288 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
o
w

e
r

[W
a
tt

s
]

Time [seconds]

Package 0
Package 1

DRAM 0
DRAM 1

(a) Base

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
o
w

e
r

[W
a
tt

s
]

Time [seconds]

Package 0
Package 1

DRAM 0
DRAM 1

(b) Transformed with SIMD

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

P
o
w

e
r

[W
a
tt

s
]

Time [seconds]

Package 0
Package 1

DRAM 0
DRAM 1

(c) Parallelized base

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

P
o
w

e
r

[W
a
tt

s
]

Time [seconds]

Package 0
Package 1

DRAM 0
DRAM 1

(d) Parallelized transformed with SIMD

Fig. 3: The power profiling of Base, Transformed with SIMD, Parallelized base, Parallelized transformed with SIMD for 10R

with RAPL

TABLE IV: Energy efficiency for various slope versions (10R)

Version
Time Total Performance Energy effi-

[s] energy [J] [Mflop/s] ciency [Mflop/J]

base 50.76 4028.18 788.00 0.20
parallelized base 7.35 867.68 5438.96 6.27
transformed with SIMD 35.72 2792.00 1119.58 0.40
parallelized transformed with SIMD 5.80 633.69 6901.30 10.89

show that the most performant version (parallel with vector-

ization) can shorten the computation time by more than 8

times. Through the analysis of power and energy consumption,

one can see that vectorization alone, can slightly speed up the

algorithm, without increasing average power consumption or

maximum instantaneous power consumption. The reduction

in the computation time allows for the reduction of energy

consumption by about 30%.

The parallel version enables the simultaneous operation of

all system components. This results in a significant reduction

in computing time compared to the basic version (by almost

90%), but also an increase in both the maximum (more than

2 times) and average power consumption (by 30%–40%). Fi-

nally, however, we achieve a reduction in energy consumption

by an average of 84% compared to the Base version. We can

see that short periods of increased instantaneous power do not

negatively affect the total energy consumption as long as the

program computation time is shortened.

The conducted tests show that the proposed solutions re-

spond well to increasing the size of the problem. For the

largest data size tested, the energy efficiency improves (from

0.2 Mflop/J for the basic version to 10.8 Mflop/J for the most

optimized version) along with the increase in performance.

The slope algorithm is not computationally intensive, but it

is one of the basic components used in other geomorphometric

analyses. The increase of performance that also causes the

reduction of the energy consumption will improve the energy

efficiency of the secondary analyses. Moreover, the proposed

transformations can be applied to other raster analyses em-

ploying similar techniques (neighborhood relation) such as

computation of aspect, curvature, and flow direction.

Seeing the improvement in energy efficiency after adapting

the slope algorithm to a multi-core system, we plan to investi-

gate the impact of the optimization methods applied to similar

algorithms on the latest Ice Lake Intel Xeon processors and

on the new generation of AMD Rome EPYC processors. We

BEATA BYLINA ET AL.: THE IMPACT OF VECTORIZATION AND PARALLELIZATION OF THE SLOPE ALGORITHM ON PERFORMANCE 289

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

P
o
w

e
r

[W
a
tt

s
]

Data Size [R]

base
parallelized base
transformed with SIMD
parallelized transformed with SIMD
idle

Fig. 4: Average power consumption as a function of different

data sizes — and the idle power level

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8 9 10

To
ta

l
e
n
e
rg

y
 [

Jo
u
le

s
]

Data Size [R]

base
parallelized base
transformed with SIMD
parallelized transformed with SIMD

Fig. 5: Total energy as a function of different data sizes

also plan to investigate and improve other geospatial raster

algorithms in terms of performance and energy efficiency.

REFERENCES

[1] B. Bylina and J. Bylina. Studying OpenMP thread mapping for parallel
linear algebra kernels on multicore system. Bulletin of the Polish

Academy of Sciences, 66(6):981–990, 2018.
[2] J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver. Energy footprint

of advanced dense numerical linear algebra using tile algorithms on
multicore architectures. In 2012 Second International Conference on

Cloud and Green Computing, pages 274–281, 2012.
[3] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and

R. Geyer. An energy efficiency feature survey of the Intel Haswell pro-
cessor. In 2015 IEEE International Parallel and Distributed Processing

Symposium Workshop, pages 896–904, 2015.
[4] T. Hengl and H.I. Reuter, editors. Geomorphometry: Concepts, Software,

Applications, volume 33. Elsevier, Amsterdam, 2008.
[5] B. K. P. Horn. Hill shading and the reflectance map. Proceedings of

the IEEE, 69(1):14–47, Jan 1981.
[6] T. Jakobs, B. Naumann, and G. Rünger. Performance and energy

consumption of the SIMD Gram–Schmidt process for vector orthog-
onalization. The Journal of Supercomputing, 76:1999–2021, 2019.

[7] T. Jakobs and G. Rünger. Examining energy efficiency of vectoriza-
tion techniques using a Gaussian elimination. In 2018 International

Conference on High Performance Computing Simulation (HPCS), pages
268–275, 2018.

[8] T. Jakobs and G. Rünger. On the energy consumption of load/store AVX
instructions. In 2018 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 319–327, 2018.
[9] K. Khan, M. Hirki, T. Niemi, J. Nurminen, and Z. Ou. RAPL in

action: Experiences in using RAPL for power measurements. ACM

Transactions on Modeling and Performance Evaluation of Computing

Systems (TOMPECS), 3, 01 2018.
[10] S.D. Peckham. Chapter 25 Geomorphometry and Spatial Hydrologic

Modelling. In Tomislav Hengl and Hannes I. Reuter, editors, Geomor-

phometry, volume 33 of Developments in Soil Science, pages 579 – 602.
Elsevier, 2009.

[11] L. Szustak, R. Wyrzykowski, T. Olas, and V. Mele. Correlation of
performance optimizations and energy consumption for stencil-based
application on Intel Xeon scalable processors. IEEE Transactions on

Parallel and Distributed Systems, 31(11):2582–2593, 2020.
[12] J. Tang, P. Pilesjö, and A. Persson. Estimating slope from raster data – a

test of eight algorithms at different resolutions in flat and steep terrain.
Geodesy and Cartography, 39(2):41–52, 2013.

[13] S. Warren, M. Hohmann, K. Auerswald, and H. Mitasova. An evaluation
of methods to determine slope using digital elevation data. Catena, pages
215–233, 12 2004.

[14] M. E. Wolf and M. S. Lam. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Transactions on Parallel and

Distributed Systems, 2(4):452–471, 1991.

290 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

