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Abstract—The log-rank test and Cox’s proportional hazard
model can be used to compare survival curves but are limited by
strict statistical assumptions. In this study, we introduce a novel,
assumption-free method based on a random forest algorithm able
to compare two or more survival curves. A proportion of the
random forest’s trees with sufficient complexity is close to the
test’s p-value estimate. The pruning of trees in the model modifies
trees’ complexity and, thus, both the method’s robustness and

statistical power. The discussed results are confirmed using
a simulation study, varying the survival curves and the tree
pruning level.

I. INTRODUCTION

C
OMPARING two or more survival curves is relatively
common in many applied areas such as biomedicine,

econometrics, management, and others. When the curves are
statistically significantly different, it may help treat the groups
that are the curves built by in appropriate (separate) ways.

As typical for survival analysis, the variable of our interest
usually describes a (time) development of proportions of
individuals who have not experienced the event of interest yet
(until each considered time point) in each consecutive time
point of the time period of our interest.

Such a time development is commonly plotted using orthog-
onal polygonal lines, also known as survival curves in a two-
dimensional (survival) plot, sometimes called Kaplan-Meier

plot [1]. Since groups of individuals that are about to be com-
pared have their own time developments of non-experiencing
the event of interest, one Kaplan-Meier survival plot may
include more than only one curve, as shown in Fig. 1.
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Fig. 1. Two time-to-event survival curves for two groups of interest in
Kaplan-Meier (survival) plot.

Typically, following the logic behind the time development
of non-experiencing the event of our interest, there are time
points placed on the horizontal axis of a survival plot and
proportions of subjects with no experience of the event of
interest on a vertical axis.
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Regardless of the total length of the time period of interest,
it has in principle be finite and, consequently, we cannot
get any piece of information whether the individuals not
experiencing the event of interest in the time period would
register the event after an end of the period, or not. That is why
the time-to-event (survival) data are also called right censored

data.
Since the experiencing of the event of interest is usually

irreversible in time within the scope of classical survival
analysis (the event is, e. g., a death, diagnosis, bankruptcy,
failure, etc.), a subject registering the event whenever in the
time period of the interest, continues to stay in this state till the
end of the referenced time (the time of the right censoring).
Thus, the survival curves are monotonous and nonincreasing.
Intuitively, when the development of the event of interest
differs between two groups, we may expect their survival
curves are hardly similar and relatively far from each other
within each considered time point.

If there are two survival curves to be statistically compared,
the log-rank test as a tool of choice is usually performed [2]
and commonly implemented, e. g. in R language and statistical
environment [3] and its library survival [4]. However,
a usage of the log-rank test is limited by statistical assump-
tions, that (i) censoring should not affect anyhow the observed
events and (ii) the censoring should occur equally or at least
near-equally in both compared groups, generating the survival
curves. Also, (iii) the group’s sizes are expected to be large
enough, enabling the log-rank test’s χ2 statistics to fulfill its
asymptotic properties.

To overcome the limitations done by the statistical as-
sumptions of the original log-rank test or to increase its
robustness or statistical power, several modifications of the
traditional log-rank test were published. The first approach
is to modify the hazard functions slightly, i. e., functions of
rates of events based on fixed proportions of the events in the
past, and relax their assumptions to increase their robustness
as suggested by [5]. Then, another option is to introduce
new covariates (variables) to enrich the model comparing two
survival curves and increase the robustness, published in [6].
Also, employing various weighting schemes for individual
observations, usually growing significance for earlier ones,
may increase the statistical power of the test as investigated
originally in [7] and then improved in [8], [9] and [10]. Finally,
robust combinatorial and exact calculations of all possible
combinations of the event experiencing and non-experiencing
subjects for given total numbers of subjects in the compared
groups are researched in [11] and [12] and using survival
curves’ finite combinatorial geometry in [13].

An advantage of the latter approach, based on robust
combinatorial computations when comparing two survival
curves, is that makes possible an estimation of asymptotic time
complexity, as is in details commented by [14], [15], [16] and
partly by [13], too.

When one wants to statistically compare three or more
survival curves, there is an option to use Cox’s proportional
hazard model or a score-rank test based on Cox’s model.

Unfortunately, Cox’s proportional model is also limited – it
assumes that hazard proportions for each group are constant
across all considered time points, which is often not met in
practice. Some more robust versions of Cox’s model were
derived to minimize the violation of the constant hazards’ ratio
by real-world data, e. g. based on an idea of stratification of
each group into subgroups according to their hazard similarity;
however, those advanced models are usually limited by other,
more complex assumptions [17], though.

The decision (or regression) trees and random forests are
classical algorithms used for classification or regression prob-
lems. An idea to apply decision trees and random forest on
survival tasks and right-censored, time-to-event data originate
from [18], but initial thoughts rather aimed to a robust
estimation of hazard functions’ parameters, e. g. Nelson-
Aalen estimator etc. The decision trees and random forests
are naturally assumption-free robust, and fully non-parametric,
especially in comparison to the log-rank test or the Cox’s
proportional hazard model, which is a property also utilized in
this study and by the proposed alternative method for survival
curves comparison.

The proceeding proceeds as follows. Firstly, in the sec-
tion Traditional methods for survival curves comparing and

random forests revisited, we shortly remind the fundamental
principles of the log-rank test, Cox’s proportional hazard
model, decision trees, and random forests. We also discuss
assumptions and limitations of the named methods that create
room for new approaches that are less dependent on statistical
assumptions.

Then, in the section The proposed method for survival

curves comparing, we introduce a novel alternative for two
or more survival curves comparing, based on random forest-
based generating of multiple decision trees, using variables
derived from original time-to-event data of compared groups
of individuals in their nodes. The level of the trees’ pruning
is adjustable as a hyperparameter; it enables to control a com-
plexity of the trees, i. e., an average number of nodes and
leaves per tree in the forest. If a given tree in the random
forest is able to classify whatever new observation in each
of the groups (described by its survival curve), i. e., there
exists at least one leaf node for each group assigning the
observation to such a group, that tends to be contradictory the
null hypothesis, claiming there are no statistical differences
between the groups (and their survival curves). A proportion
of the trees with sufficient complexity to all trees in the forest
serves by definition as an estimate of p-value as would be
analogously1 returned by the traditional log-rank test, i. e.,
a conditional probability of collecting data as extreme or even
more given there is no difference between the survival curves.
Since the p-value is partially determined by the proportion of
sufficiently complex trees to all trees of the random forest,
the level of pruning may affect the robustness or statistical

1A numerical value of the p-value returned by the log-rank test and by the
proposed method are not supposed to be equal, as discussed in the following
sections.
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power of the proposed random forest-based inference test, as
is discussed more in details later.

The asymptotic time complexity of the p-value estimation,
assuming the random forest model building, is then derived,
and, finally, in the section Simulation study, a preliminary
simulation study is performed to confirm the theoretically de-
rived properties of the method. Besides others, the introduced
approach offers a way how to compare more than two survival
curves without any assumptions needed to be met.

II. TRADITIONAL METHODS FOR SURVIVAL CURVES

COMPARING AND RANDOM FORESTS REVISITED

Firstly, we remind principles and assumptions of the log-
rank test and Cox’s proportional hazard model that facilitates
a better understanding of their limitations, which, conse-
quently, opens room for improvements in survival curves
comparing. We also recapitulate the logic of the decision trees
and random forest heavily equipped in the proposed method
for survival curves comparison.

A. Principles, assumptions, and limitations of the log-rank test

Principles of the log-rank test. Let’s assume k distinct time
points where the event of interest could take a place; the j-th
time point is marked as tj , where j ∈ {1, 2, 3, . . . , k}, and
all the time points are ordered in a tuple (t1, t2, . . . , tk)

T .
Also, let’s suppose there are two groups of subjects, marked
by subscripts 1 and 2, respectively. For each of the time points,
let’s say for the j-th one (tj) there are r1,j and r2,j individuals
at risk (they have not experienced the event of interest yet or
have been censored) in the group 1 and group 2, respectively,
and d1,j and d2,j individuals who experienced the event in
the group 1 and group 2, respectively. Thus, following the
previous logic, we can construct a (contingency) table I.

TABLE I
NUMBERS OF INDIVIDUALS EXPERIENCING THE EVENTS OF INTEREST IN

BOTH GROUPS (1 AND 2) AT TIME tj .

event of interest at the event time tj
group yes no total

1 d1,j r1,j − d1,j r1,j
2 d2,j r2,j − d2,j r2,j

total dj rj − dj rj

The log-rank test checks the null hypothesis H0 that both
groups experienced identical rates of the events of interest in
time (also called hazard functions) [2], conditional on fixed
rates in the past are the same. Under the null hypothesis
H0, the observed numbers of individuals experiencing the
events could be considered as random variables D1,j and
D2,j following a hypergeometric distribution with parameters
(rj , ri,j , dj) for both i ∈ {1, 2}. Thus, the expected value
of the variable Di,j is E(Di,j) = ri,j

dj

rj
and variance is

var(Di,j) =
r1,jr2,jdj

r2
j

(

rj−dj

rj−1

)

for both i ∈ {1, 2}. Fi-

nally, under the null hypothesis H0, we can compare the
observed numbers of events of interest, d(i, j), for all j ∈

{1, 2, 3, . . . , k}, to their expected values E(Di,j) = ri,j
dj

rj
.

So, the test statistic for both i ∈ {1, 2} is then

χ2
log-rank =

(

∑k

j=1 di,j − E(Di,j)
)2

∑k

j=1 var(Di,j)
=

=

(

∑k

j=1 di,j − ri,j
dj

rj

)2

∑k

j=1
r1,jr2,jdj

r2j

(

rj−dj

rj−1

) , (1)

which follows under H0 a χ2 distribution with 1 degree of
freedom, χ2

log-rank ∼ χ2(1). For feasible large rj , i. e. at least
rj ≥ 30, a square root of χ2

log-rank follows a standard normal

distribution,
√

χ2
log-rank ∼ N (0, 12). Since χ2

log-rank ∼ χ2(1),

the statistics χ2
log-rank can be uniquely transformed into p-value,

which stands for a conditional probability of obtaining the test
statistics χ2

log-rank at least as extreme as the statistics actually
observed, under the assumption that the null hypothesis H0

reflects the reality.

Assumptions and limitations of the log-rank test. The right
censoring of the data should not affect the occurrences of the
event of interest in both groups anyhow. Also, the proportions
of censored observations are supposed to be of (nearly) equal
size in both groups. Otherwise, the test statistic χ2

log-rank
calculated using (1) could be biased for i = 1, or for i = 2.

Then, putting together the equation (1), so the test statistic
χ2

log-rank follows a χ2 distribution, and the table I, both the
initial total number of individuals r0 at risk and initial number
r0 − d0 not experiencing the event, should be large enough.
Otherwise, so-called Cochrane criteria for minimal sample size
for χ2 tests are not met and the χ2

log-rank statistics could not
fulfill the χ2 asymptotic properties; or, analogously, both the
numerator and denominator of the statistics (1) are relatively
small and an estimate of the χ2

log-rank statistics is numerically
unstable.

All the named issues may decrease the robustness or statis-
tical power of the log-rank test.

Furthermore, by investigating the denominator of the equa-
tion (1), we can easily realize the test statistic χ2

log-rank is the

highest when the denominator
∑k

j=1 var(Di,j) is as low as
possible given the values di,j and ri,j for all i ∈ {1, 2} and
j ∈ {1, 2, 3, . . . , k}. This holds just when the proportions
r1,j
rj

=
r1,j

r1,j+r2,j
and r2,j

rj
=

r2,j
r1,j+r2,j

are both constant
(and mutually different enough) across all the time points
(t1, t2, . . . , tk)

T , and then the log-rank test is the most sta-
tistically powerful, i. e. its ability to reject the null hypothesis
H0 claiming the survival curves are equivalent, when they
are in fact different, is maximal possible. That is common
issue decreasing the test power – the mentioned proportions
are typically not constant when a "trend" of the survival curves
change a lot, when the curves change their mutual distance or
when they even cross themselves one or more times.
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B. Principles, assumptions, and limitations of Cox propor-

tional hazard model

Principles of Cox proportional hazard model. The Cox
proportional hazard model is frequently used to model rela-
tionships between the hazard function of the event of interest,
defined as a probability that a subject experiences the event
of interest in a small time interval, given that the individual
survived up to the beginning of the interval, and explanatory
variables. If one of the explanatory variables is categorical,
thus dividing an entire sample into two or more groups, then
the Cox proportional hazard model could serve as a method
for statistical comparing of more than two groups and their
survival curves. The hazard function h(t) depending on ex-
planatory variables as suggested by Cox [19], follows for
individual i form

log h(t) = log h0(t) + βTxi, (2)

where h0(t) is the baseline hazard function, βT =
(β0, β1, β2, . . . )

T is a vector of estimated linear coefficients
to explanatory variables and xi = (1, xi,1, xi,2, . . . )

T is
a vector of values of the explanatory variables for group i. The
formula (2) could be after exponentiation rewritten also as

h(t) = h0(t)e
βTxi ,

by which we can see for two groups 1 and 2 that

h(t | x1)

h(t | x2)
=

h0(t)e
βTx1

h0(t)eβ
Tx2

=
eβ

Tx1

eβ
Tx2

,

thus, the hazard ratio for any two groups 1 and 2 is forced
to be constant, considering the model (2) and a fact that once
estimated coefficients β̂T = (β̂0, β̂1, β̂2, . . .)

T and input data
xi = (1, xi,1, xi,2, . . .)

T are given, therefore constant. The
parameters in the Cox model (2) can be estimated by a partial
likelihood [20].

When exists j ∈ {1, 2, 3, . . .} so that βj is a linear coef-
ficient of a categorical variable classifying observations into
two or more groups (with their survival curves), then one can
consider the Cox approach as an alternative for the log-rank
test with the exception there are more than two survival curves
to be compared. Wald t-tests indicate significant statistical
differences between the categorical variable levels, thus also
in groups’ survival curves.

Assumptions and limitations of Cox proportional hazard

model. However, while Cox’s regression is widely used for
event prediction in survival analysis or for comparing more
than two survival curves, it has rigid statistical limitations [21].
Particularly, Cox’s model assumes that ratios of hazards for
any two subjects (individuals or groups) are constant across all
time points; that is why the model is called "proportional haz-
ard". However, real survival data often violate this assumption.
For instance, supposing two survival curves for two groups as
in Fig. 2, such that the curves cross each other, their hazards
could not be proportionally constant. Even more, when one of
the curves drops to zero while the other levels off similarly
to Fig. 3, also, the ratio of the hazard functions could not be
constant.
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Fig. 2. An example of a pair of survival curves crossing each other.
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Fig. 3. An example of a pair of survival curves so that one drops to zero
while the other levels off.

C. Principles of the random forests

Before we conclude up basic principles of the random
forests’ algorithm, we remind fundamental pieces of knowl-
edge about decision trees that build up a random forest model.

Principles of the decision trees. The decision trees (also
called classification trees) that belong to the CART family
of trees (classification and regression trees) are sets of rules
that partition the hyperspace of all explanatory variables into
disjunctive hyper-rectangles and fit simple (constant) models
there, each time minimizing a given criterion [22].

More specifically, the decision trees classify an observation
depicted by a vector of values xi = (xi,1, xi,2, . . . , xi,k)

T

for k explanatory variables into one of m target classes, i. e.
classes of a response categorical variable, where [k,m] ∈ N

2.
The logic behind a tree induction is described by the

flowchart in Fig. 4. Initially, one root node is set, and the tree
induction algorithm searches for a node decision rule, i. e.
such an explanatory variable and a logical formula containing
the explanatory (splitting) variable and its relationship to some
constant or subset that minimizes a given criterion. When the
optimal node rule is found, the node rule enables to split
(binary partition) the dataset into two parts following the
logic of the slitting variable and splitting point (the first part
contains values larger than or equal to the splitting point, the
other contains the rest of dataset). Two new child nodes for
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the corresponding two parts of the dataset are added to the
growing tree. The procedure of searching a node rule, i. e.
a splitting variable and splitting point, is repeated for each
fresh added (child) node until the part of the dataset that is
logically constrained by a set of decision rules coming from
the root node till the last (leaf) one, includes observations of
only one target class. This strategy of the tree growing is called
a top-down induction of a decision tree (TDIDT).

initialization of an
empty root node

searching for a node
rule: a splitting variable

and a decision rule

splitting the node’s
data according to

the splitting variable
and decision rule
and adding two

corresponding child
nodes to the tree

is there a node
containing data of ≥ 2

classes in the tree?

stop the splitting
and output the tree

no

yes

Fig. 4. A top-down induction of a decision tree (TDIDT).

Let σ(•)j be a proportion of a target class j in all observa-
tions constrained by rules coming from the root till the node
nt. If the node nt is a leaf one, it classifies into the class j∗

so that j∗ = argmaxj∈{1,2,...,m} {σ(•)j}.
The given criterion minimized in searching for node nt rule

is an impurity measure, Qnt
(T ), such as misclassification error

Qnt
(T ) = 1− σ(•)j ,

or Gini index

Qnt
(T ) =

m
∑

j=1

σ(•)j(1− σ(•)j),

or deviance (cross-entropy)

Qnt
(T ) = −

m
∑

j=1

σ(•)j · log σ(•)j .

We can easily see that the higher the σ(•)j as a proportion
of a target class j in the node nt is, the lower whatever kind
of the named impurity measures is, as expected.

Following the logic of the top-down induction of a decision
tree depicted in Fig. 4, a final tree cannot have lower than max-
imal possible complexity; even a leaf node including only two
observations of two different target classes is once more split
into two child leaf nodes. To overcome this issue, overfitting,
besides some naive approaches like a fixed maximal number of
nodes per a tree, etc., a procedure called pruning is frequently
applied. The pruning is based on numerical estimating of the
statistics cost–complexity function following the form

Cκ(T ) =
∑

nt∈{nt}

|{xnt
}| ·Qnt

(T ) + κ · |{nt}|, (3)

where {nt} is a set of leaf nodes of the tree and {xnt
} is

a set of all observations constrained by rules coming from the
root till the node nt. The idea is to find a subtree Tκ so that
Tκ ⊂ T for a given κ that minimizes the statistics Cκ(T ), i.

e. Tκ = argminT

{

∑

nt∈{nt}
|{xnt

}| ·Qnt
(T ) + κ · |{nt}|

}

.
The κ ≥ 0 is a hyperparameter (a tuning parameter) and
governs the trade-off between a tree complexity or size (low
values of κ) and goodness of fit to the data (large values of κ).

Principles of the random forests. Once we can generate
classification trees as described above, construction of
a random forest is relatively easy. Random forests are
finite sets of (distinct) decision trees so that each tree
classifies an observation depicted by a vector of values
xi = (xi,1, xi,2, . . . , xi,k)

T for k explanatory variables
into one of m < ∞ target classes [18]. The eventual
classification into the final class is done using a voting
scheme – the final class j∗ ∈ {1, 2, . . . ,m} is the one
that a subset of the random forest’s trees classifying just
into the class j∗ is the largest one among all subsets
of the random forest’s trees. More technically, j∗ =
argmaxj∈{1,2,...,m} {# of trees classifying into the class j}.
In case of a tie, i. e. there are two or more target classes the
forest’s trees would classify with maximum frequency into,
one of them is picked randomly.

A bit different in the random forest’s tree induction is the
fact that only k∗ < k variables are considered as possible
splitting variables in each searching for the node rule. Instead,
the subset of k∗ variables of the original set of all k ex-
planatory variables is selected randomly using bootstrapping to
ensure the pre-selected k∗ variables are as much uncorrelated
as possible. Other details of the trees inductions are the same
as described above. A flowchart of the random forest model
building is in Fig. 5.

Assumptions and limitations of the trees and forests. There
are neither other technical assumptions nor limitations of the
random forests usage worth to be discussed.

III. THE PROPOSED METHOD FOR SURVIVAL CURVES

COMPARING

We introduce the novel method for statistical comparison
of two or more time-to-event developments of individuals’
groups, depicted by their survival curves.

Firstly, data that are on the input of the method have
to be transformed. Each individual is originally described
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initialization of an
empty random forest

creating a decision
tree with a set of

k∗ < k node-splitting
variables randomly pre-
selected using bootstrap

involving the
created tree into

the random forest

are there less than t

trees in the random
forest?

stop the random
forest construction

and output the
random forest model

no

yes

Fig. 5. A construction of the random forest model involving t decision trees.

using their group affiliation, a time to event of interest (or to
censoring), and whether they experienced the event of interest
(or have been censored). Then, using the original data, for
each individual, a sequence of weighted point estimates of
probabilities that they did not experience the event of interest
in a given time point and the group affiliation is created. That
enables introducing new variables (their number is equal to the
number or all considered time points) that are used as splitting
variables in tree inductions when a random forest model is
built.

Once the data are transformed, a random forest model is
constructed. Each tree of the random forest either can classify
into two or more classes that are represented as the group
affiliations, or cannot to classify into any classes at all (then it
is necessarily a root node tree), based on its complexity (size).
See also Fig. 6.

The more trees of sufficient complexity able to classify into
the classes (equal to the groups of individuals, described by
their survival curves melted into the transformed variables as
mentioned above) are in the forest, the more likely we can
reject the null hypothesis that there is no difference between
the survival curves (or the groups of individuals’ time-to-event
development). Thus, a proportion of trees that classify into all
the classes, to all the trees of the random forest is very close
to a point estimate of the p-value, i. e. the probability we
incorrectly reject the null hypothesis of no difference between
the survival curves, assuming the null hypothesis is true. Thus,
the p-value is a probability of a wrong decision and should

be as low as possible whenever we consider rejecting the null
hypothesis. The first type error rate, i. e. the incorrect rejection
of the null hypothesis when it is true, can be controlled by
setting the parameter κ of the random forest’s tree complexity
(or the tree pruning).

So, the proposed method fulfills all feasible demands on
inference testing. We also discuss some of the method’s
properties, particularly its asymptotic time complexity. The
first type error rate is simulated in the simulation study
with varying κ tuning parameters. The introduced method is
able to compare more than two survival curves, and since it
utilizes a random forest tree-based algorithm, it is practically
assumption-free. This is where it surpasses both the log-rank
test and Cox’s regression.

X1 < x1 ∨X1 ≥ x1

yes

j = {1, 2}

X1 ≥ x1

yes

j = 1

no

j = 2

Fig. 6. An example of a root node tree (on the left) not capable to classify
into any class unambiguously, and an example of a tree with "sufficient"
complexity (on the right) able to classify into two classes (j = 1 and j = 2).

A. Data transformation and preparation for random forest

model building

Initial time-to-event survival data includes n observations;
for each of them, we have a piece of information about
the time to the event of interest (or to the censoring) and
whether the event of interest or the censoring occurred. By
adopting the mathematical notation from the section about
the log-rank test, for each considered time point tj , where
j ∈ {1, 2, . . . , k} and k ∈ N, we can calculate for the group i,
where i ∈ {1, 2, . . . ,m}, a proportion ri,j of individuals that
are at risk (of the event of interest or the censoring) in the
j-th time point. Similarly, one can estimate a for the group i,
where i ∈ {1, 2, . . . ,m}, a proportion di,j of individuals who
experienced the event of interest (or the censoring) in the j-th
time point. Putting those estimates together, for the group i,
where i ∈ {1, 2, . . . ,m}, we can make a point estimate of
a probability p̂i,j that an individual from the group would not
experience the event of interest (or the censoring) in the j-th
time point, so

p̂i,j = 1−
di,j

ri,j
. (4)

Such an estimate is made k-times for all time points
{t1, t2, . . . , tk}, by getting (p̂i,1, p̂i,2, . . . , p̂i,k), but such a vec-
tor of values is common for all individuals of the group i.
However, it could be personalized using an operator δν,j for
ν-th individual, where ν ∈ {1, 2, . . . , n}, following the form

δν,j =















1, ν-th individual did not experience the event
of interest in j-th time point

0, ν-th individual experienced the event
of interest in j-th time point,
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assuming that ν-th individual belongs to the group i. So by
modifying the formula (4) using the operator δν,j we get

δν,j p̂i,j = δν,j

(

1−
di,j

ri,j

)

. (5)

The logic of the formula (5) enables to get mutually distinct
vectors of values (δν,1p̂i,1, δν,2p̂i,2, . . . , δν,kp̂i,k)

T for each
individual in the group i, which increases natural variability
of the data.

Finally, still assuming that ν-th individual belongs to the
group i, where ν ∈ {1, 2, . . . , n}, there are n new vectors
(δν,1p̂i,1, δν,2p̂i,2, . . . , δν,kp̂i,k)

T that could be arranged in
a matrix of n rows and k columns, which creates a new
dataset suitable as an input for the decision tree induction;
the k variables could serve as possible splitting variables in
the trees’ nodes. The j-th variable of the dataset could be
interpreted as a personalized point estimate of probability of
non-experiencing the event of interest. The (k+1)-th variable
in the dataset is a target one – categorical variable describing
a group affiliation i ∈ {1, 2, . . . ,m} of each observation2.

B. Construction of the random forest model behind the novel

method

The random forest model is built following the algorithms
sketched in Fig. 4 and Fig. 5. Variables used as node splitting
variables come from the newly created dataset, containing k

"explanatory" variables and a target one, as described more in
the previous subsection.

Number t ∈ N as a count of the trees in the random forest as
well as the level of the trees’ pruning determined by parameter
κ ≥ 0 may vary, as is more explained later.

C. Statistical inference behind the novel method

As already mentioned, the main purpose of the introduced
method is to statistically compare two or more survival curves
depicting a time-to-event development of distinct groups of
individuals. Intuitively, when a large number of the (adequately
pruned) trees involved in the random forest model is able to
classify into two or more classes, i. e. groups determined by
their survival curves, then it is hard to suppose the groups and
their survival curves are (statistically) without any difference.

Similarly to the log-rank test or the Cox’s regression, let the
null hypothesis H0 claim that there is no statistical difference
between the m > 1 survival curves3, and let the alternative
hypothesis H1 claim the contradiction, so

H0 : No statistical difference between the m survival curves.

H1 : Statistical difference between the m survival curves.

Whenever the log-rank test or the Cox’s model based on
Wald t-test rejects – based on test statistics – the appropriate

2Make a note that across the entire paper, the mathematical notation is
consistent – there are m groups depicted by their survival curves, but there are
also m target classes of decision trees. Furthermore, there are k time points,
and for each of them, a new variable is created within the transformation to
the new dataset, thus containing k variables. Finally, the bootstrap behind the
random forest model construction also pre-selects k∗ < k node variables.

3Two or more survival curves; in general m ∈ {2, 3, 4, . . .} curves.

null hypothesis H0 in favor of the alternative hypothesis H1,
is equivalent to a situation the test’s p-value is lower than or
equal to an apriori set level of significance α, usually equal to
0.05. Since the introduced method is in practice assumption-
free and non-parametric, the only way to evaluate the statistical
inference about the null hypothesis is to estimate the p-value
and compare it to the previously set significance level α.

By definition, the p-value is a probability of gaining data
evidence at least as extreme as the data evidence actually
observed, under the assumption the null hypothesis is true.
Let tc be a number of trees in the random forest that are in
contradiction to the null hypothesis under the null hypothesis.
The random forest contains exactly t trees. We can easily
realize that, given the value for the κ parameter, the value
of tc is equal to the number of all the trees classifying into
more than only one class (which is naturally in contradiction
to the null hypothesis). Let the nc(τ) be a number of classes
the tree τ classifies into. Then we can derive

tc = |{∀ tree ∈ random forest : nc(tree) ≥ 2.}|

Then, assuming all trees are inducted randomly regardless
of their complexity, the p-value is estimated by p̂ so that

p̂ = P (getting data at least as extreme as the observed | H0) =

= P (|{∀ tree ∈ random forest : nc(tree) ≥ 2}| ≥ tc | H0) =

= P (|{tc, tc + 1, . . . , t}| | H0) =

=
|{tc, tc + 1, . . . , t}|

t
=

=
t− tc + 1

t
=

= 1−
tc − 1

t
. (6)

Thus, from the formula (6) results that the p-value’s estimate
is equal to the fraction of 1− tc−1

t
. That result is also intuitive.

If the initial number tc of trees in the random forest that
are complex enough and classify into two or more classes
(and more groups with their survival curves) is in general
low, then such a random forest as an entire model is not "so
much" in contradiction to the null hypothesis, claiming there
are no differences between the classes (and survival curves).
Finishing the idea, since the tc is relatively low, then the
fraction p-value = 1− tc−1

t
is relatively large, close to 1 and

unlikely to be lower than α(= 0.05) which is required for the
null hypothesis rejection. On the other hand, when the initial
value of tc is large, i. e. there are many trees in the forest with
sufficient complexity classifying into two or more classes (and
thus, standing against the null hypothesis), then – because of
the large value of tc – the fraction p-value = 1 − tc−1

t
is

relatively low and likely below the level α. That likely results
in the null hypothesis rejection.

The number of trees t in the random forest determines
maximum decimal precision of the p-value estimate. When
the precision of d decimal digits is required for the p-value
estimate, then t has to be t > 10d or better t > 10d+1 to ensure
the next-to-last digit (as the d-th decimal digit) is feasibly
estimated.
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The κ parameter determines how complex the trees in the
random forest would be, i. e. how significant the pruning of
the trees should be. Inspecting the formula (3), we can simply
realize that if κ = 0, then there is no cost for large tree
complexity and the trees in the random forest are generally
very complex (of large size). Then, whenever there are at
least two observations in the transformed dataset so the they
are assigned to different two groups, all the trees (because of
the unlimited complexity) in the forest would classify those
observations into their groups (classes), i. e. that for each tree
τ is nc(τ) ≥ 2, which results into the equity tc = t and, thus,
p-value estimate of p-value = 1− tc−1

t
= 1− t−1

t
= 1

t
≈ 0. If

p-value ≈ 0, then also p-value ≈ 0 < α which, consequently,
tends to rejection of the null hypothesis, very likely a false

rejection that increases the first error type rate. However, high
chance of the null hypothesis rejection means also the high
statistical power, i. e. the rejection of the null hypothesis when
this is not true.

If κ > 0, then in general the trees’ complexity (size)
decreases and also not all of the trees are complex enough
to classify into more than one class (the are only root node
trees); this means that there are trees τ in the random forest
so that nc(τ) ≤ 1, and, finally, tc < t. So, p-value estimate is
p-value = 1− tc−1

t
> 0 and it could be, but also could not be

below α.
To conclude this, low values of κ tend to decrease values

of p-value and increase the statistical power and the first
type error rate, and vice versa. However, the more exact
relationship between κ and α could be only roughly estimated
using simulations due to the stochastic character of the random
forests.

D. A brief asymptotic time complexity analysis and fundamen-

tal approaches on the p-value estimation

An atomic unit of the random forest model is a decision tree,
inducted following the flowchart 4 and algorithm 1. As long as
there is a node containing data of ≥ 2 classes, constrained by
all node rules coming from root to the node, the data splitting
and growing of the tree continues. If the classes in the data
are well balanced as well as the growing tree, the splitting
partitions the subdatasets roughly in halves, and the average
depth of the tree would be logn and the time complexity
would be Θ(logn), assuming one split of a node takes 1 time
unit. However, on the other hand, when the classes are not well
balanced across the dataset, the splitting cuts the subdatasets
into 1 and n − 1 observations, which takes n steps in total
and the depth of the tree is n. Consequently, the asymptotic
time complexity is Θ(n), assuming one split of a node takes
1 time unit.

Within each node splitting, both for a splitting variable
among k variables and through the sample size n is searched,
the time complexity Θ(•) of a decision tree building is
somewhere in between being in Θ(k · n · logn) (the best-case
scenario) and Θ(k · n · n) (the worst-case scenario), so that

Θ(kn logn) ≤ Θ(•) ≤ Θ(kn2).

Algorithm 1: The top-down induction of decision trees
(TDIDT) following the logic of the flowchart 4

Data: a n× (k + 1) dataset with transformed variables
Result: a decision tree

1 T = ({n}) // a tree T with a set ;
2 // of nodes n;
3 {n} = {root} // initially, the tree T

;
4 // is a root;
5 σ(•)j // a node criterion;

6 while ∃ a node ∈ {n} so that data constrained by all

node rules coming from root to this node belong to

≥ 2 classes do

7 find for the node a splitting variable and splitting
point minimizing the σ(•)j ;

8 add to the node two child nodes n1 a n2;
9 {n} := {n ∪ {n1, n2}} ;

10 T := ({n}) // update the tree using

the new node set n ;
11 end

12 a completely inducted tree T ;

When a random forest model containing t trees is con-
structed, the tree induction as introduced above is repeated t

times. That being said, the asymptotic time complexity Θ(••)
of a random forest model building is in between

Θ(tkn logn) ≤ Θ(••) ≤ Θ(tkn2). (7)

One model of the random forest provides one (point) esti-
mate of the p-value using the formula (6). In comparison, the
estimation of the χ2 statistics using the formula (1) takes only
Θ(2k+1) time units since is based on a ratio of two summa-
tions of k elements. Fortunately, the time complexity (7) is still
polynomial. Furthermore, the building of the random forest
with the complexity of (7) could be parallelized; then, asymp-
totic memory complexity rather than the time complexity could
become an issue. In theory, if the random forest building would
be parallelized into ℓ ≤ t independent slave processes each
inducting a bunch of t

ℓ
trees, the time complexity (7) would be

reduced to Θ
(

t
ℓ
kn logn

)

≤ Θ(••) ≤ Θ
(

t
ℓ
kn2

)

. Eventually,
for ℓ = t, the random forest building could take the same
computing time as only one single tree induction,

Θ

(

t

ℓ
kn logn

)

≤ Θ(••) ≤ Θ

(

t

ℓ
kn2

)

Θ

(

t

t
kn logn

)

≤ Θ(••) ≤ Θ

(

t

t
kn2

)

Θ(kn logn) ≤ Θ(••) ≤ Θ
(

kn2
)

.

When we want to estimate the p-value rather using a con-
fidence interval than only using a point, we need to repeat
the random forest building many times, let us say f ≫ 0
times. As a result, we get a set of random forests that might
also be called a primeval superforest of random forests. The
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primeval superforest of random forests construction is of
a time complexity Θ(• • •), so that

Θ(ftkn logn) ≤ Θ(• • •) ≤ Θ(ftkn2). (8)

However, for a given dataset, a point estimate of the p-value
is usually supposed to suffice for purposes of routine statistical
inference. The primaveral superforest of random forests of the
complexity (8) may be applied rather for experimental reasons
when e. g., a posterior distribution of the p-values is about to
be investigated.

IV. SIMULATION STUDY

We compared the log-rank test and the proposed method
using several simulations of many pairs of survival curves to
get preliminary simulated results, although the method – in
contrast to the log-rank test – can compare more than only
two survival curves. The curves in pairs were assumed they
were not significantly different. We calculated the first type
error rates, i. e., rates of false test results that two statistically
non-different survival curves are (falsely) detected as different.
Also, the lower value of the first type error is, the more robust
such a method is. The simulation was repeated for different κ
parameter values to illustrate how the value of κ determines
the first type error rates.

For generating of the pairs of survival curves, we applied
the negatively exponential survival function as follows,

s(t) = ρ
(

e−
5+ε

200
t
)

where ε is a random white noise term following a standard
normal distribution, ε ∼ N (0, 12), and ρ(•) is a function
rounding its argument to the nearest multiplier of 0.01 using
a half rule, e. g. σ(0.012) = 0.01, σ(0.350) = 0.35 or
σ(0.048) = 0.05. A group of negatively exponential survival

functions following the formula s(t) = ρ
(

e−
5+ε

200
t
)

is in
Fig. 7.
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Fig. 7. An example of a group of negatively exponential survival functions

following the formula ρ−1(s(t)) = ρ−1

(

e−
5+ε
200

t
)

= e−
5+ε
200

t for different

random values of ε ∼ N (0, 12).

There were η = 1000 pairs of significantly non-different
survival curves generated in total, and for each κ ∈

{0.1, 0.3, 0.5, 0.7, 0.9}, the curves were compared using the
log-rank test and the above-proposed method. The number of
trees in each random forest was always t = 1000. Numbers
of cases where p-value was lower than or equal to α = 0.05
regardless of the method were summed up, by which we got
the point estimates of the first type error rates, as illustrated
in table II. The simulation study was performed using R pro-
gramming language and environment [3]. More on numerical
applications of R language to various areas is in [23]–[27].

TABLE II
POINT ESTIMATES OF THE FIRST TYPE ERROR RATES BOTH FOR THE

LOG-RANK TEST AND THE PROPOSED METHOD FOR DIFFERENT VALUES OF

TUNING PARAMETER κ, BASED ON THE SIMULATIONS DESCRIBED ABOVE.

method
log-rank test proposed method κ

# of simulated cases in total 1000 1000 0.1
# of cases p-value ≤ 0.05 53 65
first type error rate estimate 0.053 0.065
# of simulated cases in total 1000 1000 0.3
# of cases p-value ≤ 0.05 48 52
first type error rate estimate 0.048 0.052
# of simulated cases in total 1000 1000 0.5
# of cases p-value ≤ 0.05 52 31
first type error rate estimate 0.052 0.031
# of simulated cases in total 1000 1000 0.7
# of cases p-value ≤ 0.05 46 14
first type error rate estimate 0.046 0.014
# of simulated cases in total 1000 1000 0.9
# of cases p-value ≤ 0.05 55 4
first type error rate estimate 0.055 0.004

While the log-rank test returned a point estimate of the
first type error rate about 0.050 (regardless of κ since the
χ2 statistics following the formula (1) is not a function of
the κ), point estimates of the first type error rates output by
the introduced method progressively decreased with increasing
value of κ, see table II. What is more, the proposed method
seems to be more robust than the log-rank test for large values
of κ, based on the simulations above.

V. CONCLUSION REMARKS

Survival curves could be compared by the log-rank test
when they are only two or by the Cox proportional hazard
model if there are more than two curves. However, both
methods are limited by statistical assumptions.

We introduced a novel, assumption-free method for survival
curves comparison based on a random forest algorithm. Firstly,
it requires deriving new variables using the point estimates of
modified (personalized) probabilities of non-experiencing the
event of interest across all time points. Using those variables
as node splitting ones, the random forest model can be built.
A subtraction between 1 and a proportion of trees with
sufficient complexity, capable of classifying into two or more
classes, i. e. groups determined by their survival curves, to
all trees of the forest, is a point estimate of p-value of the
proposed method. Parameter κ determines the random forest
trees’ complexity, and, thus, by increasing the parameter, the
first type error rate decreases, and robustness of the method
increases, as was also illustrated within the simulation study.
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The asymptotic time complexity of the random forest-based
method is higher than the one for the log-rank test but still
polynomial and could be parallelized, too.

The random forest-based method seems to overcome the
risk of violations of statistical assumptions of the traditional
techniques comparing survival curves and, furthermore, could
compare more than two survival curves. Eventually, the
method and its computational optimization could also inspire
a new R package development.
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