
A Distributed Application Placement and Migration

Management Techniques for Edge and Fog

Computing Environments

Mohammad Goudarzi∗, Marimuthu Palaniswami†, Rajkumar Buyya∗,
∗The Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems

The University of Melbourne, Australia

Email: mgoudarzi@student.unimelb.edu.au, rbuyya@unimelb.edu.au
† The Department of Electrical and Electronic Engineering,

The University of Melbourne, Australia

Email: palani@unimelb.edu.au

Abstract—Fog/Edge computing model allows harnessing of
resources in the proximity of the Internet of Things (IoT) devices
to support various types of latency-sensitive IoT applications.
However, due to the mobility of users and a wide range of
IoT applications with different resource requirements, it is a
challenging issue to satisfy these applications’ requirements. The
execution of IoT applications exclusively on one fog/edge server
may not be always feasible due to limited resources, while
the execution of IoT applications on different servers requires
further collaboration and management among servers. Moreover,
considering user mobility, some modules of each IoT application
may require migration to other servers for execution, leading to
service interruption and extra execution costs. In this article,
we propose a new weighted cost model for hierarchical fog
computing environments, in terms of the response time of IoT
applications and energy consumption of IoT devices, to minimize
the cost of running IoT applications and potential migrations.
Besides, a distributed clustering technique is proposed to enable
the collaborative execution of tasks, emitted from application
modules, among servers. Also, we propose an application place-
ment technique to minimize the overall cost of executing IoT
applications on multiple servers in a distributed manner. Further-
more, a distributed migration management technique is proposed
for the potential migration of applications’ modules to other
remote servers as the users move along their path. Besides, failure
recovery methods are embedded in the clustering, application
placement, and migration management techniques to recover
from unpredicted failures. The performance results demonstrate
that our technique significantly improves its counterparts in
terms of placement deployment time, average execution cost
of tasks, the total number of migrations, the total number of
interrupted tasks, and cumulative migration cost.

I. INTRODUCTION

T
HE NUMBER of latency-sensitive applications of In-

ternet of Things (IoT) devices has been increasing due

to recent advances in technologies so that many applications

rely on remote resources for their execution. Due to latency-

sensitive nature of these applications and the huge amount of

data that they generate, traditional cloud computing cannot

efficiently satisfy the requirements of IoT applications, and

they experience high latency and energy consumption while

communicating to cloud servers (CSs) [1], [2]. The fog/edge

computing paradigm addresses these issues by providing an

intermediate layer of distributed resources between IoT de-

vices and CSs that can be accessed with lower latency [3],

[4], [5]. However, the provided resources of fog/edge servers

for IoT applications are limited and with less variety in

comparison to the resources of CSs [6]. In our view, fog

computing has a hierarchical and distributed structure that

harnesses the resources of both CSs and Fog Servers (FSs)

at different hierarchical fog levels, while lower-level FSs have

fewer computing resources compared to higher-level FSs, but

they are accessible with lower latency [1], [7], [8], [9], [10].

However, edge computing does not have this hierarchical

structure and does not use resources of CSs [11] (although

some works use these terms interchangeably).

Real-time IoT applications can be modeled as a set of

lightweight and interdependent application modules in fog

computing environments so that such application modules

alongside their allocated resources form the data processing el-

ements of various IoT applications [7], [1]. Considering differ-

ent requirements of applications’ modules, they can be placed

on one FS, different FSs in the same hierarchical level, FSs

in different hierarchical levels, and/or CSs for the execution

[1], [12]. Besides, as the number of IoT applications increases,

more requests are forwarded to FSs that may overload them.

Hence, a dynamic application placement technique is required

to efficiently place interdependent modules of IoT applications

on remote servers while meeting their requirements.

Alongside the importance of suitable application placement

techniques, there are yet several issues to be addressed. The

coverage ranges of lower-level FSs are limited, and IoT

users have different mobility patterns. Besides, interdependent

modules of each IoT application may be deployed on several

FSs. Hence, as the IoT user moves towards its destination, the

application response time and IoT device energy consumption

can be negatively affected [13]. Therefore, the migration of

interdependent modules of each application among FSs, which

incurs service interruption and additional cost, is an important

and yet a challenging issue. Several migration techniques

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 37±56

DOI: 10.15439/2021F005

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 37

decide when, how, and where application modules can migrate

when IoT users change their location in the fog/edge comput-

ing environments, such as [14], [15], [16], [17]. However, these

techniques either focus on the migration of a single application

module without considering other deployed modules [13] or

consider an IoT application as a set of independent application

modules. An IoT application may consist of several interde-

pendent modules, and the migration technique should consider

the configuration of all interdependent modules when an IoT

user moves towards its destination. Hence, the migration of

IoT applications, consisting of several interdependent mod-

ules, is an important challenge to be addressed, especially in

hierarchical fog computing environments in which modules

may be placed on different hierarchical levels.

Also, in fog computing, there are several studies that

consider the application placement and migration management

engines (i.e., decision engines) have a global view about

topology and resources of all FSs and CSs [6], [18] while

there are other studies that assume decision engines only

have a local view about resources and topology of servers

in their proximity [10], [9], [19]. In these latter techniques,

the decision engines act in the distributed manner so that each

FS that receives the application placement and/or migration

request try to use the available resources in its proximity

(which can be accessed with lower latency) to place/migrate

the application modules as much as possible. However, if

there are no available resources, the rest of the placement

and migration will be handled by higher-level FSs in the

hierarchy. Considering communication with higher-level FSs

incurs higher latency compared to communication among FSs

at the same hierarchical level, the clustering of FSs (if it is

possible) at the same hierarchical level can provide sufficient

resources (with less latency in comparison to higher-level FSs)

to serve real-time IoT applications and reduce the amount of

communication with higher-level FSs.

In this paper, we address these issues and propose efficient

distributed application placement and migration management

techniques to satisfy the requirements of real-time IoT appli-

cations while users move.

The main contributions of this paper are as follows.

• We propose a new weighted cost model based on IoT

applications’ response time and IoT devices’ energy con-

sumption for application placement and migration of IoT

devices in hierarchical fog/edge computing environments

to minimize cost of running real-time IoT applications.

• We put forward a dynamic and distributed clustering

technique to form clusters of FSs at the same hierarchical

levels so that such servers can collaboratively handle IoT

application requirements with less execution cost.

• Considering the NP-Complete nature of application

placement and migration problems in fog/edge computing

environments, we propose a distributed application place-

ment and migration management techniques to place/mi-

grate modules of real-time applications on different levels

of hierarchical architecture based on their requirements.

• We embed failure recovery methods in clustering, appli-

cation placement, and migration management techniques

to recover from unpredicted failures.

The rest of paper is organized as follows. Relevant works of

application placement and migration management techniques

in edge and fog computing environments are discussed in

section II. The system model and problem formulations are

presented in section III. Section IV presents our proposed

distributed clustering, application placement, and migration

management technique. We evaluate the performance of our

technique and compare it with the state-of-the-art techniques

in section V. Finally, section VI concludes the paper and draws

future works.

II. RELATED WORK

In this section, related works that address both application

placement and mobility issues at the same time as their main

challenges in the context of edge/fog computing are studied.

These works are categorized into independent and dependent

categories based on the dependency mode of their applica-

tions’ granularity (e.g., modules). In the dependent category,

constituent parts of IoT applications (i.e., modules) can be

executed only when their predecessor modules complete their

execution, while IoT applications that are modeled as a set of

independent modules do not have this constraint.

A. Edge Computing

In the independent category, Wang et al. [20] formulated ser-

vice migration as a distance-based Markov Decision Process

(MDP), which considers the distance between an IoT user and

service provider as its main parameter. Then, they proposed a

numerical technique to minimize the migration cost of users.

Wang et al. [21] and Yang et al [22] considered deterministic

mobility conditions, in which the potential paths between

source and destination are priori known, and proposed place-

ment techniques, performed on the IoT device, to minimize the

delay. Since paths and available edge devices are priori known,

as the IoT user moves, the current in-contact edge device can

send the required information to the next edge device. Ouyang

et al. [17] proposed an edge-centric application placement

and mobility management technique that are executed on the

network operator and one-hop edge devices respectively. They

proposed a distributed approximation scheme based on the

best response update technique to optimize the mobile edge

service performance. Liu et al. [23] proposed a mobility-

aware offloading and migration technique to maximize the

total revenue of IoT devices by reducing the probability of

migration. Zhu et al. [24] proposed a mobility-aware appli-

cation placement in vehicular scenarios with constraints on

service latency and quality loss. In this technique, some of the

vehicles generate tasks while other vehicles provide computing

services as remote servers. Zhang et al. [25] proposed a deep

reinforcement technique to minimize the delay of IoT tasks.

Yu et al. [26] proposed a technique to minimize the delay of

tasks while satisfying the energy consumption of a single IoT

user moving among edge servers.

38 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

In the dependent category, Sun et al. [27] and Qi et al. [28]

proposed a mobility-aware application placement technique in

which placement decision engines run on IoT devices. The

authors of [27] considered a single IoT device and proposed an

IoT-centric energy-aware mobility management technique to

minimize the application delay while authors of [28] proposed

an edge-centric and knowledge-driven online learning method

to adapt to the environment changes as vehicles move.

B. Fog Computing

In the independent category, Wang et al.[16] proposed a

solution to place a single service instance of each IoT user

on a remote server when multiple IoT users exist in the

system. They proposed both offline and online approximation

algorithms, performed on the cloud, to find the optimal and

near-optimal solutions respectively. Wang et al. [29] and Wang

et al. [13] proposed edge-centric application placement and

mobility management technique when multiple IoT users with

a single module exist in the system. The main goal of [29] is

Maximizing IoT users’ gain through offloading and reducing

the number of migrations, while the main goal of authors of

[13] is minimizing the service delay.

In the dependent category, Shekhar et al. [6] and Bittencourt

et al. [19] proposed mobility-aware application placement

techniques for IoT application, consisting of multiple inter-

dependent modules while considering prior mobility informa-

tion. The authors in [6] proposed a cloud-centric technique,

called URMILA, in which the centralized controller makes

the placement decision for all IoT applications to satisfy their

latency requirements. Besides, whenever the decision is made,

even in case the user leaves the range of its immediate server,

there is no migration algorithm to migrate modules to new

servers, which incurs a higher cost for the users. The authors in

[19] proposed an edge-centric solution based on the edgeward-

placement technique [10] for placement of IoT applications

while considering their targeted destination. In this proposal,

however, the potential of clustering is not considered. So,

whenever the immediate server cannot serve the application

modules, the modules are forwarded to the next hierarchical

layer for possible placement and migration.

C. A Qualitative Comparison

Key elements of related works are identified and presented

in Table I and compared with ours in terms of the main

category, IoT application, architectural, and placement and

mobility management engines’ properties. The IoT application

properties identify and compare dependency mode (either

independent or dependent) of IoT applications, modules’

number (either single or multiple modules per application),

and heterogeneity (whether the specification of modules is

same (i.e., homogeneous) or different (i.e., heterogeneous)).

Architectural properties contain the number of IoT devices

(either single or multiple), whether hierarchical fog architec-

ture is considered or not, and clustering technique (whether

a clustering technique is applied on edge/fog servers or not).

Placement and mobility management engines contain positions

of placement, mobility management engines, failure recovery

capability, and the decision parameters used in each proposal.

Our work proposes an edge-centric application placement

and mobility management technique for an environment con-

sisting of multiple IoT devices with heterogeneous applications

(consisting of several dependent modules with heterogeneous

requirements) and multiple remote servers (either CSs or FSs)

deployed in a hierarchical architecture. Considering the poten-

tial of the clustering of FSs in the hierarchical fog computing

environment, we propose a weighted cost model of response

time and energy consumption for the application placement

and migration techniques. The proposed weighted cost model

considers the dependency among modules of IoT applications

which plays an important role in application placement and

migration management. Second, we put forward a distributed

and dynamic clustering technique by which FSs of the same

hierarchical level can form a cluster and collaboratively pro-

vide faster and more efficient service for IoT applications. This

latter is because the communication overhead between FSs of

the same hierarchical level is usually less than communication

with higher-level FSs [1]. Although resources of each lower-

level FS is less than each higher-level FS, aggregated resources

of lower-level FSs, obtained through clustering, can be used

to manage IoT applications modules in lower-level FSs with

less response time and energy consumption. Third, we propose

a distributed application placement and migration techniques

for hierarchical fog computing environments to minimize the

weighted cost of running real-time IoT applications. Finally,

due to the highly dynamic nature of such systems, there is

a high chance of failures in the system, for which we pro-

pose light-weight failure recovery methods in the clustering,

application placement, and migration management techniques.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system consisting of N mobile IoT users

(so that each user has one IoT device), F heterogeneous FSs

distributed in the proximity of IoT users, and a centralized

cloud. FSs follow a hierarchical topology, in which lower-level

FSs can be accessed with lower latency while providing fewer

resources in comparison to higher-level FSs that provide more

resources but can be accessed with higher latency [1], [9].

Besides, we assume that each IoT device is connected to one

FS in the lowest hierarchical level, so that this FS is responsi-

ble for the application placement and mobility management of

that IoT device. The set of all available servers is represented

as S with |S| = M and M > F . The 2-tuple (h, i) ∈ S
(0 ≤ h, 1 ≤ i) represents one server, in which h represents

the hierarchical level of the server and i denotes the server’s

index at that hierarchical level. If we assume there are L

hierarchical fog layers, (L+1, 1) demonstrates the centralized

cloud data-center placed at the top-most level. Moreover, the

(0, n) denotes the nth IoT device. Fig. 1 represents a view of

our system model and how IoT devices move among different

FSs. Also, it shows the in-cluster communications (in case

clustering is applied) and communications between FSs at

different hierarchical levels in this environment.

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 39

Table I: A qualitative comparison of related works with ours

Techniques Category
Application Properties Architectural Properties

Placement and Mobility Management Engines

Placement Engine

Position

Mobility Management

Engine Position

Failure

Recovery

Decision Parameters

Dependency
Module

Number
Heterogeneity

Number of

IoT Devices

Hierarchical

Fog Architecture

Clustering

Technique
Time Energy Weighted

[20]

Edge

Computing

Independent

Single Heterogeneous Single × × Edge Centric Edge Centric × X × ×

[21] Multiple Heterogeneous Multiple × ×
IoT Device

Centric
Edge Centric × X × ×

[17] Single Heterogeneous Multiple × × Edge Centric Edge Centric × X × ×

[23] Single Heterogeneous Multiple × × Edge Centric Edge Centric × X X X

[22] Multiple Heterogeneous Multiple × ×
IoT Device

Centric
Edge Centric × X × ×

[24] Multiple Heterogeneous Single × × Edge Centric Edge Centric × X × ×

[25] Single Homogeneous Single × × Edge Centric Edge Centric × X × ×

[26] Multiple Heterogeneous Single × × Edge Centric Edge Centric × X X ×

[27]
Dependent

Multiple Heterogeneous Single × ×
IoT Device

Centric

IoT Device

Centric
× X X ×

[28] Multiple Heterogeneous Multiple × ×
IoT Device

Centric
Edge Centric × X × ×

[16]

Fog

Computing

Independent

Single Heterogeneous Multiple × × Cloud Centric
Cloud/Edge

Centric
× X × ×

[29] Single Heterogeneous Multiple × × Edge Centric Edge Centric × X X X

[13] Single Heterogeneous Multiple × × Edge Centric Edge Centric × X × ×

[6]

Dependent

Multiple Homogeneous Single × × Cloud Centric Cloud Centric × X × ×

[19] Multiple Heterogeneous Multiple X × Edge Centric Edge Centric × X × ×

Proposed

Solution
Multiple Heterogeneous Multiple X X Edge Centric Edge Centric X X X X

2
Level 1

IoT

Devices

1 3

4 5
6

Centralized Cloud

F
og

 C
om

pu
ti

ng

E
dg

e
C

om
pu

ti
ng

F
og

 L
ay

er

Level 2

Level L

In-Cluster

Communication

Movement

Potential Migration

Destination

Hierarchical

Communication

Cluster

Overlapping

Server

1

1 3
2

Figure 1: A view of our system model

Each FS can form a cluster either by other nearby FSs at

the same hierarchical level or by itself. Moreover, each FS

in lth hierarchical level may belong to different clusters in

that hierarchical layer. The cluster member (CM) list of each

FS is defined as Listcl(h, i), which is empty if the FS (h, i)
does not have any CMs. Besides, for each FS, we define a

children list, Listch(h, i), containing server specification of

immediate lower-level FSs, to which it has direct hierarchical

communication links. The sole parent server of each FS is

defined as par(h, i) = (h′, i′) which refers to the immediate

higher-level FS. We assume that in-cluster communications are

faster than hierarchical communications [1]. Hence, clustering

FSs, while incurs additional cost due to running clustering

algorithm, can improve the quality of service for IoT users.

Moreover, each FS has a list, called Ω(h, i), containing

server specification of itself, its children, and all FSs

belonging to the Ω of its children. To illustrate, considering

Fig. 1, the Ω(2, 1) = {(2, 1), (1, 1), (1, 2), (1, 3)} and

Listch(2, 1) = {(1, 1), (1, 2), (1, 3)}, and Ω(2, 2) = {(2, 2)}
and Listch(2, 2) = {}. If we assume the maximum number of

fog layers is three (i.e., L = 3) in this example, then Ω(3, 1) =
{(3, 1), (2, 1), (2, 2), (2, 3), (1, 1), (1, 2), (1, 3), (1, 4)
, (1, 5), (1, 6)}, and the Listch(3, 1) = {(2, 1), (2, 2), (2, 3)}.

We consider that FSs and CSs use container technology

to run IoT applications’ modules [13], [30]. So, we assume

that FSs have access to images of all containers (Cnts) while

such Cnts may be active if they are running on the server

or inactive (i.e., the container images are accessible, but the

containers are not running) otherwise [13]. Moreover, for each

container, according to the application module that it serves,

an amount of ram size at the runtime is assigned to keep the

state Cntramvn,j
[31]. Table II summarizes the parameters used

in this paper and their respective definitions.

A. Application Model

We consider real-time IoT applications working based on

the Sense-Process-Actuate model, in which sensors transmit

tasks periodically according to their sample rate [1], [10].

The emitted sensors’ tasks should be forwarded to different

modules of the IoT applications for processing based on

dependency model among constituent modules. When each

module receives tasks from predecessor modules as input, it

processes tasks and produces respective tasks as its output

to be forwarded to next modules [1], [32]. Finally, results

40 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Table II: Parameters and respective definitions

Parameter Definition Parameter Definition

CSs Cloud Servers FSs, FS Fog Servers, Fog Server

CNTs, CNT Containers, Container N Number of mobile IoT devices

F Number of heterogeneous fog servers (FSs) S The set of all available servers

M Number of available servers (h, i)
The 2-tuple showing one server in which h represents the hierarchical level of the

server and i denotes the server’s index at that hierarchical level

Listch(h, i) The list containing server specification of children for the server (h, i) par(h, i) The sole parent of the server (h, i) in the hierarchical system

Ω(h, i)
The set containing server specification of server (h, i), its children, and

all FSs belonging to the Ω of its children
CM Cluster Member

Listcl(h, i) The list containing server specification of cluster members for the server (h, i) Gn Directed Acyclic Graph (DAG) of the nth IoT application

Vn The set of modules belonging to the nth IoT application En The set of data flows between modules belonging to the nth IoT application

vn,i, vn,j The ith and/or jth module belonging to the nth IoT application en,i,j The data flow from module vn,i to module vn,j of the nth IoT device

P(vn,j) The set of predecessor modules of the module vn,j TOn,i = t The topological order of ith module of the nth IoT application is equalt to t

SchSn

The schedule set of the nth IoT application consisting of subsets of

modules with the the same TO value t
SchSn, t

A subset of SchSn showing modules with the same TO value t (i.e., modules

that can be executed in parallel)

eins
n,i,j

The amount of instructions in terms of Million Instruction that the module

vn,j receives from vn,i for processing
edsizen,i,j

The size of data that the module vn,i generates as an output to be sent to

module vn,j

vmtd
n,i The maximum tolerable delay for the module vn,i Xn The placement configuration of the nth IoT application

xn,i

The placement configuration for each module vn,i of the nth IoT

application in the Xn

Ψ(Xn, t)
The weighted cost of modules in the tth schedule while considering the placement

configuration Xn.

|SchSn| The number of schedules for the nth IoT application Txn,j The overall delay of each module (i.e., vn,j) based on its assigned server

Cnts(h,i) The number of instantiated Cnts on the server (h, i) Cap(h,i) The maximum capacity of server (h, i) to instantiate Cnts.

Γ(Xn, t)
The weighted cost of modules in the tth schedule while considering the

placement configuration Xn

Θ(Xn, t)
The energy consumption of modules in the tth schedule while considering the placement

configuration Xn

T lat
xn,j

The inter-nodal latency between the servers on which module vn,j

and its predecessors P(vn,j) are placed
T exe
xn,j

The computing execution time of tasks, emitted from the vn,i to be

executed on the vn,j

T tra
xn,j

The transmission time between between the module vn,j and its

predecessors P(vn,j)
cpu(xn,j)

The computing power of the assigned server (in terms of MIPS) for the

module vn,j

γtra The transmission time between source and destination servers Bup, Bdown, Bcluster

The bandwidth of the one server to the parent server, to the child server,

and to its CMs, respectively

NSTi(H), NSEi(H) They define the next intermediate server to reach the destination server chRule
It identifies whether any children of the current server has a route to the

destination server or not

chRule
It identifies whether any CMs of the current server has a route to the

destination server or not
Υ((Ω(h, i)), (h′, i′))

It shows whether Ω(h, i) contains (h′, i′) or not

(i.e., meaning that there is one hierarchical path from (h, i) to the (h′, i′))

γlat The inter-nodal latency between source and destination servers lat(up), lat(down), lat(cluster)
The inter-nodal latency of one server to the parent server, to the child server,

and to its CMs, respectively

Ψmig((Xn, X
′
n, ts)

The weighted migration cost of nth IoT application from the current

configuration Xn to the new configuration X′
n

γmig(xn,i, x
′
n,i)

The migration cost of one module from current configuration xn,i to

the new configuration x′
n,i

γlat
mig((h, i), (h

′, i′)) The migration latency between current and new servers dsizemig
The size of dump data and states that should be transferred between current

and new servers

e
ins,r
n,i,j

The amount of remaining instructions of task e
ins,r
n,i,j

to be executed on the new server after migration
E(xn,j) The overall energy consumption of each module (i.e., vn,j) based on its assigned server

Eexe
xn,j

The computing energy consumption of tasks, emitted from the vn,ito be

executed on the vn,j

Elat
xn,j

The energy consumption incurred due to inter-nodal latency between the servers on which

module vn,jand its predecessors P(vn,j) are placed

Etra
xn,j

The transmission energy consumption between between the module vn,j

and its predecessors P(vn,j)
Pcpu, Pi, Pt

The CPU power of the IoT device, the idle power of IoT device, and transmission power of

the IoT device

ϑtra The transmission energy consumption between source and destination servers ϑlat The energy consumption incurred due to inter-nodal latency between servers

Γmig((Xn, X
′
n), t)

The migration time of nth IoT application from the current configuration

Xn to the new configuration X′
n considering schedule t

Θmig((Xn, X
′
n), t)

The migration energy consumption of nth IoT application from the current configuration

Xn to the new configuration X′
n considering schedule t

will be forwarded to the actuator as the last module. In this

work, we assume that both sensor and actuator modules of

IoT applications reside in IoT devices [19].

Real-time IoT application belonging to the nth IoT device is

represented as a Directed Acyclic Graph (DAG) of its modules

Gn = (Vn, En), ∀n ∈ {1, 2, · · · , N}, where Vn = {vn,i|1 ≤
i ≤ |Vn|} denotes the set of modules belonging to the nth IoT

device, and En = {en,i,j |vn,i, vn,j ∈ Vn, vn,i ∈ P(vn,j), i 6=
j} shows the set of data flows between modules. Since IoT

applications are modeled as DAGs, each module vn,j cannot

be executed unless all its predecessor modules, denoted as

P(vn,j), finish their execution. To illustrate, e1,1,2 represents

that execution of module v1,2 depends on the execution of the

module v1,1. Moreover, we define a Topological Order value

t for each module i of the nth IoT application as TOn,i = t.

We define a schedule set for the nth IoT application, called

SchSn, consisting of modules with the same TO value t as its

subsets. The SchSn,t specify modules with the same TO value

t (i.e., modules that can be executed in parallel). In addition,

the set of successor modules of module vn,j is defined as

Succ(vn,j). Fig 2a shows an IoT application, the TO value for

each module, and the schedule set SchSn based on the TO

values of its modules. Besides, We define the output of each

module vn,i is a task consisting of two values to be forwarded

to next modules based on data flows of the IoT application.

The first value is the amount of instructions in terms of Million

Instruction (MI) that the module vn,j receives from vn,i for

processing, shown as einsn,i,j , and the second value is the size

of data edsizen,i,j the module vn,i generates as its output to be

forwarded to module vn,j [10].

B. Problem Formulation

The placement configuration of the application belonging to

the nth IoT application is shown as Xn. Also, xn,i = (h, i)
denotes the placement configuration for each module vn,i of

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 41

v1,1

Io
T

 a
p

p
li

ca
ti

o
n

 w
h

er
e

n
=

1
 w

it
h

 5

m
o

d
u

le
s

v1,1
𝑻𝑶𝟏,𝟏 = 𝟏
𝑻𝑶𝟏,𝟐 = 𝟐

𝑻𝑶𝟏,𝟑 = 𝟑𝑻𝑶𝟏,𝟒 = 𝟑
𝑻𝑶𝟏,𝟓 = 𝟒

v1,2

v1,3 v1,4

v1,5

𝑺𝒄𝒉𝑺𝟏,𝟏
𝑺𝒄𝒉𝑺𝟏,𝟐
𝑺𝒄𝒉𝑺𝟏,𝟑
𝑺𝒄𝒉𝑺𝟏,𝟒

𝑺𝒄𝒉𝑺𝟏

v1,2

v1,4
v1,3

v1,5

(a) An IoT application and its corresponding schedules

(1,2) (2,1)(0,1) (1,1) (1,3)

𝑿𝒏𝒙𝒏,𝒊 Server identifier

(h,i)

Placement

configuration

Io
T

 a
p

p
li

ca
ti

o
n

 w
h

er
e

n
=

1
 w

it
h

 5

m
o
d

u
le

s

v1,1

v1,2

v1,4
v1,3

v1,5

𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟏,𝟓

(b) A candidate server configuration for the IoT application

Figure 2: An example of IoT application, its schedules and a candidate server configuration

the nth IoT application in the Xn based on the specification

of the server. To illustrate, xn,i = (1, 3) shows that the ith

module of nth IoT device is assigned to a server in the first

hierarchical level where the server index is 3. Moreover, if the

ith module of the nth IoT device is assigned to run locally on

itself, xn,i = (0, n). Fig 2b presents a sample DAG of an IoT

application and a candidate placement configuration.

1) Placement weighted cost model: The goal of application

placement is to find a suitable configuration for modules of

each real-time IoT application to minimize the weighted cost

Ψ(Xn, t) of running applications in terms of the response time

of tasks and energy consumption of IoT devices:

min
w1,w2∈[0,1]

|SchSn|
∑

t=1

Ψ(Xn, t), ∀n ∈ {1, 2, · · · , N} (1)

where

Ψ(Xn, t) = w1 × Γ(Xn, t) + w2 ×Θ(Xn, t) (2)

s.t. C1 : Size(xn,j) = 1, ∀xn,j ∈ Xn , (3)

n ∈ {1, 2, · · · , N}, 1 ≤ i ≤ |Vn|

C2 : Cnts(h, i) ≤ Cap(h, i), ∀ (h, i) ∈ S (4)

C3 : Ψ(xn,i, t) ≤ Ψ(xn,j , t), ∀vn,i ∈ P(vn,j) (5)

where |SchSn| represents the number of schedules, and

Γ(Xn, t) and Θ(Xn, t) show the response time model and

energy consumption model, respectively, of modules in the

tth schedule while considering the placement configuration

Xn. Moreover, w1 and w2 are control parameters to tune

the weighted cost model according to user requirements. We

assume the number of available servers M is more than or

equal to the maximum number of modules in the tth schedule

for parallel execution (i.e., |SchSn,t| ≤ M). We suppose that

each module of an IoT application can be exactly assigned

to one Cnt of one remote server. C1 indicates that each

module i of the nth IoT application can only be assigned

to one server at a time, and hence the size of xn,j is equal

to 1 [2], [33]. C2 denotes that the number of instantiated

Cnts on the server (h, i) is less or equal to the maximum

capacity of that server Cap(h, i). Besides, C3 guarantees that

the predecessor modules of vn,j (i.e., P(vn,j)) are executed

before the execution of module vn,j [33].

a) Response time model: The goal of this model is to

find the best possible configuration of servers for each IoT

application so that the overall response time for each IoT appli-

cation becomes minimized. In order to only consider response

time model as the main objective, the control parameters of

weighted cost model (Eq. 2) can be set to w1 = 1 and w2 = 0.

Γ(Xn, t) =



















T (xn,j), if |SchSn,t| = 1 (a)

max(T (xn,j)), otherwise
(b)

∀xn,j ∈ Xn|vn,j ∈ SchSn,t

(6)

The Eq. 6.a represents the condition in which the number

of modules in the tth schedule is one (i.e, |SchSn,t| = 1),

and hence, the time of that schedule is equal to the time of

that module based on its assigned server T (xn,j). Besides, the

Eq. 6.b refers to the condition in which the number of modules

in the tth schedule is more than one (i.e., several modules can

be executed in parallel). In this latter case, the time of the tth

schedule is equal to the maximum time of all modules that

can be executed in parallel.

The overall delay of each module (i.e., vn,j) based on its

candidate configuration (i.e., xn,j) is defined as the sum of

inter-nodal latency between servers (T lat
xn,j

), the computing

time per module (T exe
xn,j

), and the data transmission time

between vn,j and all of its predecessor modules (T tra
xn,j

). It

is formulated as:

T (xn,j) = T exe
xn,j

+ T lat
xn,j

+ T tra
xn,j

(7)

The computing execution time of module vn,j depends on

tasks emitted from its predecessors (i.e., P(vn,j)) for process-

ing by vn,j . The computing time of vn,j is estimated as:

T exe
xn,j

=
∑ einsn,i,j

cpu(xn,j)
, (8)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

where cpu(xn,j) demonstrates the computing power of the

assigned server (in terms of Million Instruction per Second

(MIPS)) for the module vn,j . Moreover, the einsn,i,j shows the

amount of instructions in terms of MI that the module vn,j
receives from vn,i for the processing.

42 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

The transmission time between module vn,j and its prede-

cessors P(vn,j) of the application belonging to the nth IoT

device is calculated as:

T tra
xn,j

= max(γtra(edsizen,i,j , (h, i), (h
′, i′))), (9)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

Due to the hierarchical nature of fog computing, the transmis-

sion time of one task (γtra) between each pair of dependent

modules vn,i and vn,j is recursively obtained based on visited

servers between source and destination. The (h, i) and (h′, i′)
show server specifications of source and destination servers on

which modules vn,i and vn,j are assigned, respectively. By vis-

iting each intermediate server between source and destination

servers, the value of source server (h, i) is updated while the

value of destination server remains unchanged. To reduce the

length of equations, we consider (edsizen,i,j , (h, i), (h
′, i′)) = H .

γtra(H) =



































edsizen,i,j

Bup
+ γtra(H′), NSTi(H) = NST1|NST4|NST6

edsizen,i,j

Bdown
+ γtra(H′), NSTi(H) = NST2

edsizen,i,j

Bcluster
+ γtra(H′), NSTi(H) = NST3|NST5

0, NSTi(H) = NST7

(10)

where Bup, Bdown, and Bcluster refer to the bandwidth of

current server to parent server, to child server, and to cluster

server, respectively. Besides, H ′ is defined as what follows:

H ′ = (edsizen,i,j , (h
′′

, i
′′

), (h′, i′)) (11)

(h
′′

, i
′′

) = NSTi(H) (12)

The Eq. 11 shows the data size and destination server of

H ′ is exactly the same as H , and the only difference is the

specification of the source server (h
′′

, i
′′

) which is obtained

from the output of NSTi(H) (i.e., (h
′′

, i
′′

) = NSTi(H). The

NSTi(H) defines the next intermediate server to reach the

destination server for each edge en,i,j .

NSTi(H) =



















































































































































Par(h, i), if h < h′ i = 1

chRule, if h > h′ i = 2
& chRule 6= ∅

if h � h′ = 0
clRule, & i � i′ 6= 0 i = 3

& clRule 6= ∅

if h � h′ = 0
Par(h, i), & i � i′ 6= 0 i = 4

& clRule = ∅

clRule, if h > h′, i = 5
& clRule 6= ∅

if h > h′

Par(h, i), & chRule = ∅ i = 6
& clRule = ∅

(0, 0), if h � h′ = 0 i = 7
& i � i′ = 0

(13)

chRule = if ∃(h
′′

, i
′′

) ∈ Listch(h, i)|

Υ((Ω(h
′′

, i
′′

), (h′, i′)) = 1, return (h
′′

, i
′′

), (14)

else return ∅

clRule = if ∃(h
′′

, i
′′

) ∈ Listcl(h, i)|

Υ((Ω(h
′′

, i
′′

), (h′, i′)) = 1, return (h
′′

, i
′′

), (15)

else return ∅

The Υ((Ω(h
′′

, i
′′

)), (h′, i′)) is equal to 1 if Ω(h
′′

, i
′′

) contains

(h′, i′) (i.e., meaning that there is one hierarchical path from

(h
′′

, i
′′

) to the (h′, i′)) and is equal to 0 if (h′, i′) does

not exist. Moreover, the � is XOR binary operation. The

chRule (Eq. 14) says that if the server (h, i) has a children

(h
′′

, i
′′

) in its Listch which has a hierarchical path to the

destination server (h
′

, i
′

), the specification of this server

(h
′′

, i
′′

) should be returned. The clRule (Eq. 15) presents that

if the server (h, i) has a CM (h
′′

, i
′′

) in its Listcl(h, i) which

has a hierarchical path to the destination server (h
′

, i
′

), the

specification of this server (h
′′

, i
′′

) should be returned. Based

on the aforementioned rules, NST (H) finds the next server to

which the data should be sent and calculates the transmission

cost. The NST1 of Eq. 13 states that if the hierarchical level of

the current server is less than destination server, the Par(h, i)
should be checked in the next step. The NST2 represents

the case that the hierarchical level of the current server is

higher than the destination server and the current server has

a child through which the destination server can be reached.

The NST3 states the condition that the current and destination

servers are in the same hierarchical level, and one of the CMs

has a route to the destination server. The NST4 indicates that

if the current and the destination servers are in the same level,

and there is no route to destination using CMs, the parent

should be checked in the next step. The NST5 states that if

the level of the current server is higher than the destination

server, and a CM has a path to the destination server, the

cluster server should be selected in the next step. The NST6

states that if the level of current server is higher than the

destination server, and there exists no route from children nor

from CMs, the parent server should be traversed. Finally, the

NST7 is the ending condition for this recursive process and

states that if the current and destination server is same, the cost

is zero. Fig 3 represents an example of obtaining transmission

time between source and destination servers.

Inter-nodal latency T lat
xn,j

between servers on which module

vn,j and its predecessors P(vn,j) are placed is calculated as:

Γlat
Xn,j

= max(γlat((h, i), (h′, i′))), (16)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where γlat shows the inter-nodal latency between source and
destination servers (i.e., (h, i) and (h′, i′) respectively) on

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 43

2
Level

11 3

4 5
6

Centralized Cloud

F
o
g
 C

o
m

p
u

ti
n

g

E
d

g
e
 C

o
m

p
u

ti
n

g F
o
g
 L

a
y

e
r

Level

2

Level

3
1

1 3
2

(1,2) (2,2) (3,1)V1,1

V1,2

V1,3

𝑿𝒏
𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑IoT Device 1

IoT Application 1

(a) An IoT application and its candidate
configuration

(1,2) (2,2) (3,1)V1,1

V1,2

V1,3

𝑿𝒏
𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑IoT Device 1

IoT Application 1

𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 1,2 , (2,2))
V1,1 V1,2

(1,2) (2,2)𝒙𝟏,𝟏 𝒙𝟏,𝟐
𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 1,2 , (2,2)) = 𝑒1,1,2𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝 + 𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 2,1 , (2,2))

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 2,1 , (2,2)) = 𝑒1,1,2𝑑𝑠𝑖𝑧𝑒𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 2,2 , (2,2))

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 2,2 , (2,2)) = 0

𝑁𝑆1

𝑁𝑆7
𝑁𝑆3

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,2𝑑𝑠𝑖𝑧𝑒 , 1,2 , (2,2)) = 𝑒1,1,2𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝(1,2) +
𝑒1,1,2𝑑𝑠𝑖𝑧𝑒𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟(2,1) + 0

1

1

2

2

1 2&

(b) Transmission time for the data flow e1,1,2

(1,2) (2,2) (3,1)V1,1

V1,2

V1,3

𝑿𝒏
𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑IoT Device 1

IoT Application 1

𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 1,2 , (3,1))
V1,1 V1,3

(1,2) (3,1)𝒙𝟏,𝟏 𝒙𝟏,𝟑
𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 1,2 , (3,1)) ⇒ 𝑒1,1,3𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝 + 𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 2,1 , (3,1))

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 2,1 , (3,1)) ⇒ 𝑒1,1,3𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝 + 𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 3,1 , (3,1))

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 3,1 , (3,1)) = 0

𝑁𝑆1

𝑁𝑆7
𝑁𝑆1

⇒ 𝛾𝑡𝑟𝑎(𝑒1,1,3𝑑𝑠𝑖𝑧𝑒 , 1,2 , (3,1)) = 𝑒1,1,3𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝(1,2) +
𝑒1,1,3𝑑𝑠𝑖𝑧𝑒𝐵𝑢𝑝(2,1) + 0

1

1

2

2

1 2&

(c) Transmission time for the data flow e1,1,3

Figure 3: A example of calculating transmission time based on a candidate configuration

which vn,i and vn,j are placed. It is calculated similar to the
transmission time. To reduce the equation size, we consider
((h, i), (h′, i′)) = A.

γlat(A) =























latup + γlat(A′), NSTi(A) = NST1|NST4|NST6

latdown + γlat(A′), NSTi(A) = NST2

latcluster + γlat(A′), NSTi(A) = NST3|NST5

0, NSTi(A) = NST7

(17)

where latup, latdown, and latcluster correspond to up-link,

down-link, and cluster-link inter-nodal latency respectively,

and depends on the hierarchical level of servers. Besides, A′

is defined as what follows:

A′ = ((h
′′

, i
′′

), (h′, i′)) (18)

The Eq. 18 shows the destination server (i.e., (h′, i′)) of A′

is exactly the same as A, and the only difference is the spec-

ification of the source server (h
′′

, i
′′

) which is obtained from

the output of NST (A). The NST (A) performs exactly the

same as NST (H) (i.e., Eq. 13) to find the next intermediate

server, and all equation from Eq. 13 to Eq. 15 are valid here.

b) Energy consumption model: The goal of this model

is to find a suitable placement configuration of application

modules to minimize the energy consumption of the nth IoT

device. To only consider energy consumption model as the

main objective, the control parameters of weighted cost model

(Eq. 2) can be set to w1 = 0 and w2 = 1.

Θ(Xn, t) =



















E(xn,j), if |SchSn,t| = 1 (a)

max(E(xn,j)), otherwise
(b)

∀xn,j ∈ Xn|vn,j ∈ SchSn,t

(19)

where |SchSn| shows the number of schedules, and Θ(Xn, t)
represents the energy consumption of modules in the tth

schedule while considering the placement configuration Xn.

The overall energy consumption of each module (i.e., vn,j)

based on its candidate configuration (i.e., xn,j) is defined as

the sum of energy consumed for inter-nodal latency between

servers (Elat
xn,j

), the computing of each module (Eexe
xn,j

), and

the data transmission between vn,j and all of its predecessor

modules (Etra
xn,j

). It is formulated as:

E(xn,j) = Eexe
xn,j

+ Elat
xn,j

+ Etra
xn,j

(20)

The computing energy consumption for module vn,j de-

pends on its assigned server and can be derived from:

Eexe
xn,j

=

{

T exe
xn,j

× Pcpu, if xn,j = (h, i) & h = 0

T idle
xn,j

× Pi, if xn,j = (h, i) & h 6= 0
(21)

Because only the energy consumption of IoT devices is

considered in this work, whenever application modules run on

remote servers, the energy consumption of IoT device is equal

to the idle time T idle
xn,j

multiplied to the power consumption of

IoT device in its idle mode Pi. Besides, Pcpu is the CPU power

of the IoT device on which the module vn,j runs.

The energy consumption for data transmission between the

module vn,j and its predecessors P(vn,j) of the application

belonging to the nth IoT device is calculated as follows:

Etra
xn,j

= max(ϑtra(edsizen,i,j , (h, i), (h
′, i′))), (22)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where, to reduce the length of equations, we consider H =
(edsizen,i,j , (h, i), (h

′, i′)). Similar to response time model, (h, i)
and (h′, i′) show the specifications of source and destination
servers on which modules vn,i and vn,j runs, respectively.
The transmission energy consumption between each pair of

44 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

dependent modules (ϑtra(H)) is calculated as follows:

ϑtra(H) =























(
edsizen,i,j

Bup
× Pt) + (γtra(H′)× Pi), NSEi(H) = NSE1

(
edsizen,i,j

Bdown
× Pt) + (γtra(H′)× Pi), NSEi(H) = NSE2

γtra(H′)× Pi, NSEi(H) = NSE3

(23)

where Pt presents the transmission power of the IoT device,

and the NSEi shows transmission configuration based on H .

NSEi(H) =



























H′ = (edsizen,i,j , Par(h, i), (h′, i′)), if h < h′ & i = 1

h = 0,

H′ = (edsizen,i,j , (h, i), Par(h′, i′)), if h > h′ & i = 2

h′ = 0,

H′ = H, otherwise, i = 3
(24)

NSE1 states the data flow is starting from an IoT device

as the source server to remote servers as destination. Hence,

the respective transmission energy consumption is equal to

the required time to send the data to the parent server of

IoT device multiplied by Pt, plus the IoT device’s idle time

(in which the data is transmitted from parent server to the

destination) multiplied by Pi. Moreover, NSE2 represents the

invocation starting from remote servers as the source to the

IoT device as the destination. It is important to note that the

transmission power of IoT device Pt is active only if one

of the modules is assigned to the IoT device and another

module run on the remote servers, because we only consider

the energy consumption from the IoT device’s perspective. In

other conditions, the transmission energy consumption is equal

to the transmission time γtra (obtained from Eq. 10), in which

the IoT device is in idle mode, multiplied by Pi (NSE3).

The inter-nodal energy consumption Elat
xn,j

between servers

on which module vn,j and its predecessors P(vn,j) are placed

is calculated as:

Elat
Xn,j

= max(ϑlat((h, i), (h′, i′))), (25)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where ϑlat shows the energy consumption incurred due to

inter-nodal delay between source and destination servers on

which vn,i and vn,j are placed. This latter is calculated similar

to transmission energy consumption based on the NSEi(A)
[33], [2]. To reduce the equation size, ((h, i), (h′, i′)) = A.

ϑlat(A) = γlat(A)× Pi (26)

where the γlat(A) is obtained from Eq. 17.

2) Migration weighted cost model: We assume that the

migration of modules belonging to the nth IoT device from

current servers to new servers only happens due to the mobility

of IoT devices. We consider pre-copy memory migration in

which the current servers still running while transferring pre-

dump to the new servers [13], [31]. The goal of migration

cost model is to minimize the the downtime plus required

cost of executing remaining instructions on the new servers.

The migration weighted cost model is defined as:

min
w1,w2∈[0,1]

Ψmig((Xn, X
′
n), t), ∀t ∈ |SchSn|, ∀n ∈ {1, 2, · · · , N}

(27)
where

Ψmig((Xn, X
′
n), t) = w1×Γmig((Xn, X

′
n), t)+w2×Θmig((Xn, X

′
n), t)
(28)

s.t. C1 :

|SchSn|
∑

t=1

Ψ(X′
n, t) ≤

|SchSn|
∑

t=1

Ψ(Xn, t) + ǫ (29)

where Γmig((Xn, X
′
n), t) and Θmig((Xn, X

′
n), t) represent

the additional time and energy consumption incurred by the

migration of modules of tth schedule in the downtime (when

the service is interrupted). The C1 states the service cost for

tasks emitted from modules of nth IoT device in the new

configuration X ′
n should be less or roughly the same while

considering the previous configuration Xn. The ǫ shows an

acceptable additional service cost in the migration. Moreover,

constraints C1, C2, and C3 from Eq. 1 are valid here as well.

a) Migration time model: The migration time is con-

sidered as the execution time required to finish remaining

instructions on the new servers plus the downtime. This latter

includes the time for suspending the Cnts in current servers,

transmission of the dump and states, and Cnts’ resuming time

on the new servers. Since, in the downtime, a specific amount

of dump data and states should also be transferred between

servers (dsizemig), the migration latency γlat
mig((h, i), (h

′, i′))
and migration transmission time between current and new

servers γtra
mig(dsize

mig, (h, i), (h′, i′)) to transfer this data are

also important [31]. Besides, the Cnts’ stopping time plus

its resuming time are considered as a constant Imig . The

migration time is defined as:

Γmig((Xn, X
′
n), t) = Max(γmig(xn,i, x

′
n,i)), (30)

∀xn,i ∈ Xn, ∀x
′
n,i ∈ X ′

n|vn,i ∈ SchSn,t,

xn,i = (h, i), x
′

n,i = (h′, i′)

where

γmig(xn,i, x
′
n,i) = γlat

mig((h, i), (h
′, i′)) + Imig

+γtra
mig(dsize

mig, (h, i), (h′, i′)) +
e
ins,r
n,i,j

cpu(x′
n,i)

(31)

where γmig(xn,i, x
′
n,i) represents the migration cost of module

vn,i from its current server xn,i to its new server x′
n,i. The

γtra
mig and γlat

mig are calculated based on 10 and 17, respec-

tively. Also,
e
ins,r
n,i,j

cpu(x′
n,i)

shows the execution time of remaining

instructions of task e
ins,r
n,i,j on the new server (h′, i′).

b) Migration energy consumption model: The addi-

tional energy consumption of IoT device, incurred by the

migration, depends on the execution of remaining instructions

and the downtime.

Θmig((Xn, X
′
n), t) = Max(ϑmig(xn,i, x

′
n,i)), (32)

∀xn,i ∈ Xn, ∀x
′
n,i ∈ X ′

n|vn,i ∈ SchSn,t,

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 45

xn,i = (h, i), x
′

n,i = (h′, i′)

where

ϑmig(xn,i, x
′
n,i) = ϑlat

mig((h, i), (h
′, i′)) + Imig

+ϑtra
mig(dsize

mig, (h, i), (h′, i′)) + ϑexe
mig(x

′
n,i) (33)

where ϑmig(xn,i, x
′
n,i) represents the amount of energy con-

sumed by the IoT device in the migration of each module of

application from its current server xn,i to its new server x
′

n,i.

The ϑtra
mig and ϑlat

mig represent the energy consumption incurred

due to the transmission and migration latency between current

and new servers. They are calculated based on 23 and 26,

respectively. Also, the ϑexe
mig(x

′
n,j) shows the energy consump-

tion required for the execution of remaining instructions of

task e
ins,r
n,i,j on the new server (h′, i′).

ϑexe
mig(x

′
n,i) =















e
ins,r
n,i,j

cpu(x′
n,i

)
× Pcpu, if x′

n,i = (h′, i′) & h′ = 0

e
ins,r
n,i,j

cpu(x′
n,i

)
× Pi, if x′

n,i = (h′, i′) & h′ 6= 0

(34)

C. Optimal Decision Time Complexity

We assume M servers exist in the hierarchical fog/edge

computing environment and the maximum number of mod-

ules in each IoT application is K. Each module of an IoT

application can be assigned to one of the M candidate servers

at a time. Hence, for an IoT application with K modules, the

Time Complexity (TC) of finding the global optimal solution

for the application placement and the migration is O(MK).
This cost is prohibitively high and prevents us from obtaining

the global optimal solution in real-time [34]. Hence, we

propose distributed algorithms to find an acceptable solution

in a polynomial time for application placement and migration

techniques in hierarchical fog computing environments.

IV. PROPOSED TECHNIQUE

In this section, we present a fog server architecture to sup-

port distributed application placement, migration management,

and clustering (as depicted in Fig. 4) by extending the fog

server architecture proposed in [1]. Each FS in [1] is composed

of three main components: controller, computational, and com-

munication. We extend this architecture to support clustering

and mobility management of IoT users in a distributed manner.

In our FS architecture, the Controller Component mon-

itors and manages the Communication and Computational

Components. It consists of three decision engine blocks and

several meta-data blocks to store important information. The

Clustering Engine is responsible for forming a distributed

cluster with its in-range FSs and updating CMs’ information in

the Cluster Info and Routing Info meta-data. The Application

Placement Engine is responsible for placement of IoT appli-

cations’ modules to minimize the overall cost of running real-

time IoT applications. It checks Cluster Info, Resource Info,

and Routing Info meta-data for making placement decision,

and updates the Placement Info and Resource Info meta-data

blocks to store the configuration of application modules and

available resources in this FS, respectively. The Migration

Containerized Module

Containerized Module

Containerized Module

Containerized Module

Application

Placement

Engine

Clustering Engine

Migration Management Engine

Decision Engines

Meta Data

M
o

b
il

it
y

In
fo

C
lu

st
er

In
fo

P
la

ce
m

en
t

In
fo

R
es

o
u

rc
e

In
fo

R
es

o
u

rc
e

In
fo

R
o

u
ti

n
g

In
fo

Controller Component

Fog Server

Communication

Component

Computational

Component

Figure 4: A view of fog server architecture

Management Engine of each FS controls migration process

of applications’ modules when IoT users move. This module

considers all meta-data blocks including the current mobility

information of the users (i.,e Mobility Info), and decides the

migration destination of application modules. Based on its

decision, Placement Info and Resource Info will be updated to

store last changes in the configuration of application modules.

The Computational Component provides resources for the

execution of application modules that are assigned to this FS

based on the container technology. Besides, the Communica-

tion Component is responsible for network functionalities such

as routing and packet forwarding, just to mention a few [1].

A. Dynamic Distributed Clustering

Since FSs usually have fewer resources in comparison to

CSs, one FS may not be able to provide service for all

modules of one application. Moreover, in some scenarios,

several IoT devices are connected to the same FS, and hence,

the FS may not be able to serve all application modules of

different IoT devices due to its limited resources. Thus, other

modules of one application should be placed on either CSs or

higher-level FSs for the execution. However, in a hierarchical

fog computing environment, in which the potential clustering

of FSs is considered, application modules can be placed or

migrated to other FSs in the same cluster. It can reduce the

placement and migration cost of application modules.

We consider that FSs belonging to the same hierarchical

layer can form a cluster by any in-range FSs at the same

hierarchical level and swiftly communicate together using the

Constrained Application Protocol (CoAP), Simple Network

Management Protocol (SNMP), and so forth. Therefore, the

communication delay within a cluster is lower than communi-

cation using up-link and down-link [1]. Besides, in a reliable

IoT-enabled system, it is expected that the fog infrastructure

providers have applied efficient networking techniques to

ensure steady communication among the FSs through less

variable inter-nodal latency [1]. Algorithm 1 provides an

overview of the dynamic distributed clustering technique.

46 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

When an FS joins the network, it receives and stores

CandidParent control messages from FSs residing in the

immediate upper layer. The new FS finds coordinates of its

position and estimates the average latency to all candidate

parents. It selects the FS with the minimum distance as its

parent and sends an acknowledgment to it using ParentSelec-

tion method. Moreover, the new FS broadcasts a FogJoining

control message, containing its position and coverage range, to

its one-hop neighbors (lines 2-7). FSs receiving this message

send back a replyNewFog control message with their list of

active and inactive Cnts, positions’ specifications, and their

coverage range to the new FS. Besides, they update their CM

list Listcl with specifications of this new FS (lines 8-14).

As the new FS receives replyNewFog message, it builds its

CM list Listcl with specifications of FSs residing in the same

hierarchical layer. Alongside storing lists of active and inactive

Cnts of its CMs, positions, and their coverage range (lines

15-21). This distributed mechanism helps FSs to dynamically

update their CM lists when a new FS joins the network.

We consider that each FS can leave the network in normal

conditions (e.g., when the low-level FS is switched off by

its user) or due to a failure (such as hardware or software

failures). Before an FS leaves the network in normal conditions

either permanently or temporarily, we assume that all of its

assigned tasks should be finished. Hence, it only needs to

send StartFogLeaving control message to its CMs to update

the Listcl of themselves, to its parent server, and to its

children to find a new parent (lines 22-25). All FSs that receive

FogLeaving control message remove all information related to

this FS from their entries. Also, the children of the leaving

FS that receive this control message call the ParentSelection

method to update their parent (lines 26-32). In case of a fatal

error, in which the leaving FS cannot send a control message

to the parent, CMs, and children, its immediate parent runs the

StartFogFailureRecovery and sends FogFailureRecovery con-

trol message to its children list Listch so that they can remove

entries related to the failed FS (lines 33-39). It is important to

note that this latter process takes more time in comparison to

the FogLeaving process in normal conditions due to the higher

latency of uplink and downlink communications. Besides, if

any FS children loose their connection to their parent, they

can run the ParentSelection method to choose a new parent.

In addition, each FS sends the latest information about its

Listch to its parent FS if any changes happen. This helps

higher-level FSs update their Ω.

B. Application Placement

Due to the time consuming nature of finding the optimal

solution (Section III-C) for the application placement prob-

lem, a Distributed application placement technique (DAPT)

is proposed to find a well-suited solution in a distributed

manner (Algorithm 2). The DAPT starts whenever an appli-

cation placement request arrives, and the serving FS tries to

place application modules on appropriate servers so that real-

time tasks, emitted from modules, can be processed with the

minimum cost. Considering the weighted cost (Eq. 1), DAPT

Algorithm 1: Dynamic distributed clustering

Input : RCM : Received Control Message

1 switch RCM do

2 case CandidParent do

3 ParentSelection()

4 message.add(getPosition(),coverRange)

5 message.type(FogJoining)

6 Broadcast(message)

7 end

8 case FogJoining do

9 message.add(getPosition(),coverRange)

10 message.add(getActiveCnts(),getInactiveCnts())

11 message.type(ReplyNewFog)

12 send(RCM .getSourceAddr(), message)

13 Listcl.update(RCM .getData())

14 end

15 case ReplyNewFog do

16 Listcl.update(RCM .getData())

17 MapActiveCntcl.put(RCM .getSourceAddr(),

18 message.getListActiveCnts())

19 MapInActiveCntcl.put(RCM .getSourceAddr(),

20 message.getListInActiveCnts())

21 end

22 case StartFogLeaving do

23 message.type(FogLeaving)

24 Broadcast(message)

25 end

26 case FogLeaving do

27 Listcl.remove(RCM .getSourceAddr())

28 Listch.remove(RCM .getSourceAddr())

29 if RCM .getSourceAddr() == this.Parent) then

30 ParentSelection()

31 end

32 end

33 case StartFogFailureRecovery do

34 for i = 1 to Listch.size() do

35 message.type(FogFailureRecovery)

36 message.setFailedFog(failedFog.getAddr())

37 send(Listch.get(i).getSourceAddr(),message)

38 end

39 end

40 case FogFailureRecovery do

41 Listcl.remove(RCM .getFailedFogAddr())

42 end

43 end

attempts to place modules of IoT applications in one/several

FSs on the lowest-possible layer while considering the poten-

tial of clustering. However, if available resources in that/those

FSs are not sufficient, it considers upper layer FSs or/and CSs

to place the rest of modules. In this way, DAPT reduces the

search space of Eq. 1 for each FS by only considering itself,

its parent FS, and its CMs, and aims at reducing the overall

weighted cost. Moreover, a distributed failure recovery method

is embedded in DAPT to recover from possible failures.

The immediate FS that receives the placement request from

an IoT device is considered as the application placement

controller (controller) for that IoT device. If the controller is

performing the placement of a set of modules or a parent FS

receives placement request from its children and the failure

recovery mode is not active (lines 3-28), the ClusterCheck

method returns the list of CMs and their available resources

(line 4). Then, the list of ready servers SR containing parent

FS, current FS, and available CMs is created (line 5). This list

contains all servers that current FS considers for the placement

of modules in that hierarchical layer. Next, the FindOrder

method checks either topological order of modules (TOn) are

available or not. If it is not available, it considers the DAG

Gn of nth IoT application, and using the Breadth-First-Search

(BFS) Algorithm finds topological order of all modules, and

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 47

Algorithm 2: An overview of DAPT

Input : Gn: The DAG of nth IoT device, UGn : A subset of unassigned

modules from Gn, Xn: The configuration of assigned modules,

controllerID : ID of the placement controller

Output : Xn

1 sID : this.ID

2 Listcl: this.getClusterMembers()

3 if (controller(n) || ReqFromChild) & !DAPTFailureRecovery(n) then

4 ListAcl=ClusterCheck(Listcl)

5 SR=ReadyServers(ListAcl,this.parent,sID)

6 SchSn=FindOrder(Gn)

7 U(Gn)=Sort(U(Gn), SchSn)

8 if SR − Par(sID) 6= ∅ then

9 for i = 1 to UGn .size() do

10 v=U(Gn),i

11 IDmin=FindMinCost(SR,Gn,Xn,v)

12 if IDmin == sID then

13 resv=CalService(v)

14 if this.Cnts.contains(v) & then

15 ScaleCnts(v,resv)

16 else

17 StartCnt(v)

18 end

19 UpdateConfig(Xn,v,sID)

20 end

21 else

22 ReqList.update(v,IDmin)

23 end

24 end

25 PlaceReqToServers(ReqList,Gn,Xn,SR,TOn,SchSn)

26 else

27 PlacePar(Gn,UGn ,Xn,TOn,SchSn)

28 end

29 else if !controller(n) & !DAPTFailureRecovery(n) then

30 for i = 1 to UGn .size() do

31 v=U(Gn),i

32 resv=CalService(v)

33 if this.Cnts.contains(v) & resv ≤ this.Resource then

34 ScaleCnts(v,resv)

35 UpdateConfig(Xn,v,sID)

36 NotifyController(v, sID ,controllerID)

37 else

38 if resv ≤ this.Resource then

39 StartCnt(v)

40 UpdateConfig(Xn,v,sID)

41 NotifyController(v, sID ,controllerID)

42 else

43 SendDAPTFailureRecovery(n,v,controllerID ,sID)

44 end

45 end

46 end

47 else

48 DAPTFailureRecovery(n,v,SR,Xn)

49 end

creates SchSn (line 6). This latter helps to identify modules

that do not have any dependency and can be executed in

parallel. Then, Sort method defines priority value for modules

that can be executed in parallel (i.e., modules with the same

topological order) based on non-increasing order of their rank

value (line 7). The rank of each module is defined as:

Rank(vn,j) =























Cexe
n,j +max(Ctra

n,j,z +Rank(vn,z)) if vn,j 6= exit

∀vn,z ∈ Succ(vn,j),

Cexe
n,j , if vn,j = exit

(35)

where Cexe
n,j shows the average weighted execution cost of

module vn,j , and Ctra
n,j,z depicts the transmission cost of

module vn,j and vn,z , which are calculated as:

Cexe
n,j = w1 × ˜T exe

xn,j
(SR) + w2 × ˜Eexe

xn,j
(SR) (36)

Ctra
n,j,z = w1 × ˜γtra

n,j,z(SR) + w2 × ˜ϑtra
n,j,z(SR) (37)

where ˜T exe
xn,j

(SR) and ˜Eexe
xn,j

(SR) show the average execu-

tion time and energy consumption of each module consid-

ering available servers in the SR. The execution time T exe
xn,j

and energy consumption Eexe
xn,j

of each module per server

are obtained from Eq. 8 and Eq. 21 respectively. Besides,
˜γtra

n,j,z(SR) and ˜ϑtra
n,j,z(SR) shows the average transmission

time and energy consumption between modules vn,j and vn,z
considering available servers in the SR. The transmission time

γtra
n,j,z and transmission energy consumption ϑtra

n,j,z between

each pair of servers in the SR can be obtained from Eq. 10

and Eq. 23, respectively. Moreover, w1 and w2 are control

parameters to tune the weighted cost. The rank is calculated

recursively by traversing the DAG of application, starting from

the exit module. The Sort method can find the critical path of

the DAG and gives higher priority to the modules that incur

higher execution cost among modules that can be executed in

parallel. Hence, the probability of placement of these modules

on lower-level FSs increases. This latter is important since the

resources of lower-level FSs are limited compared to higher-

level FSs, but they can be accessed with less communication

cost. Hence, if modules are more communication and latency-

sensitive, they can be placed on lower-level FSs with higher

priority while if they are computation-intensive modules, that

cannot be efficiently executed on the lower-level FSs, they

can be forwarded to higher-level FSs with higher priority.

If SR contains any candidate server except its parent, for

each module v of UGn
, the FindMinCost receives the SR, Gn,

and configuration Xn, as its input and finds the minimum

cost for the execution of the module v based on current

solution configuration Xn (i.e., based on the assigned servers’

configuration to the predecessors of this module). Although

in fog computing environments, a large number of FSs are

deployed as candidate servers, the DAPT only considers FSs

in the SR, to which the serving FS can communicate with the

lowest possible transmission and inter-nodal cost. Moreover,

we assume that FSs do not have a global view of all FSs in the

environment. Therefore, the search space in each hierarchical

layer is reduced while the suitable candidate servers for real-

time and latency-sensitive IoT applications are kept. After

prioritizing modules, the execution cost of each module based

on the available servers in SR is calculated using FindMinCost

method. This method checks the available resources required

to run or scale the Cnts to run these modules on available

servers. Then, among the servers that meet these requirements,

it returns the ID of the selected FS, IDmin, that can execute

module v while minimizing the overall application cost using

Eq.1 (line 11). If the current FS is selected, and it has active

Cnt, the ScaleCnt method scales the resources so that it can

serve this module (line 15). If there is no active Cnt in this

FS, it should run a new Cnt, which incurs a Cnt startup cost

(line 17). The candidate solution configuration Xn is updated

accordingly so that the new configuration can be considered

48 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

for the placement of the rest of the modules (line 19). If the

selected FS is among the CMs or parent FS, the module v and

its corresponding assigned server are stored in the request list

ReqList (line 22) so that it can be forwarded to their destina-

tion using the PlaceReqToServers (line 25). This method sends

modules to assigned serves along with the topological order

of this IoT application TOn, schedules SchSn, and current

solution configuration Xn. Finally, in a case that the SR is

empty, meaning that the current controller does not have any

resources and also it does not have any candidate servers with

sufficient resources, it sends all modules to the parent FS so

that the placement can be started in the higher hierarchical

levels by means of the PlacePar method (line 27). If the

parent FS receives the placement request from its children,

it checks the possibility of placement of received modules on

its SR. The background reason is if one FS receives some

modules for placement from its children FSs, it means that

those modules are either more computation-intensive rather

than latency/communication-intensive, or the children FSs did

not have sufficient resources for these modules. However, if

one FS receives a placement request from its CMs, it starts

the deployment of modules on the condition that the available

resources meet the modules’ requirements.

If serving FS is not the controller FS and the failure recovery

mode is not active (i.e, the placement request is forwarded to

CMs), it iterates over the received modules (i.e., UGn
) and

calculates the required amount of resources for each module

CalService(v). If it has enough resources, it starts the module,

and using NotifyController method sends an acknowledgment

for the controller FS. However, if due to any problem this FS

cannot place this module, it runs SendDAPTFailureRecovery

method, which sends a failure message to the controller FS so

that the controller can make a new decision (lines 29-47).

If failure recovery mode is active, it means that one or sev-

eral servers cannot properly execute assigned modules. Hence,

the DAPT algorithm calls DAPTFailureRecovery method. This

method receives failed modules of nth IoT application and

finds corresponding FSs from the solution configuration Xn. If

it has several candidate servers in SR, it removes specification

of the failed FS from SR. Then, it iterates over the rest of

available servers to finds FSs for these modules that minimize

the execution cost. However, if the current FS only has

its parent sever in the SR, DAPTFailureRecovery sends a

control message to activate DAPTFailureRecovery method of

the parent FS. (line 48). It helps to check the possibility of

placement of these modules in higher hierarchical layers.

C. Migration Management Technique (MMT)

As the user of nth IoT device is moving away from its cur-

rent low-level FS (i.e., its controller FS) to a new low-level FS,

the current controller FS should initiate the migration process

to find a new controller FS, and migrate the current data and

states of running Cnts to new FSs. We suppose IoT devices

can detect distributed low-level FSs (eg., using beacons, GPS,

etc) and update their list of sensed FSs ListnSFog periodically.

Whenever the controller FS realizes that the IoT device n

is about to leave (e.g., through the received signal to noise

ratio), it receives ListnSFog from the IoT device and initiates

the migration process. The goals of the migration management

technique (MMT) is to 1) find a new controller FS with the

maximum sojourn time for the IoT device and 2) find a set of

substitute servers for processing of IoT application’s modules

while minimizing the migration cost (Eq. 27). The Algorithm

3 shows an overview of the distributed migration process.

Whenever a controller FS realizes the nth IoT device is

about to leave its coverage range, it initiates MigrationIni-

tiate to find a new controller FS for the IoT device. The

current controller FS receives the list of sensed low-level FSs

ListnSFog from nth IoT device and removes its sID from

this list so that it cannot be selected as a new controller FS

(line 4). The mobility information of each user mobInfo(n)

contains its average speed and its direction. Moreover, in the

clustering technique, each FS learns the position and coverage

ranges of its CMs. Considering the aforementioned values,

the controller FS can estimate the sojourn time of this IoT

device for each CM. The MobilityAnalyzer method (line 5)

receives mobInfo(n) and ListnSFog and checks whether the

ListnSFog contains any CMs of the current FS controller.

Moreover, it finds specifications of other FSs belonging to

ListnSFog through its CMs, if possible. The MobilityAnalyzer

then creates two separate lists for reachable FSs (Listreach)

and unreachable FSs (Listunreach) from ListnSFog . The for-

mer one contains any FSs of ListnSFog which are among CMs

of the current controller FS or those that can be accessed

through its CMs, while the latter one refers to FSs to which the

controller FS does not have access either directly or through

its CMs. The MobilityAnalyzer method gives higher priority

to FSs of Listreach because the required information for the

new controller to start its procedures can be more efficiently

transferred to these FSs compared to those FSs to which it does

not have direct access. The MMT considers resources of FSs

belonging to Listreach, and if they have enough resources

to serve modules that are currently assigned to the current

controller FS, it estimates the sojourn time of nth IoT device

for those candidate FSs. Then, it returns the ID of the FS with

sufficient resources and the maximum estimated sojourn time.

It is important to note that assigning the controller role to a

new FS with maximum sojourn time can reduce the number

of possible future migrations, which leads to fewer service

interruptions due to migration downtime. On the condition

that no FSs of Listreach contains enough resources, it returns

the ID of FS with the maximum sojourn time. However, if

Listreach is empty, this method returns the ID of one of the

FSs from Listunreach randomly. Then, current controller FS

sends a NewControllerReq message to destID, containing the

DAG of nth IoT device application Gn, mobilityInfo(n), and

the current configuration of assigned servers Xn (lines 7-9).

When an FS receives NewControllerReq message, it adds

the IoT device n to its controllerList to serve this IoT device

as its new controller FS (lines 11-12). This new controller FS is

responsible for the rest of migration management. It retrieves

the current configuration Xn and the previous controller ID,

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 49

Algorithm 3: Migration Management Technique

Input : RCM : Received Control Message, Gn: The DAG of nth IoT

device, mobInfo(n): The mobility data of the IoT device n,

Xn: The configuration of assigned modules, controllerID : ID

of the controller, ListnSFog : Sensed fog devices’ List of IoT

device n
1 switch RCM do

2 case MigrationInitiate do

3 ListnSFog=ListnSFog .remove(sID)

4 destId=MobilityAnalyzer(n,mobInfo,Listcl,ListnSFog)

5 message.add(Gn,mobInfo(n),Xn,TOn,SchSn)

6 message.type(NewControllerReq)

7 send(destID ,message)

8 controllerpre(n)=true

9 end

10 case NewControllerReq do

11 n=RCM.getIoTDevice

12 getcontrollerList().add(n)

13 Xn=RCM.getConfig(n)

14 IDPreCon=RCM.getSourceAddr()

15 ListsortedCnts =SortCntsSize(Gn, Cntsram)

16 MapServerpre=FindPreServersConfig(Xn)

17 for t = 1 to |SchSn| do

18 sendMigReqToServers(MapServerpre,ListsortedCnts ,SchSn.t)

19 WaitForServersNotifications()

20 end

21 end

22 case MigrationReq do

23 ReqInfo=RCM.getInfo()

24 Modules= ReqInfo.getModules()

25 SR=ReadyServers(this.getCMs(),this.getID(),this.getChildren())

26 if !SR.isEmpty() then

27 for i = 1 to Modules.size() do

28 SortedCostList=∅
29 for j = 1 to SR.size() do

30 MigCostTemp=CalMigCost(Modulesi,SR,j)

31 CostList.update(SR,j ,MigCostTemp)

32 end

33 SortedCostList=Sort(CostList)

34 ServerID=FindMigrationDestination(SortedCostList)
35 sendMigrationDestination(Modulesi,Xn,ServerID)

36 end

37 end

38 else

39 SendMigReqToServers(this.Parent(),ReqInfo)

40 end

41 end

42 case MigrationDestination do

43 v=RCM.getModule()

44 resv=calService(v)

45 if resv ≤ this.resources then

46 sendMigrationStart(v,FSv
pre,FSv

new)

47 UpdateConfig(Xn,v,sID)

48 NotifyController(v,sID ,controllerID)

49 else

50 SendMMTFailureRecovery(n,v,controllerID ,sID)

51 end

52 end

53 case StartMigration do

54 Migrate(v,RCM.FSv
new)

55 UpdateResoure(v)

56 if controllerpre(n) & MigrationFinish(n) then

57 controllerpre(n)=false

58 getControllerList().remove(n)

59 end

60 end

61 case MMTFailureRecovey do

62 MMTFailureRecovery(n,v,controllerID ,sID)

63 end

64 end

IDPreCon, from the received message RCM (lines 13-14).

The SortCntsSize method descendingly sorts Cnts based on

their allocated runtime Ram Cntsram (line 15). The back-

ground reason is the amount of dump and state to be trans-

ferred in the downtime is directly related to Cntsram [31]. The

migration of Cnts with larger Cntsram incurs higher cost in

terms of migration time and energy (Eq. 27). Hence, to reduce

the total migration cost, MMT gives higher priority to modules

with heavier Cntsram so that the migration decision can be

made sooner, and they can be migrated before other mod-

ules. Next, FindPreServersConfig method retrieves assigned

servers’ specifications for all application modules and stores

them in MapServerpre (line 16). The migration cost (Eq. 27)

is defined as the maximum migration cost for each application

module while considering Xn and its new configuration X ′
n.

The goal is to minimize this migration cost while it is subject

to the condition that the new configuration X ′
n provides better

application execution cost or roughly the same with previous

configuration Xn (Eq.29). So, the MMT retrieves modules of

each schedule based on SchSn and send their corresponding

information alongside MapServerpre and ListsortedCnts to send-

MigReqToServers method. It creates a list of modules based

on the hierarchical layer on which modules are previously

assigned. Modules of each hierarchical layer are also sorted

based on allocated Ram size, obtained from ListsortedCnts . This

method sends MigrationReq messages alongside respective

modules’ information to FSs that are responsible for making

the migration decision. As MMT acts in a distributed manner

and FSs at each layer only has information about their parent,

children, and CMs, migration decisions for modules of each

layer are made by the new controller, its parent, or ancestors

in the hierarchy. To illustrate, considering Fig. 1, we assume

an IoT application has three modules in one of its schedules

and two of them were previously assigned on FS (1,3) (prior

controller), and one on FS (2,1). If we assume that the

new controller is FS (1,4), it makes migration decision for

modules that previously assigned on FS (1,3) while par(1, 4)
(i.e., FS (2,3)) makes migration decision for the module that

previously assigned on FS (2,1). After sending migration

requests migrationReq, FS (1,4) waits to receive notifications

and new configuration of modules for that schedule and then

iterates over next schedules (lines 17-20).

When an FS receives MigrationReq message, the FS re-

trieves the information and forwarded modules from the re-

ceived message (lines 23-24). Then, the list of ready servers

SR is created based on CMs, and children. If the SR does not

contain any available servers, all the modules are forwarded to

the parent FS for making migration decision (line 39), while

if it contains servers, it tries to minimize the migration cost

based on the specification of available servers (line 26-37).

This FS considers a list of modules, sorted descendingly

based on Cntsram, for making migration decision. Hence,

the migration of modules that incur higher migration costs

in each schedule is performed with higher priority, leading

to less overall migration costs in that schedule. Then, for

each selected module, the migration cost is estimated and

stored in the CostList (line 29-32). The Sort method sorts

the migration costs ascendingly so that servers with lower

migration cost receives higher priority (line 33). Then, the

FindMigrationDestination method selects a new server for

the module, considering SortedCostList, which minimizes

the migration cost while it does not negatively affect the

application’s running cost. Hence, this method iterates over

50 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

SortedCostList, sorted ascendingly based on the migration

costs, and selects the server that satisfies the Eq. 29 (line

34). Finally, the sendMigrationDestination method sends a

MigrationDestination message to the selected FS to check

its resources and start the migration of the respective module.

The FS receiving MigrationDestination checks whether it

has enough resources to serve the module v or not (lines 42-

44). If this FS can serve the module v, it sends a StartMigra-

tion message to the FSv
pre so that it can start the migration.

Then, it updates the Xn with its sID and notifies the controller

(lines 45-468). If it cannot serve this module due to any reason,

it runs the SendMMTFailureRecovery method to send a failure

message to the controller FS (lines 49-51).

The MMTFailureRecovey is working as the same as DAPT-

FailureRecovey. The only difference is that the migration cost

in the MMT is obtained from Eq. 27 (lines 59-61).

Whenever an FS receives a StartMigration message, it starts

the migration and then frees the previously assigned resources

(lines 53-55). Moreover, if the FS was previously the controller

for the nth IoT device, and it finishes the migration of all

assigned modules belonging to that IoT device, the FS removes

the nth IoT device from its controllerList (lines 56-59).

D. Complexity Analysis

The Time Complexity (TC) of the clustering phase (Algo-

rithm 1) depends on the size of Listcl and Listch, and candi-

date parents in the immediate upper level for each FS. In the

worst-case scenario, if we assume all FSs reside in one cluster

and/or they have only one parent. Hence, the TC of remove

method belonging to the FogLeaving and FogFailureRecovery

is O(F), and the TC of the StartFogFailureRecovery is O(F).
Moreover, the TC of ParentSelection method of CandidParent

is O(F) in the worst-case scenario if we assume one FS has

F − 1 candidate parent. Hence, the TC of the clustering step

in the worst-case scenario is O(F). Moreover, in the best-case

scenario, the number of FSs in Listcl and/or the size of the

Listch is one, and the TC of the best-case is O(1).

To find the TC of DAPT (Algorithm 2), we suppose that the

size of the largest IoT application is K. So, in the worst-case

scenario, the size of UGn
is K. The FindOrder method finds

the topological order of the DAG using BFS algorithm with the

TC of O(K+ |E|), in which |E| represents the number of data

flows. In the dense DAG, the |E| is of O(K2). Moreover, the

TC of Sort Algorithm is O(FK2) in the worst-case scenario.

In the worst-case scenario, all FSs reside in one cluster and

have enough resources for any requests. Hence, the worst-case

TCs of ClusterCheck, ReadyServers, FindMinCost, and DAPT-

FailureRecovery are of O(F), O(F), O(FK), and O(FK),
respectively. Hence, the worst-case TC of DAPT Algorithm

is O(FK2 + FK). In the best-case scenario, the DAG of the

application can be sparse so that the TC of FindOrder and Sort

algorithms become O(K) and O(1), respectively. Moreover, in

the best-case scenario, the number of available servers in one

cluster is one, and hence, TCs of ClusterCheck, ReadyServers,

FindMinCost, and DAPTFailureRecovery are of O(1), O(1),

O(K), and O(K), respectively. So, TC of DAPT in the best-

case scenario is O(K).
The TC of the MigrationInitiate from Algorithm 3 depends

on the TC of MobilityAnalyzer. In the worst-case scenario, all

the FSs reside in one cluster and the IoT device can sense

all of them. So, the size of the list of sensed FSs ListnSFog

is equal to F . Hence, in the worst-case, the TC of creating

Listreach and Listunreach is of O(F 2) while in the best-

case scenario, it is of O(F) when there is only one FS in

the cluster. Moreover, the worst-case TC of finding maximum

sojourn time is O(F). So, the TC of MigrationInitiate in the

worst-case is O(F 2) while in the best-case, it is of O(F). The

TC of the NewControllerReq in the worst-case is O(KLogK+
FK) while TC of NewControllerReq in the best-case scenario

is O(KLogK) when there is only one FS in each cluster.

The TC of MigrationReq in the worst-case scenario depends

on the TCs of CalMigCost and Sort which are O(FK)
and O(FKLogF) while in the best-case scenario they are

O(K). The TC of MigrationDestination depends on the TC of

MMTFailureRecoverymig and is of O(F) at the worst-case

and O(1) in the best-case scenario. Therefore, the TC of the

MMT in the worst-case scenario is O(F 2+FK+KLogK+
FKLogF) while in the best-case scenario is O(KLogK).

Considering TCs of all methods, the TC of our technique in

the worst-case scenario is O(F 2 + FK2 + FKLogF) while

in the best-case scenario, it is O(F +KLogK).

V. PERFORMANCE EVALUATION

In this section, the system setup and parameters, and de-

tailed performance analysis of our technique, in comparison

to its counterparts, are provided.

A. System Setup and Parameters

We extended the iFogSim simulator [10] for the imple-

mentation and evaluation of distributed mobility management,

clustering, and failure recovery techniques. We used DAGs of

two real-time applications, namely the Electroencephalogra-

phy tractor beam game (EEGTBG) [10], [19] and ECG Mon-

itoring for Health-care applications (ECGMH) [9] to create

our DAGs. Both applications consist of a sensor and display

modules that are placed in the IoT device (e.g., smartphone,

wearable devices, etc). Other modules can be placed either on

distributed FSs or CSs based on the distributed application

placement decisions and/or the migration technique. Data

transmission intervals for ECG and EEG sensors are 10ms and

15ms, respectively [1], [10]. Besides, we assume the amount of

RAM allocated to each container at the runtime for state size is

randomly selected from 50-75 MBytes [31]. The total amount

of data to be transferred in the downtime (i.e., dsizemig) is

just a few MBytes [31], which is randomly selected from 5-

10% of each container’s allocated RAM in the runtime.

We simulate a 2km × 1km area, in which the coverage range

of FSs situated in the first and second layers is assumed to be

200m and 400m, respectively. The system consists of one layer

of IoT devices, three layers of heterogeneous FSs, and a layer

[1], [7], [9]. The IoT device layer consists of 80 IoT devices,

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 51

while the number of FSs in level 1, level 2, and level 3 are

30, 5, and 1, respectively. The computing power (CPU) of IoT

devices is considered as 500 MIPS [33], while the computing

power of level 1 FSs is randomly selected from [3000-4000]

MIPS [33], [19]. Besides, the total computing power of level

2 FSs, level 3 FSs, and CS are considered as 8000 MIPS,

10000 MIPS, and 80000 MIPS, respectively [7], [9]. Besides,

the latencies between IoT devices to level 1 FSs, level 1 FSs

to level 2 FSs, level 2 FSs to level 3 FSs, and level 3 FSs to

cloud servers are 5ms, 25ms, 50ms, and 150ms, respectively

[1], [9], [7]. The upstream and downstream network capacity

of IoT devices are 100 Mbps and 200 Mbps, respectively.

The upstream, downstream, and clusterlink network capacity

for FSs and the CSs are also considered to be 10 Gbps [7],

[9]. Moreover, clusters can be formed among the level 1 and

level 2 FSs with their in-range FSs of the same hierarchical

layer. The communication latency among the FSs residing in

level 1 clusters and FSs residing in level 2 clusters are [3-

5] ms and [20-25] ms, respectively [1], [9]. The processing

power consumption, idle power consumption, and transmission

power consumption of IoT devices are 0.9W, 0.3W, and 1.3W,

respectively [35], [2]. User trajectories are generated by a

variation of the random walk mobility model [27], [20], in

which each user selects a direction, chooses a destination

anywhere toward that direction, and moves towards it with a

uniformly random speed. The user arriving at the destination

can choose a new random direction.

Table III: Evaluation Parameters

Parameter Value

Simulation Time 100,200,300,400 (S)

Area 2km × 1km

Users’ Speed [0.5-4] m/s

Latency (ms)

ECG Sensor Data Transmission Interval 10

EEG Sensor Data Transmission Interval 15

ECG and EEG Sensor ↔ IoT Device 2

IoT Device ↔ Level 1 FS 5

Level 1 FS ↔ Level 2 FS 25

Level 2 FS ↔ Level 3 FS 50

Level 3 FS ↔ Cloud 150

L1 Clusters [3-5]

L2 Clusters [20-25]

B. Performance Study

We conducted seven experiments evaluating system size

analysis, average execution cost of tasks, cumulative migra-

tion cost, the total number of migrations, Total number of

Interrupted Tasks (TIT) due to the migration, Failure recovery

analysis, and optimality analysis. In the experiments, to obtain

the weighted cost of placement and migration, the w1 and w2

are set to 0.5. To analyze the efficiency of our technique, we

extended two other counterparts in the dependent category of

fog computing proposals as follows:

• MAAS: This is the extended version of the technique

called Mobility-Aware Application Scheduling (MAAS)

0

200

400

600

800

1000

1200

1400

10 20 40 80 160

IoT devices

P
D

T
 (m

s)

Proposed Solution MAAS Urmila

Figure 5: Placement Deployment Time (PDT)

[19] working based on edgeward-placement technique.

The main concern of this edge-centric technique is to

place dependent modules of IoT applications on remote

servers based on their pre-known mobility pattern (i.e.,

source, destination, and the potential paths between them

are known in advance) of users. In MAAS, if an FS

cannot place modules on itself, the modules should be for-

warded to the parent server for placement. We extended

this technique to support the migration as the users move

among remote servers in the runtime while considering

the destination and potential paths are not priori-known.

• Urmila: This is the extended version of Ubiquitous Re-

source Management for Interference and Latency-Aware

services (Urmila) [6] which proposes a mobility-aware

technique for placement of dependent modules of IoT

applications while mobility pattern of users are priori-

known. In this technique, the central controller is placed

in the highest level FS, and makes placement decisions

for IoT applications consisting of dependent modules.

We extended this technique so that the central controller

helps remote servers to migrate dependent modules of

applications as the IoT users move.

1) System size analysis: In this experiment, we study the

effect of number of IoT devices on the Placement Deployment

Time (PDT). The PDT shows the period between the start of

sending placement requests from IoT devices up to the time

the deployment of application modules of IoT devices on FSs

are finished. Obviously, the PDT includes the decision time in

which FSs make placement decisions and the container startup

cost on the servers. Regardless of the quality of solutions that

each technique provides, the PDT helps to understand how

long the IoT devices should wait until the service can start. In

this experiment, the number of IoT devices is increased from

10 to 160 by multiplication of two. Although the number of

IoT devices increases in this experiment, we fixed the number

of FSs so that we can analyze how different techniques work

when the number of placement requests increases significantly.

Besides, it is clear that our technique, due to its distributed

manner, can easily manage the increased number of placement

requests when the number of FSs increases.

In Fig. 5, the PDTs of our proposed solution and MAAS are

significantly lower than Urmila, specifically in a larger number

of IoT devices. This latter is mainly because our solution

and MAAS use a distributed placement engine while Urmila

uses a centralized approach. When the placement decision

engine receives incoming placement requests, it should make

placement decisions and then manage the deployments of

52 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

0

50

100

150

200

250

ECGMH EEGTBG

A
R

T
T

 (
m

s)

Proposed Solution MAAS Urmila

(a) Average Response Time of Tasks (ARTT)

0

50

100

150

200

250

ECGMH EEGTBG

A
E

C
T

 (
m

j)

Proposed Solution MAAS Urmila

(b) Average Energy Consumption of Tasks
(AECT)

0

50

100

150

200

250

ECGMH EEGTBG

A
W

C
T

Proposed Solution MAAS Urmila

(c) Average Weighted Cost of Tasks (AWCT)

Figure 6: Average execution cost of tasks

application modules in different servers according to solutions’

configuration. In Urmila, all of the placement requests should

be forwarded to the centralized entity, meaning that the number

of arriving placement requests in the decision engine is larger

than the distributed placement techniques. Hence, the process-

ing of these requests on the centralized controller takes more

time compared to the distributed placement engines, especially

when the number of IoT devices increases. Moreover, our

solution outperforms the MAAS since it tries to place more

application modules in the lowest hierarchical layer, compared

to MAAS, which incurs less deployment time.

2) Average execution cost of tasks: This experiment shows

the average execution cost of tasks emitted from a sensor mod-

ule until they arrive at actuator in 400 seconds of simulation.

As it can be seen from Fig 6, our proposed solution outper-

forms the MAAS and Urmila in terms of Average Response

Time of Tasks (ARTT), Average Energy Consumption of Tasks

(AECT), and Average Weighted Cost of Tasks (AWCT). In the

MAAS, each FS, from the lowest to the highest hierarchical

level, attempts to place modules on itself or forwards them to

its parent server for the placement or handling of the migration

process. Therefore, it does not consider other potential servers

at the same hierarchical level, which incurs higher transmis-

sion and inter-nodal costs. The pure Urmila, on the other

hand, does not migrate the application modules to servers that

are closer to the moving IoT devices, and hence, the average

execution cost of tasks, emitted from IoT devices, increases

significantly. In our distributed technique, however, each FS

considers potential servers at the same hierarchical level (for

placement and migration) if those servers are among its CMs.

In this way, we decrease the large search space of centralized

techniques, while we use the benefits that servers at the same

hierarchical level can provide. Also, since modules with higher

costs have higher placement priority, the possibility of their

placement on more suitable servers are higher compared to

other modules. This latter leads to better placement decisions

that minimize the cost of executing tasks. It is important to

note that the average execution cost of the EEGTBG is lower

than the ECGMH. It is because tasks’ instruction number in

the EEGTBG is lower than of ECGMH ones.

3) Total number of migrations: This experiment studies the

total number of migrations that occurred during 400 seconds

0

50

100

150

200

250

300

ECGMH EEGTBG

M

ig
ra

tio
n

Proposed Solution MAAS Urmila

Figure 7: Total number of migrations

due to the IoT users’ movement.

It can be seen from Fig. 7 that our technique leads to

a smaller number of migrations in comparison to its coun-

terparts. This is because our solution considers the current

mobility information of IoT devices such as current speed and

direction. Since the controller FS has coordinates of its CMs

and current mobility information of leaving IoT devices (e.g.,

their average speed and their direction while in the range of the

current controller FS), the serving FS can estimate a sojourn

time for all candidate remote servers for the migration. Hence,

by the migration of modules to the remote server with the

highest sojourn time (in case sufficient resources are available),

the number of possible migrations decreases. The extended

MAAS and Urmila only try to reduce the migration cost by

migrating modules to new remote servers, while they do not

consider current mobility information of IoT devices and their

sojourn time in remote servers. Hence, they may select remote

servers in which the IoT devices stay only for a short period.

4) Cumulative migration cost: This experiment analyzes

the Cumulative Migration Cost (CMC) of IoT devices for

ECGMH and EEGTBG in different simulation times. The term

cumulative refers to the aggregate migration cost of all IoT

devices.

As Fig 8 shows, our solution outperforms its counterparts

in terms of Cumulative Migration Time (CMT), Cumulative

Migration Energy Consumption (CMEC), and Cumulative

Migration Weighted Cost (CMWC) for both ECGMH and

EEGTBG applications. As the simulation time increases, the

cost of all techniques grows, however, Urmila experiences

a faster increase in comparison to our solution and MAAS.

This latter is because the Urmila’s controller is placed at the

highest hierarchical layer, which incurs significant inter-nodal

and transmission cost when the controller manages migrations

between the old and new remote servers in the downtime.

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 53

0

20

40

60

80

100

120

140

100 200 300 400 100 200 300 400

Simulation Time (S) Simulation Time (S)

ECGMH EEGTBG

C
M

T
 (

S
)

Proposed Solution MAAS Urmila

(a) Cumulative Migration Time
(CMT)

0

20

40

60

80

100

120

140

100 200 300 400 100 200 300 400

Simulation Time (S) Simulation Time (S)

ECGMH EEGTBG

C
M

E
C

 (
J

)

Proposed Solution MAAS Urmila

(b) Cumulative Migration Energy
Consumption (CMEC)

0

20

40

60

80

100

120

140

100 200 300 400 100 200 300 400

Simulation Time (S) Simulation Time (S)

ECGMH EEGTBG

C
M

W
C

Proposed Solution MAAS Urmila

(c) Cumulative Migration Weighted Cost
(CMWC)

Figure 8: Cumulative Migration Cost

0

2000

4000

6000

8000

10000

12000

100 200 300 400 100 200 300 400

Simulation Time (S) # Simulation Time (S)

ECGMH EEGTBG

T

IT

Proposed Solution MAAS Urmila

Figure 9: Total number of interrupted tasks

Besides, the migration cost of MAAS is more than our

solution, since whenever the resources of controller finishes,

the MAAS migrates the application modules to higher layers,

and hence, the emitted tasks to/from those modules experience

higher cost. Also, the total number of migrations in Urmila

and MAAS are higher than ours, which apparently increases

their cumulative migration costs. The slight difference between

cost of ECGMH and EEGTBG is because the tasks generated

from the ECGMH’s modules are heavier than EEGTBG’s ones

in terms of their MI. So, the processing time of remaining

instructions of tasks (i.e., e
ins,r
n,i,j) that migrated from old server

to new server is higher for the ECGMH compared to the

EEGTBG (in case the computing powers of old and new

servers are roughly the same).
5) Total number of interrupted tasks (TIT): This experiment

analyzes the Total number of Interrupted Tasks (TIT) in the

downtime. During migration downtime, there is no active

service provider for incoming tasks from the modules deployed

on the IoT device for a while. Hence, service interruptions hap-

pen in the downtime, in which the generated tasks experience

higher delays or even they can be discarded, compared to the

tasks that are generated when there is no migration. The IoT

users receive smoother results with lower TIT.

Fig. 9 presents the TIT of techniques for ECGMH and

EEGTBG in different simulation times. It can be seen that our

solution outperforms its counterparts in different simulation

times for the ECGMH and EEGTBG. The migration time has

a direct impact on the TIT, and the techniques with higher

migration time lead to larger TIT. This latter is because as

the migration time increases, the number of delayed (or even

dropped) tasks grows faster. It can be seen from Fig. 9 that the

Urmila results in larger TIT than two other techniques because

of its higher migration time. Moreover, due to our smaller

migration time, the TIT of our solution is smaller than other

techniques for both ECGMH and EEGTBG applications. It

Table IV: Failure Recovery Analysis

Applications Experiment

Techniques

Proposed Solution

(FR Mode)

MAAS

(No FR)

Urmila

(No FR)

ECGMH
Total Number of Migrations 177 234 234

Total Number of Interrupted Tasks 2095 4152 12302

EEGTBG
Total Number of Migrations 169 227 227

Total Number of Interrupted Tasks 1228 2504 8361

is worth mentioning that the TIT of techniques for EEGTBG

applications is smaller than of ECGMH ones. This latter is

due to a higher data transmission interval for the EEG sensor

in EEGTBG compared to the ECG sensor of ECGMH, which

means that the number of emitted tasks per second for the

EEGTBG application is smaller than the ECGMH application.

Hence, applications with shorter task emission interval (here,

the ECGMH application) suffer more from higher migration

time.

6) Failure recovery analysis: In this experiment, we study

the effect of the failure recovery method in the migration

process. The MAAS and Urmila do not have any failure

recovery methods and their results are just presented here

for comparison purposes. The results of our technique with a

failure recovery method (FR Mode) are presented in Table IV

when there is a 5% probability of failure in the migration

process.

Table IV illustrates that our technique with the failure

recovery method (FR Mode) can recover from failures while it

still outperforms its counterparts in terms of the total number

of migrations and TIT. The obtained results of the average

execution cost of tasks and cumulative migration cost in the

FR Mode are roughly the same with the Non-FR Mode and

they are not provided here. Since the Urmila and MAAS do

not have any failure recovery methods, in case of any failures,

their placement and/or migration process remains incomplete.

However, in our technique, we embedded the failure recovery

method for which it accepts a small overhead while it does

not stop working if any failures occur.

7) Optimality analysis: In this experiment, we compare the

performance of our proposed solution with the optimal values.

To obtain the optimal results, we used an optimized version

of the Branch-and-Bound algorithm to search all possible

candidate configurations for application placement, in which

the bounding function helps to faster prune the search space

[36]. Since finding the optimal solution is very time consum-

54 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

0

10

20

30

40

50

60

70

80

90

100

ECGMH EEGTBG

A
R

T
T

 (
m

s)

Optimal Proposed Solution

(a) Average Response Time of Tasks (ARTT)

0

10

20

30

40

50

60

70

80

90

100

ECGMH EEGTBG

A
E

C
T

 (
m

j)

Optimal Proposed Solution

(b) Average Energy Consumption of Tasks
(AECT)

0

10

20

30

40

50

60

70

80

90

100

ECGMH EEGTBG

A
W

C
T

Optimal Proposed Solution

(c) Average Weighted Cost of Tasks (AWCT)

Figure 10: Optimality analysis results

ing, in this experiment, we only consider 20 IoT devices in

a hierarchical fog computing environment consisting of 15

candidate servers.

Fig.10 shows the results of optimality analysis in terms of

Average Response Time of Tasks (ARTT), Average Energy

Consumption of Tasks (AECT), and Average Weighted Cost

of Tasks (AWCT). The results show that our solution has an

average of 12% difference with the optimal results. However,

considering the large number of FSs distributed in the proxim-

ity of IoT users, obtaining the optimal solutions, due to their

large search spaces, is not practically possible, especially for

real-time IoT applications.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a new weighted cost model for minimiz-

ing the overall response time and energy consumption of

IoT devices in a hierarchical fog computing environment,

in which heterogeneous FSs and CSs provide services for

IoT devices. In order to enable collaboration among remote

servers and provide better services for IoT applications,

we proposed a dynamic and distributed clustering technique

among FSs of the same hierarchical level. Considering the

heterogeneous resources of remote servers and the dynamic

nature of such computing environments, we also proposed a

distributed application placement technique to place interde-

pendent modules of IoT applications on appropriate remote

servers while satisfying their resource requirements. Also,

to manage potential migrations of IoT applications’ modules

among remote servers, due to IoT users’ mobility, a dis-

tributed migration management technique is proposed. The

main goal of this latter is to reduce the migration cost of

IoT applications. Finally, we embedded light-weight failure

recovery methods to handle possible unpredicted failures that

may happen in such dynamic computing environments. The

effectiveness of our technique is analyzed through extensive

experiments and comparisons by the state-of-the-art techniques

in the literature. The obtained results demonstrate that our

technique improves its counterparts in terms of placement

deployment time, average execution cost of tasks, the total

number of migrations, cumulative migration cost of all IoT

devices, and the total number of interrupted tasks due to

migration.

As part of future work, we will extend our cost model

to consider the energy consumption of servers and monetary

cost. Moreover, we plan to consider different migration models

such as pre-copy, post-copy, and hybrid, and analyze how they

affect IoT applications with different resource requirements.

Finally, we plan to integrate these techniques in real container-

based distributed frameworks such as FogBus2 [14] framework

to better analyze proposed techniques in real-world scenarios.

REFERENCES

[1] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware ap-
plication module management for fog computing environments,” ACM

Transactions on Internet Technology (TOIT), vol. 19, no. 1, p. 9, 2018.

[2] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2020.

[3] M. Goudarzi, M. Palaniswami, and R. Buyya, “A fog-driven dynamic
resource allocation technique in ultra dense femtocell networks,” Journal

of Network and Computer Applications, vol. 145, p. 102407, 2019.

[4] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions

on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[6] S. Shckhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and X. Kout-
soukos, “Urmila: A performance and mobility-aware fog/edge resource
management middleware,” in 2019 IEEE 22nd International Symposium

on Real-Time Distributed Computing (ISORC). IEEE, 2019, pp. 118–
125.

[7] M. Taneja and A. Davy, “Resource aware placement of iot application
modules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Sym-

posium on Integrated Network and Service Management (IM). IEEE,
2017, pp. 1222–1228.

[8] A. Kiani, N. Ansari, and A. Khreishah, “Hierarchical capacity provi-
sioning for fog computing,” IEEE/ACM Transactions on Networking,
vol. 27, no. 3, pp. 962–971, 2019.

[9] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based iot
application placement within heterogeneous and resource constrained
fog computing environments,” in Proceedings of the 12th IEEE/ACM

International Conference on Utility and Cloud Computing, 2019, pp.
71–81.

[10] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[11] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. Leung, “A distributed compu-
tation offloading strategy in small-cell networks integrated with mobile
edge computing,” IEEE/ACM Transactions on Networking, vol. 26,
no. 6, pp. 2762–2773, 2018.

MOHAMMAD GOUDARZI ET AL.: A DISTRIBUTED APPLICATION PLACEMENT AND MIGRATION MANAGEMENT TECHNIQUES 55

[12] S. Jošilo and G. Dán, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Transactions on Network-

ing, vol. 28, no. 2, pp. 667–680, 2020.
[13] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,

“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile

Computing, 2019, (in press).
[14] Q. Deng, M. Goudarzi, and R. Buyya, “Fogbus2: a lightweight and

distributed container-based framework for integration of iot-enabled
systems with edge and cloud computing,” in Proceedings of the Inter-

national Workshop on Big Data in Emergent Distributed Environments,
2021, pp. 1–8.

[15] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-
vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. 25, no. 1, pp. 140–147, 2017.

[16] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2016.

[17] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE

Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[18] M. Adhikari, S. N. Srirama, and T. Amgoth, “Application offloading
strategy for hierarchical fog environment through swarm optimization,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4317–4328, 2019.

[19] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud

Computing, vol. 4, no. 2, pp. 26–35, 2017.
[20] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,

“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1272–1288, 2019.

[21] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User
mobility aware task assignment for mobile edge computing,” Future

Generation Computer Systems, vol. 85, pp. 1–8, 2018.
[22] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient mobility-

aware task offloading for vehicular edge computing networks,” IEEE

Access, vol. 7, pp. 26 652–26 664, 2019.
[23] Z. Liu, X. Wang, D. Wang, Y. Lan, and J. Hou, “Mobility-aware task

offloading and migration schemes in scns with mobile edge computing,”
in 2019 IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, 2019, pp. 1–6.

[24] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog following
me: Latency and quality balanced task allocation in vehicular fog
computing,” in 2018 15th Annual IEEE International Conference on

Sensing, Communication, and Networking (SECON). IEEE, 2018, pp.
1–9.

[25] C. Zhang and Z. Zheng, “Task migration for mobile edge computing us-
ing deep reinforcement learning,” Future Generation Computer Systems,
vol. 96, pp. 111–118, 2019.

[26] F. Yu, H. Chen, and J. Xu, “Dmpo: Dynamic mobility-aware partial
offloading in mobile edge computing,” Future Generation Computer

Systems, vol. 89, pp. 722–735, 2018.
[27] Y. Sun, S. Zhou, and J. Xu, “Emm: Energy-aware mobility management

for mobile edge computing in ultra dense networks,” IEEE Journal on

Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646,
2017.

[28] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao,
“Knowledge-driven service offloading decision for vehicular edge com-
puting: A deep reinforcement learning approach,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 5, pp. 4192–4203, 2019.
[29] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task offloading

and migration schemes in fog computing networks,” IEEE Access, vol. 7,
pp. 43 356–43 368, 2019.

[30] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-obus-as-on-demand-
fogs: Resource and context aware deployment of containerized micro-
services,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp.
778–790, 2020.

[31] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and
A. Puliafito, “Container migration in the fog: a performance evaluation,”
Sensors, vol. 19, no. 7, p. 1488, 2019.

[32] M. Goudarzi, Z. Movahedi, and M. Nazari, “Mobile cloud computing: a
multisite computation offloading,” in 2016 8th International Symposium

on Telecommunications (IST). IEEE, 2016, pp. 660–665.
[33] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, “A

computation offloading method over big data for iot-enabled cloud-edge
computing,” Future Generation Computer Systems, vol. 95, pp. 522–533,
2019.

[34] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards efficient
edge cloud augmentation for virtual reality mmogs,” in Proceedings of

the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–14.
[35] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can

offloading computation save energy?” Computer, no. 4, pp. 51–56, 2010.
[36] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid multi-

site computation offloading for mobile cloud computing,” Journal of

Network and Computer Applications, vol. 80, pp. 219–231, 2017.

56 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

