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Abstract—The emergence of the deep neural architectures
greatly influenced the contemporary big data revolution. How-
ever, requirements on large datasets even increased a necessity for
efficient data storage. The storage problem is present at all stages,
from the dataset creation up to the training and prediction stages.
However, compression algorithms can significantly deteriorate
the quality of data and in effect the classification models. In
this article, an in-depth analysis of the influence of the tensor-
based lossy data compression on the performance of the various
deep neural architectures is presented. We show that the Tucker
and the Tensor Train decomposition methods, with properly
selected parameters, allow for very high compression ratios,
while conveying enough information in the decompressed data
to achieve only a negligible or very small drop in the accuracy.
The measurements were performed on the popular deep neural
architectures: AlexNet, ResNet, VGG, and MNASNet. We show
that further augmentation of the tensor decompositions with
the ZFP floating-point compression algorithm allows for finding
optimal parameters and even higher compressions ratios at
the same recognition accuracy. Our experiments show data
compressions of 94%-97% that result in less than 1% accuracy
drop.

I. INTRODUCTION

The tendency of generating huge volumes of data dynam-

ically increases. In this light data compression methods are

of high importance. This is also true in the ML/AI domain,

where modern deep neural architectures require larger training

data sets. On the other hand, it has been shown that tensor

decomposition methods allow to achieve huge compression

ratios on multidimensional data [1]–[4]. Not surprisingly then

that the tensor decompositions have been applied to compress

weights of the deep neural networks [5], [6]. There are

also works focusing on problem of learning from compact

representations of images [7], [8]. However, to the best of

our knowledge, there are no studies on the influence of the

training data compression with tensor decompositions on the

accuracy of the deep neural networks. This paper fills this gap

providing an in-depth analysis of the Tucker and Tensor Train

(TT) decomposition based data compression methods on the

performance of the common deep network architectures such

as AlexNet, ResNet, VGG, and MNASNet. The networks are

trained in different scenarios, and due to the batch processing

not all data need to be decompressed at the same time. Fur-

thermore, we propose an additional step of data compression

based on the ZFP floating-point lossy compression method [9].

Our experimental results show that the properly setup tensor

decompositions followed by the ZFP module allow for as high

as 94%-97% data compression ratios with less than 1% drop

in accuracy of the deep neural networks.

The rest of the paper is organized as follows. Section II

describes the related works. In Section III the two tensor

decomposition methods used in our experiments are dis-

cussed. Section IV presents the ZFP floating-point compres-

sion method. In Section V neural network models utilized

during experiments are described. Our proposed tensor-based

training method is explained in Section VI. Experimental re-

sults with a discussion on results are described in Section VII.

Finally, Section VIII concludes the paper.

II. RELATED WORKS

Compression methods gained much attention over the recent

few decades. Since the seminal works of Lempel & Ziv in

the lossless compression [10], much more diversed methods

have been proposed in the lossy compression domain. Soon

it was realized that various matrix, such as the well-known

SVD one, and tensor decompositions can lead to significant

data reductions [11]. However, the latter depends on many

parameters, such as the tensor rank [2], [12]. In the case of

multidimensional data, such as images, video, etc., the tensor-

based approach offers much more possibilities, as will be

discussed. In the era of deep neural networks, tensor-based

methods proved to be superior in compressing their weights.

However, it is also possible to compress their training and

testing data - in this paper, we explore this branch.

Balle et al. proposed an image compression method con-

sisting of nonlinear transformations for analysis and signal

synthesis [13]. Three stages of convolutional linear filters

with nonlinear activation functions were used to create both

transforms. It achieved better rate-distortion performance than

the standard JPEG and JPEG 2000 compression methods.

The tensor approach was explored by Zhang et al. [14]. The

hyperspectral images were stacked into 3D tensors in which
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spatial-spectral structure is preserved. The data - approximated

and stored in projection matrices - achieved a high compres-

sion ratio with a low value of introduced artifacts.

Aidini et al. used the CANDECOMP/PARAFAC tensor de-

composition to the compression method [15]. The multispec-

tral image time series was expressed as a linear combination

of the learned tensors and the quantization of the coefficients

using the learned encoding dictionary.

Watkins and Sayeh proposed deep neural networks based

method for gray image compression. The network is based on

the autoencoder structured network, capable of both compress-

ing and decompressing images [16] with a high compression

ratio.

A multispectral image compression method based on the

convolutional neural network was proposed by Li and Liu [5].

The processing path consists of the encoder and decoder parts.

Both parts use CNN in combination with discrete cosine

transform and nonnegative tensor decomposition (NDT) in

pseudo-autoencoder structure. The method shows improved

computational efficiency with comparable PSNR values com-

pared to direct NDT in the wavelet domain.

Friedland et al. [17] analyze an impact of artifacts from

perceptual compression on deep learning, concluding that

classification accuracy is tightly connected to compression

rate and data quantization. The loss of classification efficiency

was mainly due to artifacts introduced during the compression

process.

Similarly, in the PhD thesis on the impact of standard

image compression techniques on CNN performance, Dejan

concluded that network trained on JPEG encoded images

partially relies on artifacts introduced by the compression [18].

In the paper, the authors do not use weight compression [6],

[19], [20]. This topic is an additional option for further saving

space in neural networks and can be implemented in future

works. In recent years, tensors gained much attention from the

ML/AI community, also in the context of data decompositions

for compression [2]–[4], [12]. However, there is no work

to analyze the influence of tensor-based compression of the

training and testing data on the performance of the deep neural

networks. We fill this gap, starting in the next section with a

brief introduction to tensors.

III. TENSOR COMPRESSION

Tensors are mathematical objects which can be regarded

as multidimensional arrays of data, in which each separate

dimension corresponds to a different degree of freedom of

a measurement. Such an approach provides tools that extend

the classical matrix analysis and which can take into account

correlations hidden in data, to yield better results in various

applications, such as compression or filtering [2].

Tensors extend the notion of vectors and matrices into

higher-dimensional objects [2], [3], [21]–[23]. As discussed

below, they allow for better representation and processing of

the multidimensional signals and, in effect, also for higher

compression ratios.

The multidimensional compression can be based on the

following tensor product

T̂ = T ×1 F1 ×2 F2...×P FP (1)

where decompressed version of input tensor T is denoted as T̂ ,

whereas Fi is the ith factor matrix. The key idea is that the set

of factor matrices and their product with T , from the right side

of (1), require much less storage space than the original tensor

T , while its recovered version T̂ is close enough in terms

of the chosen norm, allowing e.g. for proper CNN training,

as will be discussed. Also in the above equation, the k-th

modal product T ×k M of a tensor T ∈ ℜN1×N2×...×NP and

a matrix M ∈ ℜQ×Nk is used. The result is also a tensor

S ∈ ℜN1×N2×...Nk−1×Q×Nk+1×...×NP , whose elements are

expressed as follows:

Sn1n2...nk−1qnk+1...nP
= (T ×k M)n1n2...nk−1qnk+1...nP

=
Nk∑

nk=1

tn1n2...nk−1qnk+1...nP
mqnk

(2)

As shown below, the compression matrices Fi, called fac-

tors, can be obtained using the Tucker decomposition of

tensors [12]. Thanks to the proper selection of the ranks of

the tensor decomposition factors, decomposition usually well

separates useful signal from its high-frequency components

while taking multidimensional characteristics of the signal into

account. The decomposition procedure of the tensor T is done

by calculation of an approximating tensor T̂ that is close to

the input tensor in terms of the Frobenius norm. Hence, a

minimization function is defined as follows

Θ(T̂ ) = ||T̂ − T ||2F (3)

A. Tucker-based methods

The concept of the Tucker decomposition of a 3D tensor

is presented in Figure 1. Assuming that the approximating

tensor T̂ contains the same amount of useful information as

the original tensor T , it can be expressed as follows

T̂ = Z ×1 S1 ×2 S2 ×3 ...×P SP (4)

where Z ∈ ℜR1×R2×...×RP is a core tensor and Si ∈ ℜNi×Ri

are the so-called mode matrices. Using algebraic operations,

from Equation (4), the formula for the core tensor is obtained:

Z = T̂ ×1 ST
1
×2 ST

2
×2 ...×P ST

P (5)

Combining Equation (5) with Equations (3) and (4) yields

Θ(T̂ ) = ||T̂ − T
P∏

k=1

×k(SkST
k )||

2

F (6)

The Tucker decomposition in Equation (6) reads that a

tensor T is approximated by its projection onto space spanned

by the matrices Sk. To compute the series of Sk matrices, the

alternating method can be used [2], [21], [24]–[26]. Also, let’s

observe that SiS
T
i in (6) is equivalent to the factor matrix Fi

from (1).
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Fig. 1. Visualization of the Tucker decomposition of a 3D tensor.

Fig. 2. Visualization of the Tensor Train network.

The approximation in Equation (4) includes only the com-

ponents conveying the majority of energy available in the

signal. However, to ensure the best quality, the estimation of

the proper ranks R1, R2, and R3 of the mode matrices Si

is necessary. Although fixed values can be used as a first

approximation, the proper ranks need to be based on the

signal content in real dynamic systems with unpredictable

noise values. Multiple methods were presented to help solve

this problem, i.e., Muti and Bourennane [22] using the mini-

mum description length parameter (MDL) computed for each

dimension separately, allowing optimal rank selection.

The Tucker format is stable, but its computational complex-

ity grows exponentially with input tensor dimensions. It makes

the method suitable only for ”small” dimensions [27], [28].

B. Tensor-Train

To mitigate the computational complexity problem, a D-

th order tensor T ∈ ℜN1×N2×...×ND can be represented

as T (j1, j2, ..., jd) = G1[j1]G2[j2]...Gd[jd], where Gk[jk] is

factor matrix with size of rk−1 × rk r0 = rd = 1 and

jk ∈ {1, 2, ..., nk} (k ∈ 1, 2, ..., d) [45].. The set of rk is

collectively called Tensor Train ranks. The Gk[jk] belonging

to the same mode can be stacked into 3-rd order core tensor

Gk ∈ ℜN1×rk−1×rk allowing the T be represented as follows:

T = G1 ×
1 G2 ×

1 ...×1 Gd (7)

where ×1 is called mode-(N,1) contracted product, pre-

sented here [29].

The decomposition can be presented graphically by the

linear tensor network [30], [31], illustrated in Figure 2. There

are two types of nodes: rectangular and circular. Rectangular

contains spatial indices (ik), some auxiliary indices (αk), and

a tensor with these indices associated with such nodes. On

the other hand, a circular node is a link and contains only the

auxiliary indices. If an auxiliary index is present in two cores,

the cores are connected. To evaluate an input tensor, all tensor

in rectangles need to be multiplied, and then summation is

performed over all auxiliary indices.

Compared to Tucker Decomposition, the Tensor Train for-

mat has lower spatial complexity, making it more computa-

tionally efficient for tensors with larger dimensions [32].

IV. FIXED-RATE COMPRESSED FLOATING-POINT ARRAYS

The need for floating-point array compression is expressed

by multiple lossy and lossless compression algorithms devel-

oped throughout the years. The most widely spread are image

compression methods allowing encoding 2D and 3D arrays.

For instance, PNG and JPEG-LS use linear prediction; JPEG

- the block transform coding; JPEG2000 relies on the higher-

order wavelets.

The Fixed-Rate Compressed Floating-Point Arrays (ZFP)

compression scheme is based on ideas developed to compress

2D image data efficiently [33]. The input 3D array is divided

into small, fixed-size blocks of dimensions 4 x 4 x 4, stored

using a user-specified number of bits, which can be accessed

independently. The method compresses the block performing

the following steps:

1) Align the values in a block to a common exponent;

2) Convert the floating-point values in a block to a common

exponent;

3) Convert the floating-point values to a fixed-point repre-

sentation;

4) Apply an orthogonal block transform to decorrelate the

values;

5) Order the transform coefficients by the expected magni-

tude;

6) Encode the resulting coefficients one “bit plane” at a

time

The conversion to fixed-point is done by expressing each

block value with respect to the largest floating-point exponent

in a block, which is stored uncompressed resulting in normal-

ized values in the range (-1, +1).

The prepared values are transformed to a basis allowing the

spatially correlated values to be mostly decorrelated, as this

results in many near-zero coefficients that can be compressed

efficiently.

A separable orthogonal transform in d dimensions is em-

ployed to take advantage of regularly gridded data, resulting

in a basis that is the tensor product of 1D basis functions. The

proposed transform, due to coefficient selection, replaces di-

visions and multiplications into bitshifts. This choice achieves

near-optimal results in terms of decorrelation efficiency and

coding gain and is very efficient from a computational per-

spective. Further details of the ZFP method can be accessed

from [33].

V. NEURAL NETWORK MODELS

The advent of modern ML/AI methods, especially deep

neural networks (DNN), resulted in a real IT revolution [34].

In a very short time, people realized real power in these

systems that can be directly trained from data with marvelous

results. Hence, the term “data” gained even more importance.

With these came the eruption of modern deep neural network

architectures, such as AlexNet [35], VGG [36], ResNet [37],
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and dozens of their derivatives [38]–[41]. These were possible

thanks to novel scientific achievements such as a solution

to the vanishing gradient problem in very deep networks,

optimization algorithms, and thanks to the availability of the

efficient general-purpose graphics processing units (GGPU).

For example, in the computer vision domain, neural net-

works dominate in majority of tasks, such as object detection

& recognition, segmentation, filtering, to name a few. How-

ever, performance of the neural networks depends heavily on

availability of the high quality labeled data. However, this

can be jeopardized by many factors, such as compression-

decompression processes, we focus upon in this work.

To examine the impact of the proposed compression

method, state-of-the-art models capable of high accuracy with

reasonable low training time were used. Their architectures

are shortly described below.

AlexNet

The neural network contains eight learned layers [35] - five

convolutional and three fully connected. It introduces such

features as ReLU nonlinearity, the capability of training on

multiple GPUs, local response normalization, and overlapping

pooling. The new approach combined with a high emphasis

on overfitting reduction results in a highly accurate model,

even today. The network is recognized as a milestone, and

solutions proposed in the article are now considered as

standard by AI/ML community.

ResNet

The ResNet networks implements skip connections with

ReLU nonlinearity and batch normalization [41]. It allows

to mitigate vanishing gradient problem and speeds up the

training process, which positively impacts the feasibility of

training deeper neural networks.

VGG

The model uses small receptive fields, decreasing the

number of trainable parameters and increasing the ReLU unit

count [36]. Such an approach makes the decision function

more discriminative, which in turn increases overall network

performance.

MNASNet

It is a neural architecture for mobile devices [42]. It bases

on Factorized Hierarchical Search Space approach, which

balances the diversity of layers and the size of total search

space. The resulting network generally runs faster and uses

less computational power.

VI. TENSOR-BASED DATA PROCESSING

The main goal of our approach is to decrease data size with

the lossy compression process without a significant impact

on the quality of object prediction by the benchmark neural-

network architectures. The proposed method requires an input

in a tensor form. Based on images selected to process, the

width (W ) and height (H) parameters, describing tensor

Fig. 3. Block diagram of proposed method’s compression step.

Fig. 4. Block diagram of proposed method’s decompression step.

dimensions, are selected based on the biggest image in a set.

The last parameter depth (D) depends only on the number

of input images. The input tensor is assembled utilizing the

method shown in Algorithm 1 and produces W ×H×D data

chunk used for further processing.

The next step is a tensor decomposition, as presented in

Figure 3. Depending on the selected method, the result is a

set of mode matrices (Tensor Train) or core tensor and mode

matrices (Tucker decomposition). These approximated signals

contain the most relevant information, and higher frequency

components are removed. Smaller rank values selected for the

method translate to higher compression and more significant

high-frequency attenuation. In the next step, obtained results

are compressed with the ZFP algorithm using a tolerance

argument ZFPt that controls the compression quality. Such

compressed data objects can be stored on a disk for further use

or be utilized as an intermediate step in real-time processing.

Before the next step, processed data needs to be decom-

pressed, as presented in the Figure 4. First, using the ZFP

decompression method, then in the reverse signal synthesis

process, the aforementioned matrices are merged into the result

tensor. However, the reverse signal synthesis can be calculated

for the entire tensor, a single image, or a set of consecu-

tive images. Such flexibility allows decrease computational

requirements and allows the method to be used as part of

modern neural-network training architecture.

VII. EXPERIMENTAL RESULTS

The presented method was implemented in Python, us-

ing the NumPy, SciPy, and scikit-image packages. TensorLy

library was used for tensor decomposition [43], and ZFP

library for the additional compression of multidimensional

floating-point arrays [33]. As the benchmark, the following

neural network architectures were selected: AlexNet, ResNet-

18, ResNet-34, VGG-11, VGG-13, and MNASNet0.5.

Presented Experiments were performed on a server com-

puter, equipped with 256 GB of RAM, 64-core processor

AMD Ryzen Threadripper 3990X with the 2.9 GHz base

clock, and 64-bit Ubuntu 20.04.2 LTS OS.

The quantitative results were measured in terms of com-

pression ratio (Cr) and object detection accuracy of neural
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Algorithm 1 Tensor assembler.

1: T = ∅
2: while I 6= ∅ do

3: load original image Ii and prepare container for resized

image Ip
4: calculate x and y offsets needed to place Ii in the center

of Ip
5: resize selected image from I to dimensions specified

in W and H , keeping aspect ratio of original data and

save it to Ip
6: append Ip to T

7: remove Ii from I

8: end while

9: return T

network (Acc). The compression ratio is defined as follows:

Cr =
Uncompressed data size

Compressed data size
(8)

Furthermore, an object detection accuracy of a neural net-

work is described as the proportion of correct predictions over

the total examined cases:

Acc =
TP + TN

TP + TN + FP + FN
(9)

where TP , TN , FP , FN represents true positive, true

negative, false positive, and false negative values achieved by

the network model, on the tested dataset, respectively.

For the quantitative evaluation of the proposed method,

Imagenette [44] was selected. The dataset is a subset of 10

easily classified classes from the Imagenet dataset and was

selected to decrease the time needed for development and

tests. The original structure contains train and validation sets

with 9469 and 3925 images, respectively. For better quality

estimation, the presented accuracy of tested neural networks

is measured using a test set containing 1500 images. The

before-mentioned set was separated from the original subsets

using 900 images from the train set and 600 images from the

validation set. The final image count for used image sets is

as follows: training 8569 images, validation 3325 images, and

test 1500.

The input data was processed using the tensor-based com-

pression methods described in Section VI. The collection of

test datasets was created depending on selected parameters and

methods, as shown in Table I.

To cover a broad spectrum of possible utilization of the

proposed method, it was decided to check an impact of tensor

based data compression/decompression on networks depend-

ing on the learning process. Both random weight initialization

and the transfer learning technique were used. For the latter,

models were pre-trained on the Imagenet dataset.

The training process was conducted for each of the prepared

datasets and each of the selected benchmark neural networks,

and results were measured. All prepared data plots from

Figure 5 to Figure 19 are presented below.

Denoting dimensions of the input tensor as W × H × D,

values of the corresponding ranks for tensor methods

were calculated as [0.5W, 0.5H,D] for Tucker

decomposition. Similarly, in the case of the tensor train

method, dimensions of the factor matrices were set to

[1, 0.5min(W,H), 0.5min(W,H), 1]. Obtained compression

ratios for different tensor methods and values of ZFP

tolerance are presented in Table II. Results of the neural

network accuracy are presented in Table III for the random

weight initialization and in Table IV for the transfer learning,

respectively. The results are discussed below.

For the transfer learning technique, it can be observed that

TT achieved better accuracy for the selected ranks. Depending

on the tested neural network, it achieves 0.6 - 2.5% worse

results compared to the original dataset. At the same time,

the TT method provides users with a lower compression

ratio, between 14.92 and 16.86 for lossless and lossy ZFP

compression, respectively. On the other hand, the Best rank

method achieves higher compression 20.41 - 21.39, with lower

network accuracy however. In this case the difference between

original data and tested datasets is higher, from 2.1% to

6.3%. Additionally, for nearly all cases, methods combining

tensor-based algorithm with lossy ZFP yield better results than

ZFP lossless ones. Depending on the tested neural network,

the lossy ZFP version achieves 0.6 - 1.1% and 2.1 - 4.1%

difference between original for the TT and Best rank methods,

respectively.

In the random weight training case, again TT achieves better

accuracy, with an accuracy loss between 3.3% - 7.2% depend-

ing on the tested neural network. The Best rank method yields

6.6% - 13.5% drop in accuracy. In the considered context, for

nearly all tested cases, lossy ZFP compression does not change

the accuracy achieved by tested neural networks.

Hence, the proposed method combines high compression

capabilities with good retention of important signals for the de-

tection process. For the most common neural network training

technique used today - transfer learning - the method achieves

results very close to the values obtained on the original dataset.

Higher compression rate impacts all tested networks’ quality

by removing high-frequency components from the images,

which means lowering object detection accuracy by 0.6 - 1.1%

and 2.1 - 4.1% for the Tensor train and Best rank methods,

respectively. However, tensor methods inherently allow an

easy change in the compression rate by selecting different

ranks during the decomposition process, making it possible

to find an acceptable trade-off for a given application.

VIII. CONCLUSION

In this paper, a novel framework and experiments on data

compression/decompression in order to measure the impact

on the deep neural network training and prediction are pre-

sented. The compression/decompression is based on tensor

decomposition methods combined with the floating-point array

compression. We show that the presented methods can achieve

very high compression ratios while still preserving enough
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TABLE I
DATASETS USED IN NETWORK QUALITY ASSESSMENT.

Name
Tensor

compression type

ZFP

tolerance

Validation set

compressed?

A original - - false

B best rank Best rank lossless true

C best rank comp Best rank 1e-3 true

D best rank orig val Best rank lossless false

E best rank comp orig val Best rank 1e-3 false

F tensor train Tensor train lossless true

G tensor train comp Tensor train 1e-3 true

H tensor train orig val Tensor train lossless false

I tensor train comp orig val Tensor train 1e-3 false

TABLE II
COMPRESSION RESULTS.

Tensor

compression type

ZFP

tolerance

Compression ratio

(Space saving)

Complete processing

time [h:mm:ss]

Best rank lossless 20.41 (0.951) 2:46:02

Best rank 1e-3 21.39 (0.953) 2:47:09

Tensor train lossless 14.92 (0.932) 1:27:38

Tensor train 1e-3 16.86 (0.941) 1:27:43

TABLE III
NETWORK ACCURACY VERSUS DATASET TYPE. TRAINING RESULTS FOR RANDOM WEIGHT INITIALIZATION. DATASETS: ORIGINAL (A), BEST RANK (B),

BEST RANK COMP (C), BEST RANK ORIG VAL (D), BEST RANK COMP ORIG VAL (E), TENSOR TRAIN (F), TENSOR TRAIN COMP (G),
TENSOR TRAIN ORIG VAL (H), TENSOR TRAIN COMP ORIG VAL (I)

AlexNet ResNet-18 ResNet-34 VGG-11 VGG-13 MNASNet0.5

A 0.7687 0.8025 0.7962 0.8018 0.7806 0.7389

B 0.6497 0.6683 0.6581 0.6838 0.6713 0.6033

C 0.6555 0.7292 0.7304 0.7139 0.6945 0.6454

D 0.6482 0.681 0.7083 0.6851 0.6566 0.6191

E 0.6662 0.693 0.6856 0.6823 0.6741 0.6321

F 0.7093 0.7554 0.7605 0.7422 0.7228 0.6652

G 0.7271 0.7521 0.7475 0.7427 0.7338 0.681

H 0.7389 0.7493 0.7623 0.7417 0.7335 0.6795

I 0.7284 0.7439 0.7475 0.7483 0.7264 0.6561

TABLE IV
NETWORK ACCURACY VERSUS DATASET TYPE. TRAINING RESULTS FOR TRANSFER LEARNING TECHNIQUE. DATASETS: ORIGINAL (A), BEST RANK (B),

BEST RANK COMP (C), BEST RANK ORIG VAL (D), BEST RANK COMP ORIG VAL (E), TENSOR TRAIN (F), TENSOR TRAIN COMP (G),
TENSOR TRAIN ORIG VAL (H), TENSOR TRAIN COMP ORIG VAL (I)

AlexNet ResNet-18 ResNet-34 VGG-11 VGG-13 MNASNet0.5

A 0.9381 0.9689 0.9664 0.9791 0.9783 0.9592

B 0.8943 0.9378 0.9434 0.9577 0.9595 0.9177

C 0.8961 0.9411 0.9434 0.9562 0.9575 0.8963

D 0.893 0.9394 0.9338 0.9572 0.9597 0.9185

E 0.8854 0.9378 0.9437 0.9572 0.9618 0.9141

F 0.9124 0.9549 0.9498 0.9654 0.9697 0.9335

G 0.9302 0.961 0.959 0.971 0.972 0.9508

H 0.9243 0.9575 0.9582 0.9715 0.9715 0.9501

I 0.9261 0.9585 0.9575 0.9674 0.9689 0.9503

significant information in data to achieve high accuracy of

object detection in the neural models.

The utilized algorithms can smoothly change the achieved

compression rate, which impacts network accuracy during the

training process, allowing users to find parameters that are

optimal for a given application.

Furthermore, storing data in the proposed form allows

for a selective decompression of a single or a group of

images without the need to decompress the entire tensor. The

accuracy drop in respect to the original data is visible, but

for the problems where storage or data transfer speed are

important, it can increase performance both during training and

normal operation. Alternatively, we can say that thanks to data

compression a larger amount of data can be transferred and
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(a) Random initialization. (b) Transfer learning.

Fig. 5. Comparison between all used architectures trained on the original
dataset.

(a) Random initialization. (b) Transfer learning.

Fig. 6. Comparison between all used architectures trained on the dataset
compressed with Tucker decomposition and lossless ZFP.

(a) Random initialization. (b) Transfer learning.

Fig. 7. Comparison between all used architectures trained on the dataset
compressed with Tucker decomposition and lossy ZFP.

(a) Random initialization. (b) Transfer learning.

Fig. 8. Comparison between all used architectures trained on the dataset
compressed with Tucker decomposition and lossless ZFP with original vali-
dation set.

(a) Random initialization. (b) Transfer learning.

Fig. 9. Comparison between all used architectures trained on the dataset
compressed with Tucker decomposition and lossy ZFP with original validation
set.

(a) Random initialization. (b) Transfer learning.

Fig. 10. Comparison between all used architectures trained on the dataset
compressed with Tensor Train algorithm and lossless ZFP.

(a) Random initialization. (b) Transfer learning.

Fig. 11. Comparison between all used architectures trained on the dataset
compressed with Tensor Train algorithm and lossy ZFP.

(a) Random initialization. (b) Transfer learning.

Fig. 12. Comparison between all used architectures trained on the dataset
compressed with Tensor Train algorithm and lossless ZFP with original
validation set.
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(a) Random initialization. (b) Transfer learning.

Fig. 13. Comparison between all used architectures trained on the dataset
compressed with Tensor Train algorithm and lossy ZFP with original valida-
tion set.

(a) Random initialization. (b) Transfer learning.

Fig. 14. AlexNet training results for each tested dataset.

(a) Random initialization. (b) Transfer learning.

Fig. 15. ResNet-18 training results for each tested dataset.

(a) Random initialization. (b) Transfer learning.

Fig. 16. ResNet-34 training results for each tested dataset.

(a) Random initialization. (b) Transfer learning.

Fig. 17. VGG-11 training results for each tested dataset.

(a) Random initialization. (b) Transfer learning.

Fig. 18. VGG-13 training results for each tested dataset.

used for training. Also, although the method was developed for

images, it can be useful for other data types, such as physical

or industry measurements, etc.

Summarizing, the best results were achieved using the

transfer learning technique, where a dataset is processed with

Tensor Train decomposition paired with the lossy version

of the ZFP algorithm. In this setting 0.6% - 0.7% drop in

accuracy of the deep neural networks in respect to the original

dataset was achieved for all tested methods. The best accuracy,

both in respect to the original and processed dataset, was

obtained with the VGG-11 and VGG-13 models.
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(a) Random initialization. (b) Transfer learning.

Fig. 19. MNASNet0.5 training results for each tested dataset.
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